आइजेनवैल्यू एल्गोरिदम: Difference between revisions
(Created page with "{{Short description|Numerical methods for matrix eigenvalue calculation}} संख्यात्मक विश्लेषण में, सबसे महत्व...") |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Numerical methods for matrix eigenvalue calculation}} | {{Short description|Numerical methods for matrix eigenvalue calculation}} | ||
[[संख्यात्मक विश्लेषण]] में, सबसे महत्वपूर्ण समस्याओं में से | [[संख्यात्मक विश्लेषण]] में, सबसे महत्वपूर्ण समस्याओं में से [[मैट्रिक्स (गणित)]] के [[eigenvalue]]s को खोजने के लिए कुशल और [[संख्यात्मक स्थिरता]] [[कलन विधि]] डिजाइन करना है। ये eigenvalue एल्गोरिदम eigenvectors भी ढूंढ सकते हैं। | ||
==आइजेनवैल्यू और आइजेनवेक्टर== | ==आइजेनवैल्यू और आइजेनवेक्टर== | ||
{{main|Eigenvalues and eigenvectors|Generalized eigenvector}} | {{main|Eigenvalues and eigenvectors|Generalized eigenvector}} | ||
एक दिया गया {{math|''n'' × ''n''}} वर्ग आव्यूह#वर्ग आव्यूह {{math|''A''}} [[वास्तविक संख्या]] या सम्मिश्र संख्या संख्याओं का, | एक दिया गया {{math|''n'' × ''n''}} वर्ग आव्यूह#वर्ग आव्यूह {{math|''A''}} [[वास्तविक संख्या]] या सम्मिश्र संख्या संख्याओं का, eigenvalue {{math|''λ''}} और इससे संबंधित सामान्यीकृत आइजेनवेक्टर {{math|'''v'''}}रिश्ते का पालन करने वाला जोड़ा है<ref name="Axler">{{Citation | last = Axler | first = Sheldon | author-link = Sheldon Axler | title = Down with Determinants! | journal = American Mathematical Monthly | volume = 102 | issue = 2 | pages = 139–154 | url = http://www.axler.net/DwD.pdf | year = 1995 | doi = 10.2307/2975348 | jstor = 2975348 | access-date = 2012-07-31 | archive-url = https://web.archive.org/web/20120913111605/http://www.axler.net/DwD.pdf | archive-date = 2012-09-13 | url-status = dead }}</ref> | ||
:<math>\left(A - \lambda I\right)^k {\mathbf v} = 0,</math> | :<math>\left(A - \lambda I\right)^k {\mathbf v} = 0,</math> | ||
कहाँ {{math|'''v'''}} | कहाँ {{math|'''v'''}} अशून्य है {{math|''n'' × 1}} कॉलम वेक्टर, {{math|''I''}} है {{math|''n'' × ''n''}} [[शिनाख्त सांचा]], {{math|''k''}} धनात्मक पूर्णांक है, और दोनों {{math|''λ''}} और {{math|'''v'''}} को तब भी जटिल रहने की अनुमति है {{math|''A''}} यह सचमुच का है। कब {{math|1=''k'' = 1}}, वेक्टर को केवल [[आइजन्वेक्टर]] कहा जाता है, और जोड़ी को आइजेनपेयर कहा जाता है। इस मामले में, {{math|1=''A'''''v''' = ''λ'''''v'''}}. कोई भी eigenvalue {{math|''λ''}} का {{math|''A''}}साधारण है<ref group="note">The term "ordinary" is used here only to emphasize the distinction between "eigenvector" and "generalized eigenvector".</ref> इससे जुड़े eigenvectors, यदि के लिए {{math|''k''}} ऐसा सबसे छोटा पूर्णांक है {{math|1=(''A'' − ''λI'')<sup>''k''</sup> '''v''' = 0}} सामान्यीकृत eigenvector के लिए {{math|'''v'''}}, तब {{math|1=(''A'' − ''λI'')<sup>''k''−1</sup> '''v'''}} साधारण eigenvector है. मूल्य {{math|''k''}} को हमेशा से कम या बराबर के रूप में लिया जा सकता है {{math|''n''}}. विशेष रूप से, {{math|1=(''A'' − ''λI'')<sup>''n''</sup> '''v''' = 0}} सभी सामान्यीकृत eigenvectors के लिए {{math|'''v'''}} के साथ जुड़े {{math|''λ''}}. | ||
प्रत्येक eigenvalue के लिए {{math|λ}} का {{math|''A''}}, [[कर्नेल (मैट्रिक्स)]] {{math|ker(''A'' − ''λI'')}} से जुड़े सभी eigenvectors शामिल हैं {{math|''λ''}} (0 के साथ), का [[ eigenspace ]] कहा जाता है {{math|''λ''}}, जबकि सदिश समष्टि {{math|ker((''A'' − ''λI'')<sup>''n''</sup>)}} में सभी सामान्यीकृत ईजेनवेक्टर शामिल हैं, और इसे [[सामान्यीकृत ईजेनस्पेस]] कहा जाता है। की [[ज्यामितीय बहुलता]] {{math|''λ''}} इसके eigenspace का आयाम है। की [[बीजगणितीय बहुलता]] {{math|''λ''}} इसके सामान्यीकृत eigenspace का आयाम है। बाद वाली शब्दावली समीकरण द्वारा उचित है | प्रत्येक eigenvalue के लिए {{math|λ}} का {{math|''A''}}, [[कर्नेल (मैट्रिक्स)]] {{math|ker(''A'' − ''λI'')}} से जुड़े सभी eigenvectors शामिल हैं {{math|''λ''}} (0 के साथ), का [[ eigenspace |eigenspace]] कहा जाता है {{math|''λ''}}, जबकि सदिश समष्टि {{math|ker((''A'' − ''λI'')<sup>''n''</sup>)}} में सभी सामान्यीकृत ईजेनवेक्टर शामिल हैं, और इसे [[सामान्यीकृत ईजेनस्पेस]] कहा जाता है। की [[ज्यामितीय बहुलता]] {{math|''λ''}} इसके eigenspace का आयाम है। की [[बीजगणितीय बहुलता]] {{math|''λ''}} इसके सामान्यीकृत eigenspace का आयाम है। बाद वाली शब्दावली समीकरण द्वारा उचित है | ||
:<math>p_A\left(z\right) = \det\left( zI - A \right) = \prod_{i=1}^k (z - \lambda_i)^{\alpha_i},</math> | :<math>p_A\left(z\right) = \det\left( zI - A \right) = \prod_{i=1}^k (z - \lambda_i)^{\alpha_i},</math> | ||
कहाँ {{math|det}} निर्धारक फलन है, {{math|''λ''<sub>''i''</sub>}} के सभी विशिष्ट eigenvalues हैं {{math|''A''}} और यह {{math|''α''<sub>''i''</sub>}} संगत बीजगणितीय बहुलताएँ हैं। कार्यक्रम {{math|1=''p<sub>A</sub>''(''z'')}} का अभिलक्षणिक बहुपद है {{math|''A''}}. तो बीजगणितीय बहुलता विशेषता बहुपद की [[बहुपद जड़ों के गुण]]ों के रूप में आइगेनवैल्यू की बहुलता है। चूँकि कोई भी eigenvector भी | कहाँ {{math|det}} निर्धारक फलन है, {{math|''λ''<sub>''i''</sub>}} के सभी विशिष्ट eigenvalues हैं {{math|''A''}} और यह {{math|''α''<sub>''i''</sub>}} संगत बीजगणितीय बहुलताएँ हैं। कार्यक्रम {{math|1=''p<sub>A</sub>''(''z'')}} का अभिलक्षणिक बहुपद है {{math|''A''}}. तो बीजगणितीय बहुलता विशेषता बहुपद की [[बहुपद जड़ों के गुण]]ों के रूप में आइगेनवैल्यू की बहुलता है। चूँकि कोई भी eigenvector भी सामान्यीकृत eigenvector है, ज्यामितीय बहुलता बीजगणितीय बहुलता से कम या उसके बराबर है। बीजगणितीय बहुलताओं का योग है {{math|''n''}}, विशेषता बहुपद की डिग्री। समीकरण {{math|1=''p<sub>A</sub>''(''z'') = 0}} को अभिलक्षणिक समीकरण कहा जाता है, क्योंकि इसकी जड़ें बिल्कुल eigenvalues हैं {{math|''A''}}. केली-हैमिल्टन प्रमेय द्वारा, {{math|''A''}} स्वयं उसी समीकरण का पालन करता है: {{math|1=''p<sub>A</sub>''(''A'') = 0}}. परिणामस्वरूप, मैट्रिक्स के कॉलम <math display="inline">\prod_{i \ne j} (A - \lambda_iI)^{\alpha_i}</math> या तो 0 होना चाहिए या eigenvalue का सामान्यीकृत eigenvectors होना चाहिए {{math|''λ''<sub>''j''</sub>}}, चूंकि वे नष्ट हो गए हैं <math>(A - \lambda_jI)^{\alpha_j}</math>. वास्तव में, [[स्तंभ स्थान]] सामान्यीकृत eigenspace है {{math|''λ''<sub>''j''</sub>}}. | ||
विशिष्ट eigenvalues के सामान्यीकृत eigenvectors का कोई भी संग्रह रैखिक रूप से स्वतंत्र है, इसलिए सभी के लिए | विशिष्ट eigenvalues के सामान्यीकृत eigenvectors का कोई भी संग्रह रैखिक रूप से स्वतंत्र है, इसलिए सभी के लिए आधार {{math|'''C'''<sup>''n''</sup>}} को सामान्यीकृत eigenvectors से मिलकर चुना जा सकता है। अधिक विशेष रूप से, यह आधार {{math|{'''v'''<sub>''i''</sub>}{{su|p=''n''|b=''i''=1}}}} को चुना और व्यवस्थित किया जा सकता है ताकि | ||
* अगर {{math|'''v'''<sub>''i''</sub>}} और {{math|'''v'''<sub>''j''</sub>}} का eigenvalue समान है, तो ऐसा ही होता है {{math|'''v'''<sub>''k''</sub>}} प्रत्येक के लिए {{math|''k''}} बीच में {{math|''i''}} और {{math|''j''}}, और | * अगर {{math|'''v'''<sub>''i''</sub>}} और {{math|'''v'''<sub>''j''</sub>}} का eigenvalue समान है, तो ऐसा ही होता है {{math|'''v'''<sub>''k''</sub>}} प्रत्येक के लिए {{math|''k''}} बीच में {{math|''i''}} और {{math|''j''}}, और | ||
* अगर {{math|'''v'''<sub>''i''</sub>}} | * अगर {{math|'''v'''<sub>''i''</sub>}} साधारण आइजनवेक्टर नहीं है, और यदि {{math|''λ''<sub>''i''</sub>}} तो फिर इसका स्वदेशी मान है {{math|1=(''A'' − ''λ''<sub>''i''</sub>''I'')'''v'''<sub>''i''</sub> = '''v'''<sub>''i''−1</sub>}} (विशेष रूप से, {{math|'''v'''<sub>1</sub>}} साधारण eigenvector होना चाहिए)। | ||
यदि इन आधार वैक्टरों को मैट्रिक्स के कॉलम वैक्टर के रूप में रखा जाता है {{math|1=''V'' = ['''v'''<sub>1</sub> '''v'''<sub>2</sub> ⋯ '''v'''<sub>''n''</sub>]}}, तब {{math|''V''}} का उपयोग परिवर्तित करने के लिए किया जा सकता है {{math|''A''}} अपने [[जॉर्डन सामान्य रूप]] में: | यदि इन आधार वैक्टरों को मैट्रिक्स के कॉलम वैक्टर के रूप में रखा जाता है {{math|1=''V'' = ['''v'''<sub>1</sub> '''v'''<sub>2</sub> ⋯ '''v'''<sub>''n''</sub>]}}, तब {{math|''V''}} का उपयोग परिवर्तित करने के लिए किया जा सकता है {{math|''A''}} अपने [[जॉर्डन सामान्य रूप]] में: | ||
