संभावना-अनुपात परीक्षण: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 2: Line 2:
{{Short description|Statistical test to compare goodness of fit}}
{{Short description|Statistical test to compare goodness of fit}}


आंकड़ों में, '''संभावना-अनुपात परीक्षण''' दो प्रतिस्पर्धी [[सांख्यिकीय मॉडल|सांख्यिकीय मॉडलों]] के व्यवस्थित होने का आकलन करता है, विशेष रूप से  पूरे [[पैरामीटर स्थान]] पर [[गणितीय अनुकूलन]] द्वारा पाया जाता है एवं दूसरा उनके संभावना फलन के अनुपात के आधार पर कुछ [[बाधा (गणित)]] लगाने के पश्चात पाया जाता है। यदि बाधा (अर्थात्, [[शून्य परिकल्पना]]) को [[अहसास (संभावना)|एहसास (संभावना)]] द्वारा समर्थित किया जाता है, तो दो संभावनाओं में [[नमूनाकरण त्रुटि|प्रतिरूपकरण त्रुटि]] से अधिक एहसास नहीं होना चाहिए।<ref>{{cite book |first=Gary |last=King |author-link=Gary King (political scientist) |title=Unifying Political Methodology : The Likelihood Theory of Statistical Inference |location=New York |publisher=Cambridge University Press |year=1989 |isbn=0-521-36697-6 |page=84 |url=https://books.google.com/books?id=cligOwrd7XoC&pg=PA84 }}</ref> इस प्रकार संभाव्यता-अनुपात परीक्षण, परीक्षण करता है कि क्या यह अनुपात से सांख्यिकीय महत्व है, या समकक्ष क्या इसका [[प्राकृतिक]] लघुगणक शून्य से अधिक भिन्न है।
आंकड़ों में, '''संभावना-अनुपात परीक्षण''' दो प्रतिस्पर्धी [[सांख्यिकीय मॉडल|सांख्यिकीय मॉडलों]] के व्यवस्थित होने का आकलन करता है, विशेष रूप से  पूर्ण [[पैरामीटर स्थान]] पर [[गणितीय अनुकूलन]] द्वारा पाया जाता है एवं दूसरा उनके संभावना फलन के अनुपात के आधार पर कुछ [[बाधा (गणित)]] लगाने के पश्चात पाया जाता है। यदि बाधा (अर्थात्, [[शून्य परिकल्पना]]) को [[अहसास (संभावना)|एहसास (संभावना)]] द्वारा समर्थित किया जाता है, तो दो संभावनाओं में [[नमूनाकरण त्रुटि|प्रतिरूपकरण त्रुटि]] से अधिक एहसास नहीं होना चाहिए।<ref>{{cite book |first=Gary |last=King |author-link=Gary King (political scientist) |title=Unifying Political Methodology : The Likelihood Theory of Statistical Inference |location=New York |publisher=Cambridge University Press |year=1989 |isbn=0-521-36697-6 |page=84 |url=https://books.google.com/books?id=cligOwrd7XoC&pg=PA84 }}</ref> इस प्रकार संभाव्यता-अनुपात परीक्षण, परीक्षण करता है कि क्या यह अनुपात से सांख्यिकीय महत्व है, या समकक्ष क्या इसका [[प्राकृतिक]] लघुगणक शून्य से अधिक भिन्न है।


