हैंकेल आव्यूह: Difference between revisions

From Vigyanwiki
m (8 revisions imported from alpha:हैंकेल_आव्यूह)
No edit summary
 
Line 81: Line 81:
* {{cite book | title=An introduction to Hankel operators | author=J.R. Partington | author-link=Jonathan Partington | series=LMS Student Texts | volume=13 | publisher=[[Cambridge University Press]] | year=1988 | isbn=0-521-36791-3 }}
* {{cite book | title=An introduction to Hankel operators | author=J.R. Partington | author-link=Jonathan Partington | series=LMS Student Texts | volume=13 | publisher=[[Cambridge University Press]] | year=1988 | isbn=0-521-36791-3 }}


[[Category: मैट्रिसेस]] [[Category: बदल देती है]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
 
 
 
[[Category: Machine Translated Page]]
[[Category:Created On 24/07/2023]]
[[Category:Created On 24/07/2023]]
[[Category:Vigyan Ready]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:बदल देती है]]
[[Category:मैट्रिसेस]]

Latest revision as of 14:11, 14 August 2023

रैखिक बीजगणित में, हैंकेल आव्यूह (या उत्प्रेरक आव्यूह ), जिसका नाम हरमन हैंकेल के नाम पर रखा गया है, इस प्रकार से यह वर्ग आव्यूह है जिसमें बाएं से दाएं प्रत्येक आरोही विपरीत-विकर्ण स्थिर है, अतः उदाहरण के लिए:

इस प्रकार से अधिक सामान्यतः, हैंकेल आव्यूह रूप का कोई भी आव्यूह होता है

अवयवो के संदर्भ में, यदि के अवयव को से दर्शाया जाता है और मान लिया जाता है तो हमारे पास सभी के लिए है

गुण

हैंकेल ऑपरेटर

अतः हिल्बर्ट स्थान पर एक हैंकेल ऑपरेटर (गणित) वह है जिसका आव्यूह ऑर्थोनॉर्मल आधार के संबंध में एक (संभवतः अनंत) हैंकेल आव्यूह है। जैसा कि ऊपर बताया गया है, एक हैंकेल आव्यूह एक आव्यूह है जिसके एंटीडायगोनल के साथ स्थिर मान होते हैं, जिसका अर्थ है कि एक हैंकेल आव्यूह को सभी पंक्तियों और स्तंभ , . के लिए संतुष्ट होना चाहिए, ध्यान दें कि प्रत्येक प्रविष्टि केवल पर निर्भर करती है

माना कि संबंधित हैंकेल ऑपरेटर है। हैंकेल आव्यूह दिया गया है , फिर संबंधित हैंकेल ऑपरेटर को इस प्रकार परिभाषित किया गया है .

हम सदैव हिल्बर्ट स्थान पर वर्गाकार पूर्णांकीय द्विपक्षीय सम्मिश्र संख्या अनुक्रमों के स्थान पर हैंकेल ऑपरेटर्स

में रुचि रखते हैं। किसी भी के लिए हमारे पास है

इस प्रकार से हम सदैव निम्न-क्रम ऑपरेटरों द्वारा संभवतः हैंकेल ऑपरेटरों के अनुमान में रुचि रखते हैं। ऑपरेटर के आउटपुट का अनुमान लगाने के लिए, हम अपने अनुमान की त्रुटि को मापने के लिए वर्णक्रमीय मानदंड (ऑपरेटर 2-मानदंड) का उपयोग कर सकते हैं। यह ऑपरेटर की गतिविधि का अनुमान लगाने के लिए एक संभावित तकनीक के रूप में एकल मूल्य अपघटन का सुझाव देता है।

अतः ध्यान दें कि आव्यूह परिमित होना आवश्यक नहीं है. यदि यह अनंत है, तो व्यक्तिगत एकवचन सदिश की गणना के पारंपरिक विधि सीधे कार्य नहीं करते है। हमें यह भी आवश्यक है कि सन्निकटन हैंकेल आव्यूह हो, जिसे AAK सिद्धांत के साथ दिखाया जा सकता है।

अतः हैंकेल आव्यूह के निर्धारक को कैटेलेक्टिकेंट कहा जाता है।

हैंकेल आव्यूह ट्रांसफॉर्म

हैंकेल आव्यूह ट्रांसफॉर्म, या बस हैंकेल ट्रांसफॉर्म, दिए गए अनुक्रम से गठित हैंकेल आव्यूह के निर्धारकों के अनुक्रम का उत्पादन करता है। अर्थात् क्रम अनुक्रम का हैंकेल रूपांतरण है

जहाँ

अर्थात किसी अनुक्रम के द्विपद परिवर्तन के अंतर्गत हैंकेल परिवर्तन अपरिवर्तनीय है। यदि यह दर्शाता है


अनुक्रम के द्विपद परिवर्तन के रूप में है,

तब हमारे पास

हैंकेल मैट्रिसेस के अनुप्रयोग

हैंकेल मैट्रिसेस तब बनते हैं, जब आउटपुट डेटा के अनुक्रम को देखते हुए, अंतर्निहित स्थान-समिष्ट या हिडेन मार्कोव मॉडल की प्राप्ति वांछित होती है।[2] हैंकेल आव्यूह का एकल मान अपघटन A, B और C आव्यूह की गणना करने का साधन प्रदान करता है जो स्थान-समिष्ट प्राप्ति को परिभाषित करता है।[3] सिग्नल से निर्मित हैंकेल आव्यूह को नॉन-स्टेशनरी सिग्नलों के अपघटन और समय-आवृत्ति प्रतिनिधित्व के लिए उपयोगी पाया गया है।

बहुपद वितरण के लिए क्षणों की विधि

बहुपद वितरण पर प्रयुक्त क्षणों (सांख्यिकी) की विधि के परिणामस्वरूप हैंकेल आव्यूह बनता है जिसे बहुपद वितरण सन्निकटन के भार मापदंडों को प्राप्त करने के लिए व्युत्क्रम आव्यूह की आवश्यकता होती है।[4]

धनात्मक हैंकेल मैट्रिसेस और हैमबर्गर क्षण समस्याएं

यह भी देखें

टिप्पणियाँ

  1. Yasuda, M. (2003). "हर्मिटियन सेंट्रोसिमेट्रिक और हर्मिटियन स्क्यू-सेंट्रोसिमेट्रिक के-मैट्रिसेस का एक वर्णक्रमीय लक्षण वर्णन". SIAM J. Matrix Anal. Appl. 25 (3): 601–605. doi:10.1137/S0895479802418835.
  2. Aoki, Masanao (1983). "Prediction of Time Series". Notes on Economic Time Series Analysis : System Theoretic Perspectives. New York: Springer. pp. 38–47. ISBN 0-387-12696-1.
  3. Aoki, Masanao (1983). "Rank determination of Hankel matrices". Notes on Economic Time Series Analysis : System Theoretic Perspectives. New York: Springer. pp. 67–68. ISBN 0-387-12696-1.
  4. J. Munkhammar, L. Mattsson, J. Rydén (2017) "Polynomial probability distribution estimation using the method of moments". PLoS ONE 12(4): e0174573. https://doi.org/10.1371/journal.pone.0174573

संदर्भ