:<math>V^{-1}AV = \begin{bmatrix} \lambda_1 & \beta_1 & 0 & \ldots & 0 \\ 0 & \lambda_2 & \beta_2 & \ldots & 0 \\ 0 & 0 & \lambda_3 & \ldots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \ldots & \lambda_n \end{bmatrix},</math> | :<math>V^{-1}AV = \begin{bmatrix} \lambda_1 & \beta_1 & 0 & \ldots & 0 \\ 0 & \lambda_2 & \beta_2 & \ldots & 0 \\ 0 & 0 & \lambda_3 & \ldots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \ldots & \lambda_n \end{bmatrix},</math> | ||
जहां {{math|''λ''<sub>''i''</sub>}} eigenvalues हैं, {{math|1=''β''<sub>''i''</sub> = 1}} अगर {{math|1=(''A'' − ''λ''<sub>''i''+1</sub>)'''v'''<sub>''i''+1</sub> = '''v'''<sub>''i''</sub>}} और {{math|1=''β''<sub>''i''</sub> = 0}} अन्यथा। | जहां {{math|''λ''<sub>''i''</sub>}} eigenvalues हैं, {{math|1=''β''<sub>''i''</sub> = 1}} अगर {{math|1=(''A'' − ''λ''<sub>''i''+1</sub>)'''v'''<sub>''i''+1</sub> = '''v'''<sub>''i''</sub>}} और {{math|1=''β''<sub>''i''</sub> = 0}} अन्यथा। | ||
अधिक सामान्यतः, यदि {{math|''W''}} कोई उलटा मैट्रिक्स है, और {{math|''λ''}} का | अधिक सामान्यतः, यदि {{math|''W''}} कोई उलटा मैट्रिक्स है, और {{math|''λ''}} का प्रतिमान है {{math|''A''}} सामान्यीकृत आइजेनवेक्टर के साथ {{math|'''v'''}}, तब {{math|1=(''W''{{i sup|−1}}''AW'' − ''λI'')<sup>''k''</sup> ''W''{{i sup|−''k''}}'''v''' = 0}}. इस प्रकार {{math|''λ''}} का प्रतिमान है {{math|''W''{{i sup|−1}}''AW''}} सामान्यीकृत आइजेनवेक्टर के साथ {{math|''W''{{i sup|−''k''}}'''v'''}}. अर्थात्, समान आव्यूहों के eigenvalues समान होते हैं। | ||
===सामान्य, हर्मिटियन, और वास्तविक-सममित मैट्रिक्स=== | ===सामान्य, हर्मिटियन, और वास्तविक-सममित मैट्रिक्स=== | ||
{{main|Adjoint matrix|Normal matrix|Hermitian matrix}} | {{main|Adjoint matrix|Normal matrix|Hermitian matrix}} | ||
[[संयुग्म स्थानांतरण]] {{math|''M''<sup>*</sup>}} | [[संयुग्म स्थानांतरण]] {{math|''M''<sup>*</sup>}} जटिल मैट्रिक्स का {{math|''M''}} के संयुग्म का स्थानान्तरण है {{math|''M''}}: {{math|1=''M'' <sup>*</sup> = {{overline|''M''}} <sup>T</sup>}}. वर्ग मैट्रिक्स {{math|''A''}} को [[सामान्य मैट्रिक्स]] कहा जाता है यदि यह अपने सहायक के साथ आवागमन करता है: {{math|1=''A''<sup>*</sup>''A'' = ''AA''<sup>*</sup>}}. इसे [[हर्मिटियन मैट्रिक्स]] कहा जाता है यदि यह इसके सहायक के बराबर है: {{math|1=''A''<sup>*</sup> = ''A''}}. सभी हर्मिटियन मैट्रिस सामान्य हैं। अगर {{math|''A''}} में केवल वास्तविक तत्व हैं, तो जोड़ केवल स्थानान्तरण है, और {{math|''A''}} हर्मिटियन है यदि और केवल यदि यह [[सममित मैट्रिक्स]] है। जब कॉलम वैक्टर पर लागू किया जाता है, तो विहित आंतरिक उत्पाद को परिभाषित करने के लिए एडजॉइंट का उपयोग किया जा सकता है {{math|'''C'''<sup>''n''</sup>}}: {{math|1='''w''' ⋅ '''v''' = '''w'''<sup>*</sup> '''v'''}}.<ref group="note">This ordering of the inner product (with the conjugate-linear position on the left), is preferred by physicists. Algebraists often place the conjugate-linear position on the right: {{math|1='''w''' ⋅ '''v''' = '''v'''<sup>*</sup> '''w'''}}.</ref> सामान्य, हर्मिटियन और वास्तविक-सममित मैट्रिक्स में कई उपयोगी गुण होते हैं: | ||
* सामान्य मैट्रिक्स का प्रत्येक सामान्यीकृत आइजनवेक्टर | * सामान्य मैट्रिक्स का प्रत्येक सामान्यीकृत आइजनवेक्टर साधारण आइजेनवेक्टर होता है। | ||
* कोई भी सामान्य मैट्रिक्स विकर्ण मैट्रिक्स के समान होता है, क्योंकि इसका जॉर्डन सामान्य रूप विकर्ण होता है। | * कोई भी सामान्य मैट्रिक्स विकर्ण मैट्रिक्स के समान होता है, क्योंकि इसका जॉर्डन सामान्य रूप विकर्ण होता है। | ||
* एक सामान्य मैट्रिक्स के अलग-अलग आइगेनवैल्यू के आइजेनवेक्टर ऑर्थोगोनल होते हैं। | * एक सामान्य मैट्रिक्स के अलग-अलग आइगेनवैल्यू के आइजेनवेक्टर ऑर्थोगोनल होते हैं। | ||
* सामान्य मैट्रिक्स का शून्य स्थान और छवि (या स्तंभ स्थान) | * सामान्य मैट्रिक्स का शून्य स्थान और छवि (या स्तंभ स्थान) दूसरे के लिए ओर्थोगोनल हैं। | ||
* किसी भी सामान्य मैट्रिक्स के लिए {{math|''A''}}, {{math|'''C'''<sup>''n''</sup>}} का | * किसी भी सामान्य मैट्रिक्स के लिए {{math|''A''}}, {{math|'''C'''<sup>''n''</sup>}} का ऑर्थोनॉर्मल आधार है जिसमें eigenvectors शामिल हैं {{math|''A''}}. eigenvectors का संगत मैट्रिक्स [[एकात्मक मैट्रिक्स]] है। | ||
* चूंकि हर्मिटियन मैट्रिक्स के आइगेनवैल्यू वास्तविक हैं {{math|1=({{overline|''λ''}} − ''λ'')'''v''' = (''A''<sup>*</sup> − ''A'')'''v''' = (''A'' − ''A'')'''v''' = 0}} | * चूंकि हर्मिटियन मैट्रिक्स के आइगेनवैल्यू वास्तविक हैं {{math|1=({{overline|''λ''}} − ''λ'')'''v''' = (''A''<sup>*</sup> − ''A'')'''v''' = (''A'' − ''A'')'''v''' = 0}} गैर-शून्य ईजेनवेक्टर के लिए {{math|'''v'''}}. | ||
* अगर {{math|''A''}} वास्तविक है, इसके लिए | * अगर {{math|''A''}} वास्तविक है, इसके लिए लंबात्मक आधार है {{math|'''R'''<sup>''n''</sup>}} के eigenvectors से मिलकर {{math|''A''}} अगर और केवल अगर {{math|''A''}} सममित है. | ||
एक वास्तविक या जटिल मैट्रिक्स के लिए हर्मिटियन हुए बिना सभी वास्तविक स्वदेशी मान होना संभव है। उदाहरण के लिए, | एक वास्तविक या जटिल मैट्रिक्स के लिए हर्मिटियन हुए बिना सभी वास्तविक स्वदेशी मान होना संभव है। उदाहरण के लिए, वास्तविक [[त्रिकोणीय मैट्रिक्स]] के विकर्ण के साथ इसके स्वदेशी मान होते हैं, लेकिन सामान्य तौर पर यह सममित नहीं होता है। | ||
==शर्त संख्या== | ==शर्त संख्या == | ||
संख्यात्मक गणना की किसी भी समस्या को किसी फ़ंक्शन के मूल्यांकन के रूप में देखा जा सकता है {{math|''f''}} कुछ इनपुट के लिए {{math|''x''}}. [[शर्त संख्या]] {{math|''κ''(''f'', ''x'')}} समस्या फ़ंक्शन के आउटपुट में सापेक्ष त्रुटि और इनपुट में सापेक्ष त्रुटि का अनुपात है, और फ़ंक्शन और इनपुट दोनों के साथ भिन्न होता है। शर्त संख्या बताती है कि गणना के दौरान त्रुटि कैसे बढ़ती है। इसका बेस-10 लघुगणक बताता है कि परिणाम में इनपुट में मौजूद सटीकता के कितने कम अंक मौजूद हैं। शर्त संख्या सर्वोत्तम स्थिति है. यह समस्या में अंतर्निहित अस्थिरता को दर्शाता है, भले ही इसे कैसे भी हल किया जाए। संयोग को छोड़कर, कोई भी एल्गोरिदम कभी भी स्थिति संख्या द्वारा इंगित से अधिक सटीक परिणाम नहीं दे सकता है। हालाँकि, खराब तरीके से डिज़ाइन किया गया एल्गोरिदम काफी खराब परिणाम दे सकता है। उदाहरण के लिए, जैसा कि नीचे बताया गया है, सामान्य आव्यूहों के लिए स्वदेशी मान खोजने की समस्या हमेशा अच्छी तरह से तैयार की जाती है। हालाँकि, | संख्यात्मक गणना की किसी भी समस्या को किसी फ़ंक्शन के मूल्यांकन के रूप में देखा जा सकता है {{math|''f''}} कुछ इनपुट के लिए {{math|''x''}}. [[शर्त संख्या]] {{math|''κ''(''f'', ''x'')}} समस्या फ़ंक्शन के आउटपुट में सापेक्ष त्रुटि और इनपुट में सापेक्ष त्रुटि का अनुपात है, और फ़ंक्शन और इनपुट दोनों के साथ भिन्न होता है। शर्त संख्या बताती है कि गणना के दौरान त्रुटि कैसे बढ़ती है। इसका बेस-10 लघुगणक बताता है कि परिणाम में इनपुट में मौजूद सटीकता के कितने कम अंक मौजूद हैं। शर्त संख्या सर्वोत्तम स्थिति है. यह समस्या में अंतर्निहित अस्थिरता को दर्शाता है, भले ही इसे कैसे भी हल किया जाए। संयोग को छोड़कर, कोई भी एल्गोरिदम कभी भी स्थिति संख्या द्वारा इंगित से अधिक सटीक परिणाम नहीं दे सकता है। हालाँकि, खराब तरीके से डिज़ाइन किया गया एल्गोरिदम काफी खराब परिणाम दे सकता है। उदाहरण के लिए, जैसा कि नीचे बताया गया है, सामान्य आव्यूहों के लिए स्वदेशी मान खोजने की समस्या हमेशा अच्छी तरह से तैयार की जाती है। हालाँकि, बहुपद की जड़ों को खोजने की समस्या विल्किंसन बहुपद हो सकती है|बहुत ख़राब स्थिति में। इस प्रकार eigenvalue एल्गोरिदम जो विशेषता बहुपद की जड़ों को ढूंढकर काम करते हैं, समस्या न होने पर भी खराब स्थिति में हो सकते हैं। | ||
रैखिक समीकरण को हल करने की समस्या के लिए {{math|1=''A'''''v''' = '''b'''}} कहाँ {{math|''A''}} उलटा है, शर्त संख्या#मैट्रिसेस | रैखिक समीकरण को हल करने की समस्या के लिए {{math|1=''A'''''v''' = '''b'''}} कहाँ {{math|''A''}} उलटा है, शर्त संख्या#मैट्रिसेस {{math|1=''κ''(''A''<sup>−1</sup>, '''b''')}} द्वारा दिया गया है {{math|1={{!!}}''A''{{!!}}<sub>op</sub>{{!!}}''A''<sup>−1</sup>{{!!}}<sub>op</sub>}}, कहाँ {{nowrap|{{!!}} {{!!}}<sub>op</sub>}} संचालिका मानदंड सामान्य मानदंड (गणित)#यूक्लिडियन मानदंड के अधीनस्थ है {{math|'''C'''<sup>''n''</sup>}}. चूँकि यह संख्या स्वतंत्र है {{math|'''b'''}} और के लिए भी वैसा ही है {{math|''A''}} और {{math|''A''<sup>−1</sup>}}, इसे आमतौर पर केवल कंडीशन नंबर कहा जाता है {{math|''κ''(''A'')}} मैट्रिक्स का {{math|''A''}}. यह मान {{math|''κ''(''A'')}} सबसे बड़े eigenvalue के अनुपात का निरपेक्ष मान भी है {{math|''A''}} अपने सबसे छोटे से. अगर {{math|''A''}} तो एकात्मक मैट्रिक्स है {{math|1={{!!}}''A''{{!!}}<sub>op</sub> = {{!!}}''A''<sup>−1</sup>{{!!}}<sub>op</sub> = 1}}, इसलिए {{math|1=''κ''(''A'') = 1}}. सामान्य मैट्रिक्स के लिए, ऑपरेटर मानदंड की गणना करना अक्सर मुश्किल होता है। इस कारण से, स्थिति संख्या का अनुमान लगाने के लिए आमतौर पर अन्य [[मैट्रिक्स मानदंड]]ों का उपयोग किया जाता है। | ||