संभाव्यता-अनुपात परीक्षण, जिसे विल्क्स परीक्षण भी कहा जाता है,<ref>{{cite book |first1=Bing |last1=Li |first2=G. Jogesh |last2=Babu |title=सांख्यिकीय अनुमान पर एक स्नातक पाठ्यक्रम|location= |publisher=Springer |year=2019 |page=331 |isbn=978-1-4939-9759-6 }}</ref> [[लैग्रेंज गुणक परीक्षण]] एवं [[वाल्ड परीक्षण]] सहित, परिकल्पना परीक्षण के तीन शास्त्रीय दृष्टिकोणों में से सबसे प्राचीन है।<ref>{{cite book |first1=G. S. |last1=Maddala |author-link=G. S. Maddala |first2=Kajal |last2=Lahiri |title=अर्थमिति का परिचय|location=New York |publisher=Wiley |edition=Fourth |year=2010 |page=200 }}</ref> वास्तव में, पश्चात वाले दो को संभावना-अनुपात परीक्षण के सन्निकटन के रूप में परिकल्पित किया जा सकता है, एवं स्पर्शोन्मुख रूप से समतुल्य हैं।<ref>{{cite journal |first=A. |last=Buse |title=The Likelihood Ratio, Wald, and Lagrange Multiplier Tests: An Expository Note |journal=[[The American Statistician]] |volume=36 |issue=3a |year=1982 |pages=153–157 |doi=10.1080/00031305.1982.10482817 }}</ref><ref>{{cite book |first=Andrew |last=Pickles |title=संभावना विश्लेषण का एक परिचय|location=Norwich |publisher=W. H. Hutchins & Sons |year=1985 |isbn=0-86094-190-6 |pages=[https://archive.org/details/introductiontoli0000pick/page/24 24–27] |url=https://archive.org/details/introductiontoli0000pick/page/24 }}</ref><ref>{{cite book |first=Thomas A. |last=Severini |title=सांख्यिकी में संभावना पद्धतियाँ|location=New York |publisher=Oxford University Press |year=2000 |isbn=0-19-850650-3 |pages=120–121 }}</ref> दो मॉडलों की अपेक्षा करने के विषय में, जिनमें से प्रत्येक में कोई अज्ञात [[सांख्यिकीय पैरामीटर]] नहीं है, संभावना-अनुपात परीक्षण का उपयोग नेमैन-पियर्सन लेम्मा द्वारा उचित बताया जा सकता है। लेम्मा प्रदर्शित करता है कि परीक्षण में सभी प्रतिस्पर्धियों के मध्य उच्चतम [[सांख्यिकीय शक्ति]] है।<ref name="NeymanPearson1933">{{citation | last1 = Neyman | first1 = J. | author-link1 = Jerzy Neyman| last2 = Pearson | first2 = E. S. | author-link2 = Egon Pearson| doi = 10.1098/rsta.1933.0009 | title = On the problem of the most efficient tests of statistical hypotheses | journal = [[Philosophical Transactions of the Royal Society of London A]] | volume = 231 | issue = 694–706 | pages = 289–337 | year = 1933 | jstor = 91247 |bibcode = 1933RSPTA.231..289N | url = http://www.stats.org.uk/statistical-inference/NeymanPearson1933.pdf | doi-access = free }}</ref>
संभाव्यता-अनुपात परीक्षण, जिसे विल्क्स परीक्षण भी कहा जाता है,<ref>{{cite book |first1=Bing |last1=Li |first2=G. Jogesh |last2=Babu |title=सांख्यिकीय अनुमान पर एक स्नातक पाठ्यक्रम|location= |publisher=Springer |year=2019 |page=331 |isbn=978-1-4939-9759-6 }}</ref> [[लैग्रेंज गुणक परीक्षण]] एवं [[वाल्ड परीक्षण]] सहित, परिकल्पना परीक्षण के तीन शास्त्रीय दृष्टिकोणों में से सबसे प्राचीन है।<ref>{{cite book |first1=G. S. |last1=Maddala |author-link=G. S. Maddala |first2=Kajal |last2=Lahiri |title=अर्थमिति का परिचय|location=New York |publisher=Wiley |edition=Fourth |year=2010 |page=200 }}</ref> वास्तव में, पश्चात वाले दो को संभावना-अनुपात परीक्षण के सन्निकटन के रूप में परिकल्पित किया जा सकता है, एवं स्पर्शोन्मुख रूप से समतुल्य हैं।<ref>{{cite journal |first=A. |last=Buse |title=The Likelihood Ratio, Wald, and Lagrange Multiplier Tests: An Expository Note |journal=[[The American Statistician]] |volume=36 |issue=3a |year=1982 |pages=153–157 |doi=10.1080/00031305.1982.10482817 }}</ref><ref>{{cite book |first=Andrew |last=Pickles |title=संभावना विश्लेषण का एक परिचय|location=Norwich |publisher=W. H. Hutchins & Sons |year=1985 |isbn=0-86094-190-6 |pages=[https://archive.org/details/introductiontoli0000pick/page/24 24–27] |url=https://archive.org/details/introductiontoli0000pick/page/24 }}</ref><ref>{{cite book |first=Thomas A. |last=Severini |title=सांख्यिकी में संभावना पद्धतियाँ|location=New York |publisher=Oxford University Press |year=2000 |isbn=0-19-850650-3 |pages=120–121 }}</ref> दो मॉडलों की अपेक्षा करने के विषय में, जिनमें से प्रत्येक में कोई अज्ञात [[सांख्यिकीय पैरामीटर]] नहीं है, संभावना-अनुपात परीक्षण का उपयोग नेमैन-पियर्सन लेम्मा द्वारा उचित बताया जा सकता है। लेम्मा प्रदर्शित करता है कि परीक्षण में सभी प्रतिस्पर्धियों के मध्य उच्चतम [[सांख्यिकीय शक्ति]] है।<ref name="NeymanPearson1933">{{citation | last1 = Neyman | first1 = J. | author-link1 = Jerzy Neyman| last2 = Pearson | first2 = E. S. | author-link2 = Egon Pearson| doi = 10.1098/rsta.1933.0009 | title = On the problem of the most efficient tests of statistical hypotheses | journal = [[Philosophical Transactions of the Royal Society of London A]] | volume = 231 | issue = 694–706 | pages = 289–337 | year = 1933 | jstor = 91247 |bibcode = 1933RSPTA.231..289N | url = http://www.stats.org.uk/statistical-inference/NeymanPearson1933.pdf | doi-access = free }}</ref>
Line 52: Line 52:


