विवश सामान्यीकृत व्युत्क्रम: Difference between revisions

From Vigyanwiki
(Created page with "{{expert needed|1=Mathematics|reason=This article contains obvious mistakes, as noted in Talk:Constrained generalized inverse#Dimensions|date=October 2019}} रैखि...")
 
No edit summary
Line 1: Line 1:
{{expert needed|1=Mathematics|reason=This article contains obvious mistakes, as noted in [[Talk:Constrained generalized inverse#Dimensions]]|date=October 2019}}
रैखिक बीजगणित में, एक अतिरिक्त बाधा के साथ रैखिक समीकरणों की एक प्रणाली को हल करके एक बाधित सामान्यीकृत व्युत्क्रम प्राप्त किया जाता है कि समाधान किसी दिए गए उप-स्थान में है। एक यह भी कहता है कि समस्या का वर्णन रैखिक न्यूनतम वर्ग (गणित)#विवश रैखिक न्यूनतम वर्ग की प्रणाली द्वारा किया जाता है।
रैखिक बीजगणित में, एक अतिरिक्त बाधा के साथ रैखिक समीकरणों की एक प्रणाली को हल करके एक बाधित सामान्यीकृत व्युत्क्रम प्राप्त किया जाता है कि समाधान किसी दिए गए उप-स्थान में है। एक यह भी कहता है कि समस्या का वर्णन रैखिक न्यूनतम वर्ग (गणित)#विवश रैखिक न्यूनतम वर्ग की प्रणाली द्वारा किया जाता है।



Revision as of 18:02, 6 August 2023

रैखिक बीजगणित में, एक अतिरिक्त बाधा के साथ रैखिक समीकरणों की एक प्रणाली को हल करके एक बाधित सामान्यीकृत व्युत्क्रम प्राप्त किया जाता है कि समाधान किसी दिए गए उप-स्थान में है। एक यह भी कहता है कि समस्या का वर्णन रैखिक न्यूनतम वर्ग (गणित)#विवश रैखिक न्यूनतम वर्ग की प्रणाली द्वारा किया जाता है।

कई व्यावहारिक समस्याओं में समाधान समीकरणों की एक रैखिक प्रणाली का

केवल तभी स्वीकार्य है जब यह एक निश्चित रैखिक उपस्थान में हो का .

निम्नलिखित में, ओर्थोगोनल प्रक्षेपण द्वारा निरूपित किया जाएगा . रैखिक समीकरणों की विवश प्रणाली

इसका कोई समाधान है यदि और केवल यदि समीकरणों की अप्रतिबंधित प्रणाली हो

हल करने योग्य है. यदि उपस्थान का एक उचित उपस्थान है , फिर अप्रतिबंधित समस्या का मैट्रिक्स सिस्टम मैट्रिक्स होने पर भी एकवचन हो सकता है बाधित समस्या का समाधान उलटा है (उस स्थिति में, ). इसका मतलब यह है कि किसी को विवश समस्या के समाधान के लिए सामान्यीकृत व्युत्क्रम का उपयोग करने की आवश्यकता है। तो, का एक सामान्यीकृत उलटा ए भी कहा जाता है -बाधित छद्मविपरीत .

छद्म व्युत्क्रम का एक उदाहरण जिसका उपयोग किसी विवश समस्या के समाधान के लिए किया जा सकता है वह है बॉटल-डफिन व्युत्क्रम करने के लिए बाध्य , जिसे समीकरण द्वारा परिभाषित किया गया है

यदि दाहिनी ओर व्युत्क्रम मौजूद है।

श्रेणी:मैट्रिसेस