आइजेनवैल्यू समस्या के लिए, बाउर-फ़ाइक प्रमेय कि यदि {{math|''λ''}} | आइजेनवैल्यू समस्या के लिए, बाउर-फ़ाइक प्रमेय कि यदि {{math|''λ''}} [[विकर्णीय मैट्रिक्स]] के लिए eigenvalue है {{math|''n'' × ''n''}} आव्यूह {{math|''A''}} [[eigenvector मैट्रिक्स]] के साथ {{math|''V''}}, तो गणना में पूर्ण त्रुटि {{math|''λ''}} के उत्पाद से घिरा है {{math|''κ''(''V'')}} और पूर्ण त्रुटि {{math|''A''}}.<ref>{{Citation | author = F. L. Bauer | author2 = C. T. Fike | title = Norms and exclusion theorems | journal = Numer. Math. | volume = 2 | pages = 137–141 | year = 1960 | doi=10.1007/bf01386217| s2cid = 121278235 }}</ref> बाउर-फ़ाइक प्रमेय#उपप्रमेय, खोजने के लिए शर्त संख्या {{math|''λ''}} है {{math|1=''κ''(''λ'', ''A'') = ''κ''(''V'') = {{!!}}''V'' {{!!}}<sub>op</sub> {{!!}}''V'' <sup>−1</sup>{{!!}}<sub>op</sub>}}. अगर {{math|''A''}} तो सामान्य है {{math|''V''}} एकात्मक है, और {{math|1=''κ''(''λ'', ''A'') = 1}}. इस प्रकार सभी सामान्य मैट्रिक्स के लिए eigenvalue समस्या अच्छी तरह से वातानुकूलित है। | ||
एक सामान्य मैट्रिक्स के आइजनस्पेस को खोजने की समस्या के लिए शर्त संख्या {{math|''A''}} | एक सामान्य मैट्रिक्स के आइजनस्पेस को खोजने की समस्या के लिए शर्त संख्या {{math|''A''}} eigenvalue के अनुरूप {{math|''λ''}} को बीच की न्यूनतम दूरी के व्युत्क्रमानुपाती दिखाया गया है {{math|''λ''}} और अन्य विशिष्ट eigenvalues {{math|''A''}}.<ref>{{Citation | author = S.C. Eisenstat | author2 = I.C.F. Ipsen | title = Relative Perturbation Results for Eigenvalues and Eigenvectors of Diagonalisable Matrices | journal = BIT | volume = 38 | issue = 3 | pages = 502–9 | year = 1998 | doi=10.1007/bf02510256| s2cid = 119886389 | url = http://www.lib.ncsu.edu/resolver/1840.4/286 }}</ref> विशेष रूप से, सामान्य मैट्रिक्स के लिए आइजेनस्पेस समस्या पृथक आइजेनवैल्यू के लिए अच्छी तरह से अनुकूलित है। जब eigenvalues अलग-थलग नहीं होते हैं, तो सबसे अच्छी उम्मीद की जा सकती है कि आस-पास के eigenvalues के सभी eigenvectors की अवधि की पहचान की जाए। | ||
==एल्गोरिदम== | ==एल्गोरिदम== | ||
आइजनवैल्यू की गणना के लिए सबसे विश्वसनीय और सबसे व्यापक रूप से इस्तेमाल किया जाने वाला एल्गोरिदम जॉन जी.एफ. फ्रांसिस का [[क्यूआर एल्गोरिदम]] है, जिसे 20वीं सदी के शीर्ष दस एल्गोरिदम में से | आइजनवैल्यू की गणना के लिए सबसे विश्वसनीय और सबसे व्यापक रूप से इस्तेमाल किया जाने वाला एल्गोरिदम जॉन जी.एफ. फ्रांसिस का [[क्यूआर एल्गोरिदम]] है, जिसे 20वीं सदी के शीर्ष दस एल्गोरिदम में से माना जाता है।<ref name="t10">{{cite journal |last1=J. Dongarra and F. Sullivan |title=सदी के शीर्ष दस एल्गोरिदम|journal=Computing in Science and Engineering |date=2000 |volume=2 |page=22-23}}</ref> | ||
कोई भी राक्षसी बहुपद उसके [[साथी मैट्रिक्स]] का विशिष्ट बहुपद होता है। इसलिए, eigenvalues खोजने के लिए | कोई भी राक्षसी बहुपद उसके [[साथी मैट्रिक्स]] का विशिष्ट बहुपद होता है। इसलिए, eigenvalues खोजने के लिए सामान्य एल्गोरिदम का उपयोग बहुपदों की जड़ों को खोजने के लिए भी किया जा सकता है। एबेल-रफिनी प्रमेय से पता चलता है कि 4 से अधिक आयामों के लिए ऐसा कोई भी एल्गोरिदम या तो अनंत होना चाहिए, या प्राथमिक अंकगणितीय संचालन और आंशिक शक्तियों की तुलना में अधिक जटिलता के कार्यों को शामिल करना चाहिए। इस कारण से एल्गोरिदम जो चरणों की सीमित संख्या में eigenvalues की सटीक गणना करते हैं, केवल कुछ विशेष वर्गों के मैट्रिक्स के लिए मौजूद हैं। सामान्य मैट्रिक्स के लिए, एल्गोरिदम पुनरावृत्तीय विधि है, जो प्रत्येक पुनरावृत्ति के साथ बेहतर अनुमानित समाधान उत्पन्न करती है। | ||
कुछ एल्गोरिदम प्रत्येक eigenvalue का उत्पादन करेंगे, अन्य कुछ या केवल | कुछ एल्गोरिदम प्रत्येक eigenvalue का उत्पादन करेंगे, अन्य कुछ या केवल का उत्पादन करेंगे। हालाँकि, बाद वाले एल्गोरिदम का उपयोग भी सभी eigenvalues को खोजने के लिए किया जा सकता है। बार eigenvalue {{math|''λ''}} मैट्रिक्स का {{math|''A''}} की पहचान कर ली गई है, इसका उपयोग या तो अगली बार एल्गोरिदम को अलग समाधान की ओर निर्देशित करने के लिए किया जा सकता है, या उस समस्या को कम करने के लिए किया जा सकता है जो अब नहीं है {{math|''λ''}} समाधान के रूप में. | ||
पुनर्निर्देशन आमतौर पर शिफ्टिंग: रिप्लेसिंग द्वारा पूरा किया जाता है {{math|''A''}} साथ {{math|''A'' − ''μI''}} कुछ स्थिरांक के लिए {{math|''μ''}}. के लिए eigenvalue पाया गया {{math|''A'' − ''μI''}} होना आवश्यक है {{math|''μ''}} के लिए | पुनर्निर्देशन आमतौर पर शिफ्टिंग: रिप्लेसिंग द्वारा पूरा किया जाता है {{math|''A''}} साथ {{math|''A'' − ''μI''}} कुछ स्थिरांक के लिए {{math|''μ''}}. के लिए eigenvalue पाया गया {{math|''A'' − ''μI''}} होना आवश्यक है {{math|''μ''}} के लिए eigenvalue प्राप्त करने के लिए वापस जोड़ा गया {{math|''A''}}. उदाहरण के लिए, [[शक्ति पुनरावृत्ति]] के लिए, {{math|1=''μ'' = ''λ''}}. पावर पुनरावृत्ति पूर्ण मूल्य में सबसे बड़ा eigenvalue पाता है, तब भी जब {{math|''λ''}} केवल अनुमानित eigenvalue है, शक्ति पुनरावृत्ति इसे दूसरी बार खोजने की संभावना नहीं है। इसके विपरीत, व्युत्क्रम पुनरावृत्ति आधारित विधियाँ सबसे कम eigenvalue पाती हैं {{math|''μ''}} से काफी दूर चुना गया है {{math|''λ''}} और उम्मीद है कि यह किसी अन्य eigenvalue के करीब होगा। | ||
कमी को प्रतिबंधित करके पूरा किया जा सकता है {{math|''A''}} मैट्रिक्स के कॉलम स्थान पर {{math|''A'' − ''λI''}}, कौन {{math|''A''}} अपने पास ले जाता है। तब से {{math|''A'' - ''λI''}} एकवचन है, स्तंभ स्थान कम आयाम का है। फिर eigenvalue एल्गोरिदम को प्रतिबंधित मैट्रिक्स पर लागू किया जा सकता है। इस प्रक्रिया को तब तक दोहराया जा सकता है जब तक कि सभी eigenvalues नहीं मिल जाते। | कमी को प्रतिबंधित करके पूरा किया जा सकता है {{math|''A''}} मैट्रिक्स के कॉलम स्थान पर {{math|''A'' − ''λI''}}, कौन {{math|''A''}} अपने पास ले जाता है। तब से {{math|''A'' - ''λI''}} एकवचन है, स्तंभ स्थान कम आयाम का है। फिर eigenvalue एल्गोरिदम को प्रतिबंधित मैट्रिक्स पर लागू किया जा सकता है। इस प्रक्रिया को तब तक दोहराया जा सकता है जब तक कि सभी eigenvalues नहीं मिल जाते। | ||
यदि | यदि eigenvalue एल्गोरिदम eigenvectors का उत्पादन नहीं करता है, तो आम अभ्यास व्युत्क्रम पुनरावृत्ति आधारित एल्गोरिदम का उपयोग करना है {{math|''μ''}} eigenvalue के निकट सन्निकटन पर सेट करें। यह शीघ्रता से निकटतम eigenvalue के eigenvector में परिवर्तित हो जाएगा {{math|''μ''}}. छोटे मैट्रिक्स के लिए, विकल्प यह है कि उत्पाद के कॉलम स्थान को देखा जाए {{math|''A'' − ''λ''{{'}}''I''}} अन्य प्रत्येक eigenvalues के लिए {{math|''λ''{{'}}}}. | ||
सामान्य मैट्रिक्स के यूनिट ईजेनवेक्टर घटकों के मानदंड के लिए | सामान्य मैट्रिक्स के यूनिट ईजेनवेक्टर घटकों के मानदंड के लिए सूत्र रॉबर्ट थॉम्पसन द्वारा 1966 में खोजा गया था और कई अन्य लोगों द्वारा स्वतंत्र रूप से फिर से खोजा गया था। <ref>{{cite journal |last1=Thompson |first1=R. C. |title=सामान्य और हर्मिटियन मैट्रिक्स के प्रमुख उपमैट्रिसेस|journal=Illinois Journal of Mathematics |date=June 1966 |volume=10 |issue=2 |pages=296–308 |doi=10.1215/ijm/1256055111 |doi-access=free }}</ref><ref>{{cite journal |author1=Peter Nylen |author2=Tin-Yau Tam |author3=Frank Uhlig |title=सामान्य, हर्मिटियन और सममित मैट्रिक्स के प्रमुख उपमैट्रिसेस के आइगेनवैल्यू पर|journal=Linear and Multilinear Algebra |date=1993 |volume=36 |issue=1 |pages=69–78 |doi=10.1080/03081089308818276}}</ref><ref>{{cite journal |authors=N. Bebiano, S. Furtado, J. da Providência |title=जे-सामान्य मैट्रिक्स के प्रमुख उपमैट्रिसेस के आइगेनवैल्यू पर|journal=Linear Algebra and Its Applications |date=2011 |volume=435 |issue=12 |pages=3101–3114 |doi=10.1016/j.laa.2011.05.033 |doi-access=free }}</ref><ref>{{cite journal | vauthors=Forrester PJ, Zhang J | arxiv=1905.05314 | title=कॉरैंक-1 प्रक्षेपण और यादृच्छिक हॉर्न समस्या| journal=Tunisian Journal of Mathematics | year=2021 | volume=3 | pages=55–73 | doi=10.2140/tunis.2021.3.55 | s2cid=153312446 }}</ref><ref>{{cite journal | vauthors= Denton PB, Parke SJ, Tao T, Zhang X | arxiv=1908.03795 | title=Eigenvectors from eigenvalues: A survey of a basic identity in linear algebra | journal=Bulletin of the American Mathematical Society | year=2021 | volume=59 | page=1 | doi=10.1090/bull/1722 | s2cid=213918682 }}</ref> | ||