==व्याख्या==
==व्याख्या==
संभावना अनुपात डेटा का कार्य है <math>x</math>; इसलिए, यह आँकड़ा है, हालाँकि यह असामान्य है कि आँकड़े का मान पैरामीटर पर निर्भर करता है, <math>\theta</math>. यदि इस आँकड़े का मान बहुत छोटा है तो संभावना-अनुपात परीक्षण शून्य परिकल्पना को अस्वीकार कर देता है। कितना छोटा कितना छोटा है यह परीक्षण के महत्व स्तर पर निर्भर करता है, अर्थात् टाइप I त्रुटि की किस संभावना को सहनीय माना जाता है (टाइप I त्रुटियों में अशक्त परिकल्पना की अस्वीकृति शामिल होती है जो सत्य है)।
संभावना अनुपात डेटा का <math>x</math> कार्य है; इसलिए, यह आँकड़ा है, चूँकि यह असामान्य है कि आँकड़े का मान पैरामीटर <math>\theta</math> पर निर्भर करता है, यदि इस आँकड़े का मान अधिक छोटा है तो संभावना-अनुपात परीक्षण शून्य परिकल्पना को अस्वीकार कर देता है। कितना छोटा है, बहुत छोटा है यह परीक्षण के महत्व स्तर पर निर्भर करता है, अर्थात् टाइप I त्रुटि की किस संभावना को सहनीय माना जाता है (टाइप I त्रुटियों में अशक्त परिकल्पना की अस्वीकृति सम्मिलित होती है जो सत्य है)।


अंश शून्य परिकल्पना के अंतर्गत देखे गए परिणाम की संभावना से मेल खाता है। हर  देखे गए परिणाम की अधिकतम संभावना से मेल खाता है, पूरे पैरा[[मीटर]] स्थान पर अलग-अलग पैरामीटर। इस अनुपात का अंश हर से कम है; इसलिए, संभावना अनुपात 0 एवं 1 के मध्य है। संभावना अनुपात के कम मूल्यों का मतलब है कि देखे गए परिणाम विकल्प की अपेक्षा में शून्य परिकल्पना के अंतर्गत घटित होने की बहुत कम संभावना थी। आँकड़ों के उच्च मूल्यों का मतलब है कि देखा गया परिणाम शून्य परिकल्पना के अंतर्गत विकल्प के रूप में घटित होने की लगभग संभावना थी, एवं इसलिए शून्य परिकल्पना को अस्वीकार नहीं किया जा सकता है।
अंश शून्य परिकल्पना के अंतर्गत देखे गए परिणाम की संभावना से मेल खाता है। प्रत्येक देखे गए परिणाम की अधिकतम संभावना के समान है, पूर्ण पैरा[[मीटर]] स्थान पर भिन्न-भिन्न पैरामीटर है। इस अनुपात का अंश प्रत्येकसे कम है; इसलिए, संभावना अनुपात 0 एवं 1 के मध्य है। संभावना अनुपात के कम मूल्यों का तात्पर्य है कि देखे गए परिणाम विकल्प की अपेक्षा में शून्य परिकल्पना के अंतर्गत घटित होने की अधिक कम संभावना थी। आँकड़ों के उच्च मूल्यों का तात्पर्य है कि देखा गया परिणाम शून्य परिकल्पना के अंतर्गत विकल्प के रूप में घटित होने की लगभग संभावना थी, एवं इसलिए शून्य परिकल्पना को अस्वीकार नहीं किया जा सकता है।


===उदाहरण===
===उदाहरण===
निम्नलिखित उदाहरण से अनुकूलित एवं संक्षिप्त किया गया है {{Harvtxt|Stuart|Ord|Arnold|1999|loc=§22.2}}.
निम्नलिखित उदाहरण से अनुकूलित एवं संक्षिप्त किया गया है {{Harvtxt|Stuart|Ord|Arnold|1999|loc=§22.2}}.


मान लीजिए कि हमारे पास आकार का  यादृच्छिक प्रतिरूप है {{mvar|n}}, ऐसी आपश्चाती से जो सामान्य रूप से वितरित है। दोनों का मतलब, {{mvar|&mu;}}, एवं मानक विचलन, {{mvar|&sigma;}}, जनसंख्या अज्ञात है। हम परीक्षण करना चाहते हैं कि माध्य किसी दिए गए मान के बराबर है या नहीं, {{math|''&mu;''{{sub|0}} }}.
मान लीजिए कि हमारे पास आकार का  यादृच्छिक प्रतिरूप है {{mvar|n}}, ऐसी आपश्चाती से जो सामान्य रूप से वितरित है। दोनों का तात्पर्य, {{mvar|&mu;}}, एवं मानक विचलन, {{mvar|&sigma;}}, जनसंख्या अज्ञात है। हम परीक्षण करना चाहते हैं कि माध्य किसी दिए गए मान के बराबर है या नहीं, {{math|''&mu;''{{sub|0}} }}.


इस प्रकार, हमारी शून्य परिकल्पना है {{math|''H''{{sub|0}}:&nbsp; ''&mu;'' {{=}} ''&mu;''{{sub|0}}&nbsp;}} एवं हमारी वैकल्पिक परिकल्पना है {{math|''H''{{sub|1}}:&nbsp; ''&mu;'' ≠ ''&mu;''{{sub|0}}&nbsp;}}. संभाव्यता फलन है
इस प्रकार, हमारी शून्य परिकल्पना है {{math|''H''{{sub|0}}:&nbsp; ''&mu;'' {{=}} ''&mu;''{{sub|0}}&nbsp;}} एवं हमारी वैकल्पिक परिकल्पना है {{math|''H''{{sub|1}}:&nbsp; ''&mu;'' ≠ ''&mu;''{{sub|0}}&nbsp;}}. संभाव्यता फलन है
Line 69: Line 69:
{{Main|Wilks' theorem}}
{{Main|Wilks' theorem}}


यदि किसी विशेष शून्य एवं वैकल्पिक परिकल्पना के अनुरूप संभावना अनुपात का वितरण स्पष्ट रूप से निर्धारित किया जा सकता है तो इसका उपयोग सीधे निर्णय क्षेत्र बनाने (शून्य परिकल्पना को बनाए रखने या अस्वीकार करने के लिए) के लिए किया जा सकता है। हालाँकि, ज्यादातर मामलों में, विशिष्ट परिकल्पनाओं के अनुरूप संभावना अनुपात का सटीक वितरण निर्धारित करना बहुत मुश्किल है।{{Citation needed|date=September 2018}}
यदि किसी विशेष शून्य एवं वैकल्पिक परिकल्पना के अनुरूप संभावना अनुपात का वितरण स्पष्ट रूप से निर्धारित किया जा सकता है तो इसका उपयोग सीधे निर्णय क्षेत्र बनाने (शून्य परिकल्पना को बनाए रखने या अस्वीकार करने के लिए) के लिए किया जा सकता है। चूँकि, ज्यादातर मामलों में, विशिष्ट परिकल्पनाओं के अनुरूप संभावना अनुपात का सटीक वितरण निर्धारित करना अधिक मुश्किल है।{{Citation needed|date=September 2018}}