अगर {{math|''A''}} | अगर {{math|''A''}} <math display="inline"> n \times n</math> eigenvalues के साथ सामान्य मैट्रिक्स {{math|''λ''<sub>''i''</sub>(''A'')}} और संबंधित इकाई eigenvectors {{math|'''v'''<sub>''i''</sub>}}जिसकी घटक प्रविष्टियाँ हैं {{math|''v''<sub>''i,j''</sub>}}, होने देना {{math|''A''<sub>''j''</sub>}} हो <math display="inline"> n - 1 \times n - 1</math> को हटाकर प्राप्त मैट्रिक्स {{math|''i''}}-वीं पंक्ति और स्तंभ से {{math|''A''}}, और जाने {{math|''λ''<sub>''k''</sub>(''A''<sub>''j''</sub>)}} यह हो {{math|''k''}}-वां eigenvalue. तब | ||
<math display="block"> |v_{i,j}|^2 \prod_{k=1,k\ne i}^n (\lambda_i(A) - \lambda_k(A)) = \prod_{k=1}^{n-1}(\lambda_i(A) - \lambda_k(A_j))</math> | <math display="block"> |v_{i,j}|^2 \prod_{k=1,k\ne i}^n (\lambda_i(A) - \lambda_k(A)) = \prod_{k=1}^{n-1}(\lambda_i(A) - \lambda_k(A_j))</math> | ||
अगर <math>p, p_j</math> के अभिलाक्षणिक बहुपद हैं <math>A</math> और <math>A_j</math>, सूत्र को इस प्रकार पुनः लिखा जा सकता है | अगर <math>p, p_j</math> के अभिलाक्षणिक बहुपद हैं <math>A</math> और <math>A_j</math>, सूत्र को इस प्रकार पुनः लिखा जा सकता है | ||
Line 69: | Line 69: | ||
{{main|Hessenberg matrix}} | {{main|Hessenberg matrix}} | ||
चूँकि | चूँकि त्रिकोणीय मैट्रिक्स के eigenvalues इसके विकर्ण तत्व हैं, सामान्य मैट्रिक्स के लिए eigenvalues को संरक्षित करते हुए मैट्रिक्स को त्रिकोणीय रूप में परिवर्तित करने के लिए गाऊसी उन्मूलन जैसी कोई सीमित विधि नहीं है। लेकिन त्रिकोणीय के करीब कुछ पहुंचना संभव है. [[हेसेनबर्ग मैट्रिक्स]] वर्ग मैट्रिक्स है जिसके लिए [[उपविकर्ण]] के नीचे की सभी प्रविष्टियाँ शून्य हैं। निचला हेसेनबर्ग मैट्रिक्स वह है जिसके लिए [[ अतिविकर्ण |अतिविकर्ण]] के ऊपर की सभी प्रविष्टियाँ शून्य हैं। वे मैट्रिक्स जो हेसेनबर्ग के ऊपरी और निचले दोनों हैं, त्रिदिकोणीय मैट्रिक्स हैं। हेसेनबर्ग और त्रिदिकोणीय मैट्रिक्स कई आइगेनवैल्यू एल्गोरिदम के लिए शुरुआती बिंदु हैं क्योंकि शून्य प्रविष्टियां समस्या की जटिलता को कम करती हैं। सामान्य मैट्रिक्स को समान eigenvalues के साथ हेसेनबर्ग मैट्रिक्स में परिवर्तित करने के लिए आमतौर पर कई तरीकों का उपयोग किया जाता है। यदि मूल मैट्रिक्स सममित या हर्मिटियन था, तो परिणामी मैट्रिक्स त्रिविकर्ण होगा। | ||
जब केवल eigenvalues की आवश्यकता होती है, तो समानता मैट्रिक्स की गणना करने की कोई आवश्यकता नहीं होती है, क्योंकि रूपांतरित मैट्रिक्स में समान eigenvalues होते हैं। यदि eigenvectors की भी आवश्यकता है, तो हेसेनबर्ग मैट्रिक्स के eigenvectors को मूल मैट्रिक्स के eigenvectors में बदलने के लिए समानता मैट्रिक्स की आवश्यकता हो सकती है। | जब केवल eigenvalues की आवश्यकता होती है, तो समानता मैट्रिक्स की गणना करने की कोई आवश्यकता नहीं होती है, क्योंकि रूपांतरित मैट्रिक्स में समान eigenvalues होते हैं। यदि eigenvectors की भी आवश्यकता है, तो हेसेनबर्ग मैट्रिक्स के eigenvectors को मूल मैट्रिक्स के eigenvectors में बदलने के लिए समानता मैट्रिक्स की आवश्यकता हो सकती है। | ||
Line 199: | Line 199: | ||
===गुणनखंडीय बहुपद समीकरण=== | ===गुणनखंडीय बहुपद समीकरण=== | ||
अगर {{math|''p''}} कोई बहुपद है और {{math|1=''p''(''A'') = 0,}} फिर के eigenvalues {{math|''A''}} भी उसी समीकरण को संतुष्ट करते हैं। अगर {{math|''p''}} | अगर {{math|''p''}} कोई बहुपद है और {{math|1=''p''(''A'') = 0,}} फिर के eigenvalues {{math|''A''}} भी उसी समीकरण को संतुष्ट करते हैं। अगर {{math|''p''}} ज्ञात गुणनखंडन होता है, फिर के eigenvalues {{math|''A''}} इसकी जड़ों के बीच स्थित है। | ||
उदाहरण के लिए, | उदाहरण के लिए, [[प्रक्षेपण (रैखिक बीजगणित)]] वर्ग मैट्रिक्स है {{math|''P''}} संतुष्टि देने वाला {{math|1=''P''<sup>2</sup> = ''P''}}. संगत अदिश बहुपद समीकरण की जड़ें, {{math|1=''λ''<sup>2</sup> = ''λ''}}, 0 और 1 हैं। इस प्रकार किसी भी प्रक्षेपण के eigenvalues के लिए 0 और 1 हैं। eigenvalue के रूप में 0 की बहुलता कर्नेल (रैखिक बीजगणित) # मैट्रिक्स गुणन के रूप में प्रतिनिधित्व है {{math|''P''}}, जबकि 1 की बहुलता की रैंक है {{math|''P''}}. | ||
एक अन्य उदाहरण | एक अन्य उदाहरण मैट्रिक्स है {{math|''A''}} जो संतुष्ट करता है {{math|1=''A''<sup>2</sup> = ''α''<sup>2</sup>''I''}} कुछ अदिश राशि के लिए {{math|''α''}}. eigenvalues होना चाहिए {{math|±''α''}}. प्रक्षेपण संचालक | ||
:<math>P_+=\frac{1}{2}\left(I+\frac{A}{\alpha}\right)</math> | :<math>P_+=\frac{1}{2}\left(I+\frac{A}{\alpha}\right)</math> | ||
:<math>P_-=\frac{1}{2}\left(I-\frac{A}{\alpha}\right)</math> | :<math>P_-=\frac{1}{2}\left(I-\frac{A}{\alpha}\right)</math> | ||
Line 214: | Line 214: | ||
===2×2 आव्यूह=== | ===2×2 आव्यूह=== | ||
आयाम 2 से 4 के लिए, रेडिकल से जुड़े सूत्र मौजूद हैं जिनका उपयोग आइगेनवैल्यू खोजने के लिए किया जा सकता है। जबकि 2×2 और 3×3 मैट्रिक्स के लिए | आयाम 2 से 4 के लिए, रेडिकल से जुड़े सूत्र मौजूद हैं जिनका उपयोग आइगेनवैल्यू खोजने के लिए किया जा सकता है। जबकि 2×2 और 3×3 मैट्रिक्स के लिए सामान्य अभ्यास, 4×4 मैट्रिक्स के लिए क्वार्टिक फ़ंक्शन#फेरारी के समाधान की बढ़ती जटिलता इस दृष्टिकोण को कम आकर्षक बनाती है। | ||
2×2 मैट्रिक्स के लिए | 2×2 मैट्रिक्स के लिए | ||
Line 230: | Line 230: | ||
के लिए समान सूत्रों के साथ {{math|''c''}} और {{math|''d''}}. इससे यह पता चलता है कि यदि आइगेनवैल्यू को अलग कर दिया जाए तो गणना अच्छी तरह से अनुकूल है। | के लिए समान सूत्रों के साथ {{math|''c''}} और {{math|''d''}}. इससे यह पता चलता है कि यदि आइगेनवैल्यू को अलग कर दिया जाए तो गणना अच्छी तरह से अनुकूल है। | ||
केली-हैमिल्टन प्रमेय का उपयोग करके आइजेनवेक्टर पाया जा सकता है। अगर {{math|''λ''<sub>1</sub>, ''λ''<sub>2</sub>}} तो फिर आइगेनवैल्यू हैं {{math|1=(''A'' − ''λ''<sub>1</sub>''I'')(''A'' − ''λ''<sub>2</sub>''I'') = (''A'' − ''λ''<sub>2</sub>''I'')(''A'' − ''λ''<sub>1</sub>''I'') = 0}}, तो के कॉलम {{math|(''A'' − ''λ''<sub>2</sub>''I'')}} द्वारा नष्ट कर दिया जाता है {{math|(''A'' − ''λ''<sub>1</sub>''I'')}} और इसके विपरीत। यह मानते हुए कि कोई भी मैट्रिक्स शून्य नहीं है, प्रत्येक के कॉलम में अन्य eigenvalue के लिए eigenvectors शामिल होने चाहिए। (यदि कोई भी मैट्रिक्स शून्य है, तो {{math|''A''}} पहचान का गुणज है और कोई भी गैर-शून्य वेक्टर | केली-हैमिल्टन प्रमेय का उपयोग करके आइजेनवेक्टर पाया जा सकता है। अगर {{math|''λ''<sub>1</sub>, ''λ''<sub>2</sub>}} तो फिर आइगेनवैल्यू हैं {{math|1=(''A'' − ''λ''<sub>1</sub>''I'')(''A'' − ''λ''<sub>2</sub>''I'') = (''A'' − ''λ''<sub>2</sub>''I'')(''A'' − ''λ''<sub>1</sub>''I'') = 0}}, तो के कॉलम {{math|(''A'' − ''λ''<sub>2</sub>''I'')}} द्वारा नष्ट कर दिया जाता है {{math|(''A'' − ''λ''<sub>1</sub>''I'')}} और इसके विपरीत। यह मानते हुए कि कोई भी मैट्रिक्स शून्य नहीं है, प्रत्येक के कॉलम में अन्य eigenvalue के लिए eigenvectors शामिल होने चाहिए। (यदि कोई भी मैट्रिक्स शून्य है, तो {{math|''A''}} पहचान का गुणज है और कोई भी गैर-शून्य वेक्टर आइजेनवेक्टर है।) | ||
उदाहरण के लिए, मान लीजिए | उदाहरण के लिए, मान लीजिए | ||
Line 241: | Line 241: | ||
:<math>A - 3I = \begin{bmatrix} 1 & 3 \\ -2 & -6 \end{bmatrix}, \qquad A + 2I = \begin{bmatrix} 6 & 3 \\ -2 & -1 \end{bmatrix}.</math> | :<math>A - 3I = \begin{bmatrix} 1 & 3 \\ -2 & -6 \end{bmatrix}, \qquad A + 2I = \begin{bmatrix} 6 & 3 \\ -2 & -1 \end{bmatrix}.</math> | ||
दोनों मैट्रिक्स में, कॉलम एक-दूसरे के गुणज होते हैं, इसलिए किसी भी कॉलम का उपयोग किया जा सकता है। इस प्रकार, {{math|(1, −2)}} को eigenvalue -2 से जुड़े | दोनों मैट्रिक्स में, कॉलम एक-दूसरे के गुणज होते हैं, इसलिए किसी भी कॉलम का उपयोग किया जा सकता है। इस प्रकार, {{math|(1, −2)}} को eigenvalue -2 से जुड़े eigenvector के रूप में लिया जा सकता है, और {{math|(3, −1)}} आइजनवेक्टर के रूप में जो आइगेनवैल्यू 3 से जुड़ा है, जैसा कि उन्हें गुणा करके सत्यापित किया जा सकता है {{math|''A''}}. | ||