यह मानते हुए {{math|''H''<sub>0</sub>}} सच है, सैमुअल एस विल्क्स द्वारा  मौलिक परिणाम है: प्रतिरूप आकार के रूप में <math>n</math> अनंत तक पहुंचता है|<math>\infty</math>, परीक्षण आँकड़ा <math>\lambda_\text{LR}</math> ऊपर परिभाषित एसिम्प्टोटिक सिद्धांत (सांख्यिकी) ची-स्क्वेर्ड वितरण होगा | ची-स्क्वेर्ड वितरित (<math>\chi^2</math>) [[स्वतंत्रता की डिग्री (सांख्यिकी)]] के साथ आयामीता में एहसास के बराबर <math>\Theta</math> एवं <math>\Theta_0</math>.<ref>{{cite journal |last=Wilks |first=S.S. |author-link=Samuel S. Wilks |doi=10.1214/aoms/1177732360 |title=मिश्रित परिकल्पनाओं के परीक्षण के लिए संभावना अनुपात का बड़ा-नमूना वितरण|journal=[[Annals of Mathematical Statistics]] |volume=9 |issue=1 |pages=60–62 |year=1938 |doi-access=free}}</ref> इसका तात्पर्य यह है कि विभिन्न प्रकार की परिकल्पनाओं के लिए, हम संभावना अनुपात की गणना कर सकते हैं <math>\lambda</math> डेटा के लिए एवं फिर देखे गए की अपेक्षा करें <math>\lambda_\text{LR}</math> तक <math>\chi^2</math> अनुमानित सांख्यिकीय परीक्षण के रूप में वांछित सांख्यिकीय महत्व के अनुरूप मूल्य। अन्य ्सटेंशन मौजूद हैं.{{which|date=March 2019}}
यह मानते हुए {{math|''H''<sub>0</sub>}} सच है, सैमुअल एस विल्क्स द्वारा  मौलिक परिणाम है: प्रतिरूप आकार के रूप में <math>n</math> अनंत तक पहुंचता है|<math>\infty</math>, परीक्षण आँकड़ा <math>\lambda_\text{LR}</math> ऊपर परिभाषित एसिम्प्टोटिक सिद्धांत (सांख्यिकी) ची-स्क्वेर्ड वितरण होगा | ची-स्क्वेर्ड वितरित (<math>\chi^2</math>) [[स्वतंत्रता की डिग्री (सांख्यिकी)]] के साथ आयामीता में एहसास के बराबर <math>\Theta</math> एवं <math>\Theta_0</math>.<ref>{{cite journal |last=Wilks |first=S.S. |author-link=Samuel S. Wilks |doi=10.1214/aoms/1177732360 |title=मिश्रित परिकल्पनाओं के परीक्षण के लिए संभावना अनुपात का बड़ा-नमूना वितरण|journal=[[Annals of Mathematical Statistics]] |volume=9 |issue=1 |pages=60–62 |year=1938 |doi-access=free}}</ref> इसका तात्पर्य यह है कि विभिन्न प्रकार की परिकल्पनाओं के लिए, हम संभावना अनुपात की गणना कर सकते हैं <math>\lambda</math> डेटा के लिए एवं फिर देखे गए की अपेक्षा करें <math>\lambda_\text{LR}</math> तक <math>\chi^2</math> अनुमानित सांख्यिकीय परीक्षण के रूप में वांछित सांख्यिकीय महत्व के अनुरूप मूल्य। अन्य ्सटेंशन मौजूद हैं.{{which|date=March 2019}}

Revision as of 13:06, 12 July 2023

आंकड़ों में, संभावना-अनुपात परीक्षण दो प्रतिस्पर्धी सांख्यिकीय मॉडलों के व्यवस्थित होने का आकलन करता है, विशेष रूप से पूर्ण पैरामीटर स्थान पर गणितीय अनुकूलन द्वारा पाया जाता है एवं दूसरा उनके संभावना फलन के अनुपात के आधार पर कुछ बाधा (गणित) लगाने के पश्चात पाया जाता है। यदि बाधा (अर्थात्, शून्य परिकल्पना) को एहसास (संभावना) द्वारा समर्थित किया जाता है, तो दो संभावनाओं में प्रतिरूपकरण त्रुटि से अधिक एहसास नहीं होना चाहिए।[1] इस प्रकार संभाव्यता-अनुपात परीक्षण, परीक्षण करता है कि क्या यह अनुपात से सांख्यिकीय महत्व है, या समकक्ष क्या इसका प्राकृतिक लघुगणक शून्य से अधिक भिन्न है।

संभाव्यता-अनुपात परीक्षण, जिसे विल्क्स परीक्षण भी कहा जाता है,[2] लैग्रेंज गुणक परीक्षण एवं वाल्ड परीक्षण सहित, परिकल्पना परीक्षण के तीन शास्त्रीय दृष्टिकोणों में से सबसे प्राचीन है।[3] वास्तव में, पश्चात वाले दो को संभावना-अनुपात परीक्षण के सन्निकटन के रूप में परिकल्पित किया जा सकता है, एवं स्पर्शोन्मुख रूप से समतुल्य हैं।[4][5][6] दो मॉडलों की अपेक्षा करने के विषय में, जिनमें से प्रत्येक में कोई अज्ञात सांख्यिकीय पैरामीटर नहीं है, संभावना-अनुपात परीक्षण का उपयोग नेमैन-पियर्सन लेम्मा द्वारा उचित बताया जा सकता है। लेम्मा प्रदर्शित करता है कि परीक्षण में सभी प्रतिस्पर्धियों के मध्य उच्चतम सांख्यिकीय शक्ति है।[7]


परिभाषा

सामान्य

हमारे पास सांख्यिकीय पैरामीटर वाला सांख्यिकीय मॉडल है। शून्य परिकल्पना को प्रायः पैरामीटर कहकर बताया जाता है, निर्दिष्ट उपसमुच्चय का में है। इस प्रकार वैकल्पिक परिकल्पना के पूरक (सेट सिद्धांत) में है, अर्थात् है, जिसे द्वारा दर्शाया जाता है। शून्य परिकल्पना के लिए संभावना अनुपात परीक्षण आँकड़ा द्वारा दिया गया है:[8]

,

जहां कोष्ठक के अंदर की मात्रा को संभावना अनुपात कहा जाता है। यहां ही अंकन सर्वोच्च को संदर्भित करता है। चूँकि सभी संभावनाएँ सकारात्मक हैं, एवं चूँकि बाधित अधिकतम अप्रतिबंधित अधिकतम से अधिक नहीं हो सकता है, संभावना अनुपात शून्य एवं एक के मध्य निर्धारित है।

प्रायः संभावना-अनुपात परीक्षण आँकड़ा लॉग-संभावनाओं के मध्य एहसास के रूप में व्यक्त किया जाता है

,

जहाँ

अधिकतम संभावना फलन का लघुगणक है , एवं विशेष विषय में अधिकतम मान है कि शून्य परिकल्पना सत्य है (परन्तु आवश्यक नहीं कि ऐसा मान हो जो अधिकतम हो प्रतिरूप किए गए डेटा के लिए) एवं

संबंधित arg अधिकतम एवं उन अनुमत श्रेणियों को निरूपित करें जिनमें वे एहसास्निहित हैं। -2 से गुणा करने पर गणितीय रूप से यह सुनिश्चित होता है (विल्क्स प्रमेय द्वारा) यदि शून्य परिकल्पना सत्य होती है तो असम्बद्ध रूप से χ²-वितरित होने के लिए अभिसरण करता है |[9] संभावना-अनुपात परीक्षणों के प्रतिरूपकरण वितरण सामान्यतः अज्ञात हैं।[10]संभावना-अनुपात परीक्षण के लिए आवश्यक है कि मॉडल नेस्टेड मॉडल हों अर्थात् अधिक जटिल मॉडल को पूर्व के मापदंडों पर बाधाएं लगाकर सरल मॉडल में परिवर्तित किया जा सकता है। कई सामान्य परीक्षण आँकड़े नेस्टेड मॉडल के लिए परीक्षण हैं एवं इन्हें लॉग-संभावना अनुपात या उसके अनुमान के रूप में व्यक्त किया जा सकता है: उदाहरण के लिए Z-परीक्षण, F-परीक्षण,G-परीक्षण, एवं पियर्सन का ची-स्क्वेर्ड परीक्षण; उदाहरण के लिए, नीचे देखें।

यदि मॉडल नेस्टेड नहीं हैं, तो संभावना-अनुपात परीक्षण के अतिरिक्त, परीक्षण का सामान्यीकरण होता है जिसका सामान्यतः उपयोग किया जा सकता है: विवरण के लिए, सापेक्ष संभावना देखें।