===3×3 आव्यूह=== | ===3×3 आव्यूह=== | ||
Line 248: | Line 248: | ||
:<math>\det \left( \alpha I - A \right) = \alpha^3 - \alpha^2 {\rm tr}(A) - \alpha \frac{1}{2}\left( {\rm tr}(A^2) - {\rm tr}^2(A) \right) - \det(A) = 0.</math> | :<math>\det \left( \alpha I - A \right) = \alpha^3 - \alpha^2 {\rm tr}(A) - \alpha \frac{1}{2}\left( {\rm tr}(A^2) - {\rm tr}^2(A) \right) - \det(A) = 0.</math> | ||
इस समीकरण को क्यूबिक समीकरण#कार्डानो की विधि या क्यूबिक समीकरण#लैग्रेंज की विधि का उपयोग करके हल किया जा सकता है, लेकिन | इस समीकरण को क्यूबिक समीकरण#कार्डानो की विधि या क्यूबिक समीकरण#लैग्रेंज की विधि का उपयोग करके हल किया जा सकता है, लेकिन एफ़िन परिवर्तन {{math|''A''}} अभिव्यक्ति को काफी सरल बना देगा, और सीधे घन समीकरण#त्रिकोणमितीय और अतिशयोक्तिपूर्ण समाधान की ओर ले जाएगा। अगर {{math|1=''A'' = ''pB'' + ''qI''}}, तब {{math|''A''}} और {{math|''B''}} समान eigenvectors हैं, और {{math|''β''}} का प्रतिमान है {{math|''B''}} अगर और केवल अगर {{math|1=''α'' = ''pβ'' + ''q''}} का प्रतिमान है {{math|''A''}}. दे <math display="inline"> q = {\rm tr}(A)/3</math> और <math display="inline"> p =\left({\rm tr}\left((A - qI)^2\right)/ 6\right)^{1/2}</math>, देता है | ||
:<math>\det \left( \beta I - B \right) = \beta^3 - 3 \beta - \det(B) = 0.</math> | :<math>\det \left( \beta I - B \right) = \beta^3 - 3 \beta - \det(B) = 0.</math> | ||
Line 254: | Line 254: | ||
:<math>\beta = 2{\cos}\left(\frac{1}{3}{\arccos}\left( \det(B)/2 \right) + \frac{2k\pi}{3}\right), \quad k = 0, 1, 2.</math> | :<math>\beta = 2{\cos}\left(\frac{1}{3}{\arccos}\left( \det(B)/2 \right) + \frac{2k\pi}{3}\right), \quad k = 0, 1, 2.</math> | ||
अगर {{math|det(''B'')}} जटिल है या निरपेक्ष मान में 2 से अधिक है, आर्ककोसाइन को सभी तीन मानों के लिए | अगर {{math|det(''B'')}} जटिल है या निरपेक्ष मान में 2 से अधिक है, आर्ककोसाइन को सभी तीन मानों के लिए ही शाखा के साथ लिया जाना चाहिए {{math|''k''}}. कब ये बात नहीं उठती {{math|''A''}} वास्तविक और सममित है, जिसके परिणामस्वरूप सरल एल्गोरिदम बनता है:<ref name=Smith>{{Citation |last=Smith |first=Oliver K. |title=Eigenvalues of a symmetric 3 × 3 matrix. |journal=[[Communications of the ACM]] |volume=4 |issue=4 |date=April 1961 |page=168 |doi=10.1145/355578.366316|s2cid=37815415 }}</ref> | ||
<syntaxhighlight lang="matlab"> | <syntaxhighlight lang="matlab"> | ||
Line 289: | Line 289: | ||
end | end | ||
</syntaxhighlight> | </syntaxhighlight> | ||
एक बार फिर, के eigenvectors {{math|''A''}} केली-हैमिल्टन प्रमेय का सहारा लेकर प्राप्त किया जा सकता है। अगर {{math|''α''<sub>1</sub>, ''α''<sub>2</sub>, ''α''<sub>3</sub>}} के विशिष्ट eigenvalues हैं {{math|''A''}}, तब {{math|1=(''A'' − ''α''<sub>1</sub>''I'')(''A'' − ''α''<sub>2</sub>''I'')(''A'' − ''α''<sub>3</sub>''I'') = 0}}. इस प्रकार इनमें से किन्हीं दो आव्यूहों के गुणनफल के कॉलम में तीसरे eigenvalue के लिए | एक बार फिर, के eigenvectors {{math|''A''}} केली-हैमिल्टन प्रमेय का सहारा लेकर प्राप्त किया जा सकता है। अगर {{math|''α''<sub>1</sub>, ''α''<sub>2</sub>, ''α''<sub>3</sub>}} के विशिष्ट eigenvalues हैं {{math|''A''}}, तब {{math|1=(''A'' − ''α''<sub>1</sub>''I'')(''A'' − ''α''<sub>2</sub>''I'')(''A'' − ''α''<sub>3</sub>''I'') = 0}}. इस प्रकार इनमें से किन्हीं दो आव्यूहों के गुणनफल के कॉलम में तीसरे eigenvalue के लिए eigenvector होगा। हालांकि, यदि {{math|1=''α''<sub>3</sub> = ''α''<sub>1</sub>}}, तब {{math|1=(''A'' − ''α''<sub>1</sub>''I'')<sup>2</sup>(''A'' − ''α''<sub>2</sub>''I'') = 0}} और {{math|1=(''A'' − ''α''<sub>2</sub>''I'')(''A'' − ''α''<sub>1</sub>''I'')<sup>2</sup> = 0}}. इस प्रकार का सामान्यीकृत eigenspace {{math|''α''<sub>1</sub>}} के कॉलम द्वारा फैलाया गया है {{math|''A'' − ''α''<sub>2</sub>''I''}} जबकि साधारण आइगेनस्पेस को स्तंभों द्वारा फैलाया जाता है {{math|1=(''A'' − ''α''<sub>1</sub>''I'')(''A'' − ''α''<sub>2</sub>''I'')}}. का साधारण eigenspace {{math|''α''<sub>2</sub>}} के कॉलम द्वारा फैलाया गया है {{math|(''A'' − ''α''<sub>1</sub>''I'')<sup>2</sup>}}. | ||
उदाहरण के लिए, चलो | उदाहरण के लिए, चलो | ||
Line 303: | Line 303: | ||
:<math>(A - I)^2 = \begin{bmatrix} -4 & 0 & -8 \\ -4 & 0 & -8 \\ 4 & 0 & 8 \end{bmatrix}, \qquad (A - I)(A + I) = \begin{bmatrix} 0 & 4 & 4 \\ 0 & 2 & 2 \\ 0 & -2 & -2 \end{bmatrix}</math> | :<math>(A - I)^2 = \begin{bmatrix} -4 & 0 & -8 \\ -4 & 0 & -8 \\ 4 & 0 & 8 \end{bmatrix}, \qquad (A - I)(A + I) = \begin{bmatrix} 0 & 4 & 4 \\ 0 & 2 & 2 \\ 0 & -2 & -2 \end{bmatrix}</math> | ||
इस प्रकार {{math|(−4, −4, 4)}} −1 के लिए | इस प्रकार {{math|(−4, −4, 4)}} −1 के लिए eigenvector है, और {{math|(4, 2, −2)}} 1 के लिए eigenvector है। {{math|(2, 3, −1)}} और {{math|(6, 5, −3)}} दोनों 1 से जुड़े सामान्यीकृत आइजनवेक्टर हैं, जिनमें से किसी को इसके साथ जोड़ा जा सकता है {{math|(−4, −4, 4)}} और {{math|(4, 2, −2)}} के सामान्यीकृत eigenvectors का आधार बनाने के लिए {{math|''A''}}. बार मिल जाने के बाद, जरूरत पड़ने पर आइजनवेक्टर को सामान्य किया जा सकता है। | ||
==== सामान्य 3×3 मैट्रिक्स के आइजनवेक्टर ==== | ==== सामान्य 3×3 मैट्रिक्स के आइजनवेक्टर ==== | ||
यदि | यदि 3×3 मैट्रिक्स <math>A</math> सामान्य है, तो क्रॉस-प्रोडक्ट का उपयोग ईजेनवेक्टर खोजने के लिए किया जा सकता है। अगर <math>\lambda</math> का प्रतिरूप है <math>A</math>, फिर का शून्य स्थान <math>A - \lambda I</math> इसके स्तंभ स्थान पर लंबवत है। के दो स्वतंत्र स्तंभों का क्रॉस उत्पाद <math>A - \lambda I</math> शून्य स्थान में होगा. यानी यह आइजेनवेक्टर से जुड़ा होगा <math>\lambda</math>. चूँकि इस मामले में स्तंभ स्थान द्वि-आयामी है, इसलिए eigenspace आयामी होना चाहिए, इसलिए कोई भी अन्य eigenvector इसके समानांतर होगा। | ||
अगर <math>A - \lambda I</math> इसमें दो स्वतंत्र कॉलम नहीं हैं लेकिन ऐसा नहीं है {{math|'''0'''}}, क्रॉस-प्रोडक्ट का अभी भी उपयोग किया जा सकता है। इस मामले में <math>\lambda</math> गुणन 2 का | अगर <math>A - \lambda I</math> इसमें दो स्वतंत्र कॉलम नहीं हैं लेकिन ऐसा नहीं है {{math|'''0'''}}, क्रॉस-प्रोडक्ट का अभी भी उपयोग किया जा सकता है। इस मामले में <math>\lambda</math> गुणन 2 का eigenvalue है, इसलिए स्तंभ स्थान पर लंबवत कोई भी वेक्टर eigenvector होगा। कल्पना करना <math>\mathbf v</math> का गैर-शून्य स्तंभ है <math>A - \lambda I</math>. मनमाना वेक्टर चुनें <math>\mathbf u</math> के समानांतर नहीं <math>\mathbf v</math>. तब <math>\mathbf v\times \mathbf u</math> और <math>(\mathbf v\times \mathbf u)\times \mathbf v</math> के लंबवत होगा <math>\mathbf v</math> और इस प्रकार के eigenvectors होंगे <math>\lambda</math>. | ||
यह कब काम नहीं करता <math>A</math> सामान्य नहीं है, क्योंकि ऐसे मैट्रिक्स के लिए शून्य स्थान और स्तंभ स्थान को लंबवत होने की आवश्यकता नहीं है। | यह कब काम नहीं करता <math>A</math> सामान्य नहीं है, क्योंकि ऐसे मैट्रिक्स के लिए शून्य स्थान और स्तंभ स्थान को लंबवत होने की आवश्यकता नहीं है। |
Revision as of 08:21, 29 July 2023
संख्यात्मक विश्लेषण में, सबसे महत्वपूर्ण समस्याओं में से मैट्रिक्स (गणित) के eigenvalues को खोजने के लिए कुशल और संख्यात्मक स्थिरता कलन विधि डिजाइन करना है। ये eigenvalue एल्गोरिदम eigenvectors भी ढूंढ सकते हैं।
आइजेनवैल्यू और आइजेनवेक्टर
एक दिया गया n × n वर्ग आव्यूह#वर्ग आव्यूह A वास्तविक संख्या या सम्मिश्र संख्या संख्याओं का, eigenvalue λ और इससे संबंधित सामान्यीकृत आइजेनवेक्टर vरिश्ते का पालन करने वाला जोड़ा है[1]
कहाँ v अशून्य है n × 1 कॉलम वेक्टर, I है n × n शिनाख्त सांचा, k धनात्मक पूर्णांक है, और दोनों λ और v को तब भी जटिल रहने की अनुमति है A यह सचमुच का है। कब k = 1, वेक्टर को केवल आइजन्वेक्टर कहा जाता है, और जोड़ी को आइजेनपेयर कहा जाता है। इस मामले में, Av = λv. कोई भी eigenvalue λ का Aसाधारण है[note 1] इससे जुड़े eigenvectors, यदि के लिए k ऐसा सबसे छोटा पूर्णांक है (A − λI)k v = 0 सामान्यीकृत eigenvector के लिए v, तब (A − λI)k−1 v साधारण eigenvector है. मूल्य k को हमेशा से कम या बराबर के रूप में लिया जा सकता है n. विशेष रूप से, (A − λI)n v = 0 सभी सामान्यीकृत eigenvectors के लिए v के साथ जुड़े λ.
प्रत्येक eigenvalue के लिए λ का A, कर्नेल (मैट्रिक्स) ker(A − λI) से जुड़े सभी eigenvectors शामिल हैं λ (0 के साथ), का eigenspace कहा जाता है λ, जबकि सदिश समष्टि ker((A − λI)n) में सभी सामान्यीकृत ईजेनवेक्टर शामिल हैं, और इसे सामान्यीकृत ईजेनस्पेस कहा जाता है। की ज्यामितीय बहुलता λ इसके eigenspace का आयाम है। की बीजगणितीय बहुलता λ इसके सामान्यीकृत eigenspace का आयाम है। बाद वाली शब्दावली समीकरण द्वारा उचित है
कहाँ det निर्धारक फलन है, λi के सभी विशिष्ट eigenvalues हैं A और यह αi संगत बीजगणितीय बहुलताएँ हैं। कार्यक्रम pA(z) का अभिलक्षणिक बहुपद है A. तो बीजगणितीय बहुलता विशेषता बहुपद की बहुपद जड़ों के गुणों के रूप में आइगेनवैल्यू की बहुलता है। चूँकि कोई भी eigenvector भी सामान्यीकृत eigenvector है, ज्यामितीय बहुलता बीजगणितीय बहुलता से कम या उसके बराबर है। बीजगणितीय बहुलताओं का योग है n, विशेषता बहुपद की डिग्री। समीकरण pA(z) = 0 को अभिलक्षणिक समीकरण कहा जाता है, क्योंकि इसकी जड़ें बिल्कुल eigenvalues हैं A. केली-हैमिल्टन प्रमेय द्वारा, A स्वयं उसी समीकरण का पालन करता है: pA(A) = 0. परिणामस्वरूप, मैट्रिक्स के कॉलम या तो 0 होना चाहिए या eigenvalue का सामान्यीकृत eigenvectors होना चाहिए λj, चूंकि वे नष्ट हो गए हैं . वास्तव में, स्तंभ स्थान सामान्यीकृत eigenspace है λj.
विशिष्ट eigenvalues के सामान्यीकृत eigenvectors का कोई भी संग्रह रैखिक रूप से स्वतंत्र है, इसलिए सभी के लिए आधार Cn को सामान्यीकृत eigenvectors से मिलकर चुना जा सकता है। अधिक विशेष रूप से, यह आधार {vi}n
i=1 को चुना और व्यवस्थित किया जा सकता है ताकि
- अगर vi और vj का eigenvalue समान है, तो ऐसा ही होता है vk प्रत्येक के लिए k बीच में i और j, और
- अगर vi साधारण आइजनवेक्टर नहीं है, और यदि λi तो फिर इसका स्वदेशी मान है (A − λiI)vi = vi−1 (विशेष रूप से, v1 साधारण eigenvector होना चाहिए)।
यदि इन आधार वैक्टरों को मैट्रिक्स के कॉलम वैक्टर के रूप में रखा जाता है V = [v1 v2 ⋯ vn], तब V का उपयोग परिवर्तित करने के लिए किया जा सकता है A अपने जॉर्डन सामान्य रूप में:
जहां λi eigenvalues हैं, βi = 1 अगर (A − λi+1)vi+1 = vi और βi = 0 अन्यथा।
अधिक सामान्यतः, यदि W कोई उलटा मैट्रिक्स है, और λ का प्रतिमान है A सामान्यीकृत आइजेनवेक्टर के साथ v, तब (W−1AW − λI)k W−kv = 0. इस प्रकार λ का प्रतिमान है W−1AW सामान्यीकृत आइजेनवेक्टर के साथ W−kv. अर्थात्, समान आव्यूहों के eigenvalues समान होते हैं।
सामान्य, हर्मिटियन, और वास्तविक-सममित मैट्रिक्स
संयुग्म स्थानांतरण M* जटिल मैट्रिक्स का M के संयुग्म का स्थानान्तरण है M: M * = M T. वर्ग मैट्रिक्स A को सामान्य मैट्रिक्स कहा जाता है यदि यह अपने सहायक के साथ आवागमन करता है: A*A = AA*. इसे हर्मिटियन मैट्रिक्स कहा जाता है यदि यह इसके सहायक के बराबर है: A* = A. सभी हर्मिटियन मैट्रिस सामान्य हैं। अगर A में केवल वास्तविक तत्व हैं, तो जोड़ केवल स्थानान्तरण है, और A हर्मिटियन है यदि और केवल यदि यह सममित मैट्रिक्स है। जब कॉलम वैक्टर पर लागू किया जाता है, तो विहित आंतरिक उत्पाद को परिभाषित करने के लिए एडजॉइंट का उपयोग किया जा सकता है Cn: w ⋅ v = w* v.[note 2] सामान्य, हर्मिटियन और वास्तविक-सममित मैट्रिक्स में कई उपयोगी गुण होते हैं:
- सामान्य मैट्रिक्स का प्रत्येक सामान्यीकृत आइजनवेक्टर साधारण आइजेनवेक्टर होता है।
- कोई भी सामान्य मैट्रिक्स विकर्ण मैट्रिक्स के समान होता है, क्योंकि इसका जॉर्डन सामान्य रूप विकर्ण होता है।
- एक सामान्य मैट्रिक्स के अलग-अलग आइगेनवैल्यू के आइजेनवेक्टर ऑर्थोगोनल होते हैं।
- सामान्य मैट्रिक्स का शून्य स्थान और छवि (या स्तंभ स्थान) दूसरे के लिए ओर्थोगोनल हैं।
- किसी भी सामान्य मैट्रिक्स के लिए A, Cn का ऑर्थोनॉर्मल आधार है जिसमें eigenvectors शामिल हैं A. eigenvectors का संगत मैट्रिक्स एकात्मक मैट्रिक्स है।
- चूंकि हर्मिटियन मैट्रिक्स के आइगेनवैल्यू वास्तविक हैं (λ − λ)v = (A* − A)v = (A − A)v = 0 गैर-शून्य ईजेनवेक्टर के लिए v.
- अगर A वास्तविक है, इसके लिए लंबात्मक आधार है Rn के eigenvectors से मिलकर A अगर और केवल अगर A सममित है.
एक वास्तविक या जटिल मैट्रिक्स के लिए हर्मिटियन हुए बिना सभी वास्तविक स्वदेशी मान होना संभव है। उदाहरण के लिए, वास्तविक त्रिकोणीय मैट्रिक्स के विकर्ण के साथ इसके स्वदेशी मान होते हैं, लेकिन सामान्य तौर पर यह सममित नहीं होता है।
शर्त संख्या
संख्यात्मक गणना की किसी भी समस्या को किसी फ़ंक्शन के मूल्यांकन के रूप में देखा जा सकता है f कुछ इनपुट के लिए x. शर्त संख्या κ(f, x) समस्या फ़ंक्शन के आउटपुट में सापेक्ष त्रुटि और इनपुट में सापेक्ष त्रुटि का अनुपात है, और फ़ंक्शन और इनपुट दोनों के साथ भिन्न होता है। शर्त संख्या बताती है कि गणना के दौरान त्रुटि कैसे बढ़ती है। इसका बेस-10 लघुगणक बताता है कि परिणाम में इनपुट में मौजूद सटीकता के कितने कम अंक मौजूद हैं। शर्त संख्या सर्वोत्तम स्थिति है. यह समस्या में अंतर्निहित अस्थिरता को दर्शाता है, भले ही इसे कैसे भी हल किया जाए। संयोग को छोड़कर, कोई भी एल्गोरिदम कभी भी स्थिति संख्या द्वारा इंगित से अधिक सटीक परिणाम नहीं दे सकता है। हालाँकि, खराब तरीके से डिज़ाइन किया गया एल्गोरिदम काफी खराब परिणाम दे सकता है। उदाहरण के लिए, जैसा कि नीचे बताया गया है, सामान्य आव्यूहों के लिए स्वदेशी मान खोजने की समस्या हमेशा अच्छी तरह से तैयार की जाती है। हालाँकि, बहुपद की जड़ों को खोजने की समस्या विल्किंसन बहुपद हो सकती है|बहुत ख़राब स्थिति में। इस प्रकार eigenvalue एल्गोरिदम जो विशेषता बहुपद की जड़ों को ढूंढकर काम करते हैं, समस्या न होने पर भी खराब स्थिति में हो सकते हैं।
रैखिक समीकरण को हल करने की समस्या के लिए Av = b कहाँ A उलटा है, शर्त संख्या#मैट्रिसेस κ(A−1, b) द्वारा दिया गया है ||A||op||A−1||op, कहाँ || ||op संचालिका मानदंड सामान्य मानदंड (गणित)#यूक्लिडियन मानदंड के अधीनस्थ है Cn. चूँकि यह संख्या स्वतंत्र है b और के लिए भी वैसा ही है A और A−1, इसे आमतौर पर केवल कंडीशन नंबर कहा जाता है κ(A) मैट्रिक्स का A. यह मान κ(A) सबसे बड़े eigenvalue के अनुपात का निरपेक्ष मान भी है A अपने सबसे छोटे से. अगर A तो एकात्मक मैट्रिक्स है ||A||op = ||A−1||op = 1, इसलिए κ(A) = 1. सामान्य मैट्रिक्स के लिए, ऑपरेटर मानदंड की गणना करना अक्सर मुश्किल होता है। इस कारण से, स्थिति संख्या का अनुमान लगाने के लिए आमतौर पर अन्य मैट्रिक्स मानदंडों का उपयोग किया जाता है।
आइजेनवैल्यू समस्या के लिए, बाउर-फ़ाइक प्रमेय कि यदि λ विकर्णीय मैट्रिक्स के लिए eigenvalue है n × n आव्यूह A eigenvector मैट्रिक्स के साथ V, तो गणना में पूर्ण त्रुटि λ के उत्पाद से घिरा है κ(V) और पूर्ण त्रुटि A.[2] बाउर-फ़ाइक प्रमेय#उपप्रमेय, खोजने के लिए शर्त संख्या λ है κ(λ, A) = κ(V) = ||V ||op ||V −1||op. अगर A तो सामान्य है V एकात्मक है, और κ(λ, A) = 1. इस प्रकार सभी सामान्य मैट्रिक्स के लिए eigenvalue समस्या अच्छी तरह से वातानुकूलित है।
एक सामान्य मैट्रिक्स के आइजनस्पेस को खोजने की समस्या के लिए शर्त संख्या A eigenvalue के अनुरूप λ को बीच की न्यूनतम दूरी के व्युत्क्रमानुपाती दिखाया गया है λ और अन्य विशिष्ट eigenvalues A.[3] विशेष रूप से, सामान्य मैट्रिक्स के लिए आइजेनस्पेस समस्या पृथक आइजेनवैल्यू के लिए अच्छी तरह से अनुकूलित है। जब eigenvalues अलग-थलग नहीं होते हैं, तो सबसे अच्छी उम्मीद की जा सकती है कि आस-पास के eigenvalues के सभी eigenvectors की अवधि की पहचान की जाए।
एल्गोरिदम
आइजनवैल्यू की गणना के लिए सबसे विश्वसनीय और सबसे व्यापक रूप से इस्तेमाल किया जाने वाला एल्गोरिदम जॉन जी.एफ. फ्रांसिस का क्यूआर एल्गोरिदम है, जिसे 20वीं सदी के शीर्ष दस एल्गोरिदम में से माना जाता है।[4] कोई भी राक्षसी बहुपद उसके साथी मैट्रिक्स का विशिष्ट बहुपद होता है। इसलिए, eigenvalues खोजने के लिए सामान्य एल्गोरिदम का उपयोग बहुपदों की जड़ों को खोजने के लिए भी किया जा सकता है। एबेल-रफिनी प्रमेय से पता चलता है कि 4 से अधिक आयामों के लिए ऐसा कोई भी एल्गोरिदम या तो अनंत होना चाहिए, या प्राथमिक अंकगणितीय संचालन और आंशिक शक्तियों की तुलना में अधिक जटिलता के कार्यों को शामिल करना चाहिए। इस कारण से एल्गोरिदम जो चरणों की सीमित संख्या में eigenvalues की सटीक गणना करते हैं, केवल कुछ विशेष वर्गों के मैट्रिक्स के लिए मौजूद हैं। सामान्य मैट्रिक्स के लिए, एल्गोरिदम पुनरावृत्तीय विधि है, जो प्रत्येक पुनरावृत्ति के साथ बेहतर अनुमानित समाधान उत्पन्न करती है।
कुछ एल्गोरिदम प्रत्येक eigenvalue का उत्पादन करेंगे, अन्य कुछ या केवल का उत्पादन करेंगे। हालाँकि, बाद वाले एल्गोरिदम का उपयोग भी सभी eigenvalues को खोजने के लिए किया जा सकता है। बार eigenvalue λ मैट्रिक्स का A की पहचान कर ली गई है, इसका उपयोग या तो अगली बार एल्गोरिदम को अलग समाधान की ओर निर्देशित करने के लिए किया जा सकता है, या उस समस्या को कम करने के लिए किया जा सकता है जो अब नहीं है λ समाधान के रूप में.
पुनर्निर्देशन आमतौर पर शिफ्टिंग: रिप्लेसिंग द्वारा पूरा किया जाता है A साथ A − μI कुछ स्थिरांक के लिए μ. के लिए eigenvalue पाया गया A − μI होना आवश्यक है μ के लिए eigenvalue प्राप्त करने के लिए वापस जोड़ा गया A. उदाहरण के लिए, शक्ति पुनरावृत्ति के लिए, μ = λ. पावर पुनरावृत्ति पूर्ण मूल्य में सबसे बड़ा eigenvalue पाता है, तब भी जब λ केवल अनुमानित eigenvalue है, शक्ति पुनरावृत्ति इसे दूसरी बार खोजने की संभावना नहीं है। इसके विपरीत, व्युत्क्रम पुनरावृत्ति आधारित विधियाँ सबसे कम eigenvalue पाती हैं μ से काफी दूर चुना गया है λ और उम्मीद है कि यह किसी अन्य eigenvalue के करीब होगा।
कमी को प्रतिबंधित करके पूरा किया जा सकता है A मैट्रिक्स के कॉलम स्थान पर A − λI, कौन A अपने पास ले जाता है। तब से A - λI एकवचन है, स्तंभ स्थान कम आयाम का है। फिर eigenvalue एल्गोरिदम को प्रतिबंधित मैट्रिक्स पर लागू किया जा सकता है। इस प्रक्रिया को तब तक दोहराया जा सकता है जब तक कि सभी eigenvalues नहीं मिल जाते।
यदि eigenvalue एल्गोरिदम eigenvectors का उत्पादन नहीं करता है, तो आम अभ्यास व्युत्क्रम पुनरावृत्ति आधारित एल्गोरिदम का उपयोग करना है μ eigenvalue के निकट सन्निकटन पर सेट करें। यह शीघ्रता से निकटतम eigenvalue के eigenvector में परिवर्तित हो जाएगा μ. छोटे मैट्रिक्स के लिए, विकल्प यह है कि उत्पाद के कॉलम स्थान को देखा जाए A − λ'I अन्य प्रत्येक eigenvalues के लिए λ'.
सामान्य मैट्रिक्स के यूनिट ईजेनवेक्टर घटकों के मानदंड के लिए सूत्र रॉबर्ट थॉम्पसन द्वारा 1966 में खोजा गया था और कई अन्य लोगों द्वारा स्वतंत्र रूप से फिर से खोजा गया था। [5][6][7][8][9] अगर A eigenvalues के साथ सामान्य मैट्रिक्स λi(A) और संबंधित इकाई eigenvectors viजिसकी घटक प्रविष्टियाँ हैं vi,j, होने देना Aj हो को हटाकर प्राप्त मैट्रिक्स i-वीं पंक्ति और स्तंभ से A, और जाने λk(Aj) यह हो k-वां eigenvalue. तब
व्युत्पन्न मानते हुए पर शून्य नहीं है .
हेसेनबर्ग और त्रिविकर्ण आव्यूह
चूँकि त्रिकोणीय मैट्रिक्स के eigenvalues इसके विकर्ण तत्व हैं, सामान्य मैट्रिक्स के लिए eigenvalues को संरक्षित करते हुए मैट्रिक्स को त्रिकोणीय रूप में परिवर्तित करने के लिए गाऊसी उन्मूलन जैसी कोई सीमित विधि नहीं है। लेकिन त्रिकोणीय के करीब कुछ पहुंचना संभव है. हेसेनबर्ग मैट्रिक्स वर्ग मैट्रिक्स है जिसके लिए उपविकर्ण के नीचे की सभी प्रविष्टियाँ शून्य हैं। निचला हेसेनबर्ग मैट्रिक्स वह है जिसके लिए अतिविकर्ण के ऊपर की सभी प्रविष्टियाँ शून्य हैं। वे मैट्रिक्स जो हेसेनबर्ग के ऊपरी और निचले दोनों हैं, त्रिदिकोणीय मैट्रिक्स हैं। हेसेनबर्ग और त्रिदिकोणीय मैट्रिक्स कई आइगेनवैल्यू एल्गोरिदम के लिए शुरुआती बिंदु हैं क्योंकि शून्य प्रविष्टियां समस्या की जटिलता को कम करती हैं। सामान्य मैट्रिक्स को समान eigenvalues के साथ हेसेनबर्ग मैट्रिक्स में परिवर्तित करने के लिए आमतौर पर कई तरीकों का उपयोग किया जाता है। यदि मूल मैट्रिक्स सममित या हर्मिटियन था, तो परिणामी मैट्रिक्स त्रिविकर्ण होगा।
जब केवल eigenvalues की आवश्यकता होती है, तो समानता मैट्रिक्स की गणना करने की कोई आवश्यकता नहीं होती है, क्योंकि रूपांतरित मैट्रिक्स में समान eigenvalues होते हैं। यदि eigenvectors की भी आवश्यकता है, तो हेसेनबर्ग मैट्रिक्स के eigenvectors को मूल मैट्रिक्स के eigenvectors में बदलने के लिए समानता मैट्रिक्स की आवश्यकता हो सकती है।
Method | Applies to | Produces | Cost without similarity matrix | Cost with similarity matrix | Description |
---|---|---|---|---|---|
Householder transformations | General | Hessenberg | 2n3⁄3 + O(n2)[10]: 474 | 4n3⁄3 + O(n2)[10]: 474 | Reflect each column through a subspace to zero out its lower entries. |
Givens rotations | General | Hessenberg | 4n3⁄3 + O(n2)[10]: 470 | Apply planar rotations to zero out individual entries. Rotations are ordered so that later ones do not cause zero entries to become non-zero again. | |
Arnoldi iteration | General | Hessenberg | Perform Gram–Schmidt orthogonalization on Krylov subspaces. | ||
Lanczos algorithm | Hermitian | Tridiagonal | Arnoldi iteration for Hermitian matrices, with shortcuts. |
सममित त्रिदिकोणीय eigenvalue समस्याओं के लिए सभी eigenvalues (eigenvectors के बिना) को विशेषता बहुपद पर द्विभाजन का उपयोग करके समय O(n log(n)) में संख्यात्मक रूप से गणना की जा सकती है। [11]
पुनरावृत्तीय एल्गोरिदम
पुनरावृत्त एल्गोरिदम आइगेनवैल्यू समस्या को ऐसे अनुक्रमों का निर्माण करके हल करते हैं जो आइगेनवैल्यू में परिवर्तित होते हैं। कुछ एल्गोरिदम वैक्टर के अनुक्रम भी उत्पन्न करते हैं जो आइजेनवेक्टर में परिवर्तित होते हैं। आमतौर पर, आइगेनवैल्यू अनुक्रमों को समान मैट्रिक्स के अनुक्रम के रूप में व्यक्त किया जाता है जो त्रिकोणीय या विकर्ण रूप में परिवर्तित हो जाते हैं, जिससे आइजेनवैल्यू को आसानी से पढ़ा जा सकता है। आइजेनवेक्टर अनुक्रमों को संगत समानता मैट्रिक्स के रूप में व्यक्त किया जाता है।
Method | Applies to | Produces | Cost per step | Convergence | Description |
---|---|---|---|---|---|
Lanczos algorithm | Hermitian | m largest/smallest eigenpairs | |||
Power iteration | general | eigenpair with largest value | O(n2) | linear | Repeatedly applies the matrix to an arbitrary starting vector and renormalizes. |
Inverse iteration | general | eigenpair with value closest to μ | linear | Power iteration for (A − μI)−1 | |
Rayleigh quotient iteration | Hermitian | any eigenpair | cubic | Power iteration for (A − μiI)−1, where μi for each iteration is the Rayleigh quotient of the previous iteration. | |
Preconditioned inverse iteration[12] or LOBPCG algorithm | positive-definite real symmetric | eigenpair with value closest to μ | Inverse iteration using a preconditioner (an approximate inverse to A). | ||
Bisection method | real symmetric tridiagonal | any eigenvalue | linear | Uses the bisection method to find roots of the characteristic polynomial, supported by the Sturm sequence. | |
Laguerre iteration | real symmetric tridiagonal | any eigenvalue | cubic[13] | Uses Laguerre's method to find roots of the characteristic polynomial, supported by the Sturm sequence. | |
QR algorithm | Hessenberg | all eigenvalues | O(n2) | cubic | Factors A = QR, where Q is orthogonal and R is triangular, then applies the next iteration to RQ. |
all eigenpairs | 6n3 + O(n2) | ||||
Jacobi eigenvalue algorithm | real symmetric | all eigenvalues | O(n3) | quadratic | Uses Givens rotations to attempt clearing all off-diagonal entries. This fails, but strengthens the diagonal. |
Divide-and-conquer | Hermitian tridiagonal | all eigenvalues | O(n2) | Divides the matrix into submatrices that are diagonalized then recombined. | |
all eigenpairs | (4⁄3)n3 + O(n2) | ||||
Homotopy method | real symmetric tridiagonal | all eigenpairs | O(n2)[14] | Constructs a computable homotopy path from a diagonal eigenvalue problem. | |
Folded spectrum method | real symmetric | eigenpair with value closest to μ | Preconditioned inverse iteration applied to (A − μI)2 | ||
MRRR algorithm[15] | real symmetric tridiagonal | some or all eigenpairs | O(n2) | "Multiple relatively robust representations" – performs inverse iteration on a LDLT decomposition of the shifted matrix. |
प्रत्यक्ष गणना
हालाँकि सामान्य आव्यूहों के लिए सीधे eigenvalues की गणना करने के लिए कोई सरल एल्गोरिदम नहीं है, मैट्रिक्स के कई विशेष वर्ग हैं जहां eigenvalues की सीधे गणना की जा सकती है। इसमे शामिल है:
त्रिकोणीय आव्यूह
चूंकि त्रिकोणीय मैट्रिक्स का निर्धारक इसकी विकर्ण प्रविष्टियों का उत्पाद है, यदि टी त्रिकोणीय है, तो . इस प्रकार T के eigenvalues इसकी विकर्ण प्रविष्टियाँ हैं।
गुणनखंडीय बहुपद समीकरण
अगर p कोई बहुपद है और p(A) = 0, फिर के eigenvalues A भी उसी समीकरण को संतुष्ट करते हैं। अगर p ज्ञात गुणनखंडन होता है, फिर के eigenvalues A इसकी जड़ों के बीच स्थित है।
उदाहरण के लिए, प्रक्षेपण (रैखिक बीजगणित) वर्ग मैट्रिक्स है P संतुष्टि देने वाला P2 = P. संगत अदिश बहुपद समीकरण की जड़ें, λ2 = λ, 0 और 1 हैं। इस प्रकार किसी भी प्रक्षेपण के eigenvalues के लिए 0 और 1 हैं। eigenvalue के रूप में 0 की बहुलता कर्नेल (रैखिक बीजगणित) # मैट्रिक्स गुणन के रूप में प्रतिनिधित्व है P, जबकि 1 की बहुलता की रैंक है P.
एक अन्य उदाहरण मैट्रिक्स है A जो संतुष्ट करता है A2 = α2I कुछ अदिश राशि के लिए α. eigenvalues होना चाहिए ±α. प्रक्षेपण संचालक
संतुष्ट करना
और
के स्तंभ स्थान P+ और P− के eigenspaces हैं A तदनुसार +α और −α, क्रमश।
2×2 आव्यूह
आयाम 2 से 4 के लिए, रेडिकल से जुड़े सूत्र मौजूद हैं जिनका उपयोग आइगेनवैल्यू खोजने के लिए किया जा सकता है। जबकि 2×2 और 3×3 मैट्रिक्स के लिए सामान्य अभ्यास, 4×4 मैट्रिक्स के लिए क्वार्टिक फ़ंक्शन#फेरारी के समाधान की बढ़ती जटिलता इस दृष्टिकोण को कम आकर्षक बनाती है।
2×2 मैट्रिक्स के लिए
अभिलाक्षणिक बहुपद है
इस प्रकार द्विघात सूत्र का उपयोग करके eigenvalues पाया जा सकता है:
परिभाषित दो eigenvalues के बीच की दूरी होने के लिए, इसकी गणना करना सीधा है
के लिए समान सूत्रों के साथ c और d. इससे यह पता चलता है कि यदि आइगेनवैल्यू को अलग कर दिया जाए तो गणना अच्छी तरह से अनुकूल है।
केली-हैमिल्टन प्रमेय का उपयोग करके आइजेनवेक्टर पाया जा सकता है। अगर λ1, λ2 तो फिर आइगेनवैल्यू हैं (A − λ1I)(A − λ2I) = (A − λ2I)(A − λ1I) = 0, तो के कॉलम (A − λ2I) द्वारा नष्ट कर दिया जाता है (A − λ1I) और इसके विपरीत। यह मानते हुए कि कोई भी मैट्रिक्स शून्य नहीं है, प्रत्येक के कॉलम में अन्य eigenvalue के लिए eigenvectors शामिल होने चाहिए। (यदि कोई भी मैट्रिक्स शून्य है, तो A पहचान का गुणज है और कोई भी गैर-शून्य वेक्टर आइजेनवेक्टर है।)
उदाहरण के लिए, मान लीजिए
तब tr(A) = 4 − 3 = 1 और det(A) = 4(−3) − 3(−2) = −6, तो विशेषता समीकरण है
और eigenvalues 3 और -2 हैं। अब,
दोनों मैट्रिक्स में, कॉलम एक-दूसरे के गुणज होते हैं, इसलिए किसी भी कॉलम का उपयोग किया जा सकता है। इस प्रकार, (1, −2) को eigenvalue -2 से जुड़े eigenvector के रूप में लिया जा सकता है, और (3, −1) आइजनवेक्टर के रूप में जो आइगेनवैल्यू 3 से जुड़ा है, जैसा कि उन्हें गुणा करके सत्यापित किया जा सकता है A.
3×3 आव्यूह
सममित 3×3 मैट्रिक्स का अभिलक्षणिक समीकरण A है:
इस समीकरण को क्यूबिक समीकरण#कार्डानो की विधि या क्यूबिक समीकरण#लैग्रेंज की विधि का उपयोग करके हल किया जा सकता है, लेकिन एफ़िन परिवर्तन A अभिव्यक्ति को काफी सरल बना देगा, और सीधे घन समीकरण#त्रिकोणमितीय और अतिशयोक्तिपूर्ण समाधान की ओर ले जाएगा। अगर A = pB + qI, तब A और B समान eigenvectors हैं, और β का प्रतिमान है B अगर और केवल अगर α = pβ + q का प्रतिमान है A. दे और , देता है
प्रतिस्थापन β = 2cos θ और पहचान का उपयोग करके कुछ सरलीकरण cos 3θ = 4cos3 θ − 3cos θ समीकरण को कम कर देता है cos 3θ = det(B) / 2. इस प्रकार
अगर det(B) जटिल है या निरपेक्ष मान में 2 से अधिक है, आर्ककोसाइन को सभी तीन मानों के लिए ही शाखा के साथ लिया जाना चाहिए k. कब ये बात नहीं उठती A वास्तविक और सममित है, जिसके परिणामस्वरूप सरल एल्गोरिदम बनता है:[16]
% Given a real symmetric 3x3 matrix A, compute the eigenvalues
% Note that acos and cos operate on angles in radians
p1 = A(1,2)^2 + A(1,3)^2 + A(2,3)^2
if (p1 == 0)
% A is diagonal.
eig1 = A(1,1)
eig2 = A(2,2)
eig3 = A(3,3)
else
q = trace(A)/3 % trace(A) is the sum of all diagonal values
p2 = (A(1,1) - q)^2 + (A(2,2) - q)^2 + (A(3,3) - q)^2 + 2 * p1
p = sqrt(p2 / 6)
B = (1 / p) * (A - q * I) % I is the identity matrix
r = det(B) / 2
% In exact arithmetic for a symmetric matrix -1 <= r <= 1
% but computation error can leave it slightly outside this range.
if (r <= -1)
phi = pi / 3
elseif (r >= 1)
phi = 0
else
phi = acos(r) / 3
end
% the eigenvalues satisfy eig3 <= eig2 <= eig1
eig1 = q + 2 * p * cos(phi)
eig3 = q + 2 * p * cos(phi + (2*pi/3))
eig2 = 3 * q - eig1 - eig3 % since trace(A) = eig1 + eig2 + eig3
end
एक बार फिर, के eigenvectors A केली-हैमिल्टन प्रमेय का सहारा लेकर प्राप्त किया जा सकता है। अगर α1, α2, α3 के विशिष्ट eigenvalues हैं A, तब (A − α1I)(A − α2I)(A − α3I) = 0. इस प्रकार इनमें से किन्हीं दो आव्यूहों के गुणनफल के कॉलम में तीसरे eigenvalue के लिए eigenvector होगा। हालांकि, यदि α3 = α1, तब (A − α1I)2(A − α2I) = 0 और (A − α2I)(A − α1I)2 = 0. इस प्रकार का सामान्यीकृत eigenspace α1 के कॉलम द्वारा फैलाया गया है A − α2I जबकि साधारण आइगेनस्पेस को स्तंभों द्वारा फैलाया जाता है (A − α1I)(A − α2I). का साधारण eigenspace α2 के कॉलम द्वारा फैलाया गया है (A − α1I)2.
उदाहरण के लिए, चलो
विशेषता समीकरण है
eigenvalues 1 (बहुलता 2 का) और -1 के साथ। गणना,
और
इस प्रकार (−4, −4, 4) −1 के लिए eigenvector है, और (4, 2, −2) 1 के लिए eigenvector है। (2, 3, −1) और (6, 5, −3) दोनों 1 से जुड़े सामान्यीकृत आइजनवेक्टर हैं, जिनमें से किसी को इसके साथ जोड़ा जा सकता है (−4, −4, 4) और (4, 2, −2) के सामान्यीकृत eigenvectors का आधार बनाने के लिए A. बार मिल जाने के बाद, जरूरत पड़ने पर आइजनवेक्टर को सामान्य किया जा सकता है।
सामान्य 3×3 मैट्रिक्स के आइजनवेक्टर
यदि 3×3 मैट्रिक्स सामान्य है, तो क्रॉस-प्रोडक्ट का उपयोग ईजेनवेक्टर खोजने के लिए किया जा सकता है। अगर का प्रतिरूप है , फिर का शून्य स्थान इसके स्तंभ स्थान पर लंबवत है। के दो स्वतंत्र स्तंभों का क्रॉस उत्पाद शून्य स्थान में होगा. यानी यह आइजेनवेक्टर से जुड़ा होगा . चूँकि इस मामले में स्तंभ स्थान द्वि-आयामी है, इसलिए eigenspace आयामी होना चाहिए, इसलिए कोई भी अन्य eigenvector इसके समानांतर होगा।
अगर इसमें दो स्वतंत्र कॉलम नहीं हैं लेकिन ऐसा नहीं है 0, क्रॉस-प्रोडक्ट का अभी भी उपयोग किया जा सकता है। इस मामले में गुणन 2 का eigenvalue है, इसलिए स्तंभ स्थान पर लंबवत कोई भी वेक्टर eigenvector होगा। कल्पना करना का गैर-शून्य स्तंभ है . मनमाना वेक्टर चुनें के समानांतर नहीं . तब और के लंबवत होगा और इस प्रकार के eigenvectors होंगे .
यह कब काम नहीं करता सामान्य नहीं है, क्योंकि ऐसे मैट्रिक्स के लिए शून्य स्थान और स्तंभ स्थान को लंबवत होने की आवश्यकता नहीं है।
यह भी देखें
- संख्यात्मक विश्लेषण विषयों की सूची#आइजेनवैल्यू एल्गोरिदम
टिप्पणियाँ
- ↑ The term "ordinary" is used here only to emphasize the distinction between "eigenvector" and "generalized eigenvector".
- ↑ This ordering of the inner product (with the conjugate-linear position on the left), is preferred by physicists. Algebraists often place the conjugate-linear position on the right: w ⋅ v = v* w.
संदर्भ
- ↑ Axler, Sheldon (1995), "Down with Determinants!" (PDF), American Mathematical Monthly, 102 (2): 139–154, doi:10.2307/2975348, JSTOR 2975348, archived from the original (PDF) on 2012-09-13, retrieved 2012-07-31
- ↑ F. L. Bauer; C. T. Fike (1960), "Norms and exclusion theorems", Numer. Math., 2: 137–141, doi:10.1007/bf01386217, S2CID 121278235
- ↑ S.C. Eisenstat; I.C.F. Ipsen (1998), "Relative Perturbation Results for Eigenvalues and Eigenvectors of Diagonalisable Matrices", BIT, 38 (3): 502–9, doi:10.1007/bf02510256, S2CID 119886389
- ↑ J. Dongarra and F. Sullivan (2000). "सदी के शीर्ष दस एल्गोरिदम". Computing in Science and Engineering. 2: 22-23.
- ↑ Thompson, R. C. (June 1966). "सामान्य और हर्मिटियन मैट्रिक्स के प्रमुख उपमैट्रिसेस". Illinois Journal of Mathematics. 10 (2): 296–308. doi:10.1215/ijm/1256055111.
- ↑ Peter Nylen; Tin-Yau Tam; Frank Uhlig (1993). "सामान्य, हर्मिटियन और सममित मैट्रिक्स के प्रमुख उपमैट्रिसेस के आइगेनवैल्यू पर". Linear and Multilinear Algebra. 36 (1): 69–78. doi:10.1080/03081089308818276.
- ↑ N. Bebiano, S. Furtado, J. da Providência (2011). "जे-सामान्य मैट्रिक्स के प्रमुख उपमैट्रिसेस के आइगेनवैल्यू पर". Linear Algebra and Its Applications. 435 (12): 3101–3114. doi:10.1016/j.laa.2011.05.033.
{{cite journal}}
: CS1 maint: uses authors parameter (link) - ↑ Forrester PJ, Zhang J (2021). "कॉरैंक-1 प्रक्षेपण और यादृच्छिक हॉर्न समस्या". Tunisian Journal of Mathematics. 3: 55–73. arXiv:1905.05314. doi:10.2140/tunis.2021.3.55. S2CID 153312446.
- ↑ Denton PB, Parke SJ, Tao T, Zhang X (2021). "Eigenvectors from eigenvalues: A survey of a basic identity in linear algebra". Bulletin of the American Mathematical Society. 59: 1. arXiv:1908.03795. doi:10.1090/bull/1722. S2CID 213918682.
- ↑ 10.0 10.1 10.2 Press, William H.; Teukolsky, Saul A.; Vetterling, William T.; Flannery, Brian P. (1992). Numerical Recipes in C (2nd ed.). Cambridge University Press. ISBN 978-0-521-43108-8.
- ↑ Coakley, Ed S. (May 2013), "A fast divide-and-conquer algorithm for computing the spectra of real symmetric tridiagonal matrices.", Applied and Computational Harmonic Analysis, 34 (3): 379–414, doi:10.1016/j.acha.2012.06.003
- ↑ Neymeyr, K. (2006), "A geometric theory for preconditioned inverse iteration IV: On the fastest convergence cases.", Linear Algebra Appl., 415 (1): 114–139, doi:10.1016/j.laa.2005.06.022
- ↑ Li, T. Y.; Zeng, Zhonggang (1992), "Laguerre's Iteration In Solving The Symmetric Tridiagonal Eigenproblem - Revisited", SIAM Journal on Scientific Computing
- ↑ Chu, Moody T. (1988), "A Note on the Homotopy Method for Linear Algebraic Eigenvalue Problems", Linear Algebra Appl., 105: 225–236, doi:10.1016/0024-3795(88)90015-8
- ↑ Dhillon, Inderjit S.; Parlett, Beresford N.; Vömel, Christof (2006), "The Design and Implementation of the MRRR Algorithm" (PDF), ACM Transactions on Mathematical Software, 32 (4): 533–560, doi:10.1145/1186785.1186788, S2CID 2410736
- ↑ Smith, Oliver K. (April 1961), "Eigenvalues of a symmetric 3 × 3 matrix.", Communications of the ACM, 4 (4): 168, doi:10.1145/355578.366316, S2CID 37815415
अग्रिम पठन
- Bojanczyk, Adam W.; Adam Lutoborski (Jan 1991). "Computation of the Euler angles of a symmetric 3X3 matrix". SIAM Journal on Matrix Analysis and Applications. 12 (1): 41–48. doi:10.1137/0612005.