सरल परिकल्पनाओं का विषय

सरल-विरुद्ध-सरल परिकल्पना परीक्षण में शून्य परिकल्पना एवं वैकल्पिक परिकल्पना दोनों के अंतर्गत पूर्ण रूप से निर्दिष्ट मॉडल होते हैं, जो सुविधा के लिए काल्पनिक पैरामीटर के निश्चित मूल्यों के संदर्भ में लिखे जाते हैं। :

इस विषय में, किसी भी परिकल्पना के अंतर्गत, डेटा का वितरण पूर्ण रूप से निर्दिष्ट है: अनुमान लगाने के लिए कोई अज्ञात पैरामीटर नहीं हैं। इस विषय के लिए, संभावना-अनुपात परीक्षण का प्रकार उपलब्ध है:[11]

,

कुछ प्राचीन संदर्भ उपरोक्त फलन के व्युत्क्रम को परिभाषा के रूप में उपयोग कर सकते हैं।[12] इस प्रकार, यदि वैकल्पिक मॉडल शून्य मॉडल से उत्तम है तो संभावना अनुपात छोटा है।

संभाव्यता-अनुपात परीक्षण निम्नानुसार निर्णय नियम प्रदान करता है:

यदि , अस्वीकार करना है;
यदि , अस्वीकार करना है;
यदि , संभाव्यता के साथ अस्वीकार करना है |

मूल्य एवं सामान्यतः निर्दिष्ट महत्व स्तर प्राप्त करने के लिए चयन किया जाता है, संबंध के माध्यम से

होता है।

नेमैन पियर्सन लेम्मा का कहना है कि यह संभावना-अनुपात परीक्षण सभी स्तरों परीक्षण के मध्य सांख्यिकीय शक्ति है।

व्याख्या

संभावना अनुपात डेटा का कार्य है; इसलिए, यह आँकड़ा है, चूँकि यह असामान्य है कि आँकड़े का मान पैरामीटर पर निर्भर करता है, यदि इस आँकड़े का मान अधिक छोटा है तो संभावना-अनुपात परीक्षण शून्य परिकल्पना को अस्वीकार कर देता है। कितना छोटा है, बहुत छोटा है यह परीक्षण के महत्व स्तर पर निर्भर करता है, अर्थात् टाइप I त्रुटि की किस संभावना को सहनीय माना जाता है (टाइप I त्रुटियों में अशक्त परिकल्पना की अस्वीकृति सम्मिलित होती है जो सत्य है)।

अंश शून्य परिकल्पना के अंतर्गत देखे गए परिणाम की संभावना से मेल खाता है। प्रत्येक देखे गए परिणाम की अधिकतम संभावना के समान है, पूर्ण पैरामीटर स्थान पर भिन्न-भिन्न पैरामीटर है। इस अनुपात का अंश प्रत्येकसे कम है; इसलिए, संभावना अनुपात 0 एवं 1 के मध्य है। संभावना अनुपात के कम मूल्यों का तात्पर्य है कि देखे गए परिणाम विकल्प की अपेक्षा में शून्य परिकल्पना के अंतर्गत घटित होने की अधिक कम संभावना थी। आँकड़ों के उच्च मूल्यों का तात्पर्य है कि देखा गया परिणाम शून्य परिकल्पना के अंतर्गत विकल्प के रूप में घटित होने की लगभग संभावना थी, एवं इसलिए शून्य परिकल्पना को अस्वीकार नहीं किया जा सकता है।

उदाहरण

निम्नलिखित उदाहरण से अनुकूलित एवं संक्षिप्त किया गया है Stuart, Ord & Arnold (1999, §22.2).

मान लीजिए कि हमारे पास आकार का यादृच्छिक प्रतिरूप है n, ऐसी आपश्चाती से जो सामान्य रूप से वितरित है। दोनों का तात्पर्य, μ, एवं मानक विचलन, σ, जनसंख्या अज्ञात है। हम परीक्षण करना चाहते हैं कि माध्य किसी दिए गए मान के बराबर है या नहीं, μ0 .

इस प्रकार, हमारी शून्य परिकल्पना है H0μ = μ0  एवं हमारी वैकल्पिक परिकल्पना है H1μμ0 . संभाव्यता फलन है

कुछ गणना (यहां छोड़ दी गई) के साथ, इसे दिखाया जा सकता है

जहाँ t टी-सांख्यिकी है|t-सांख्यिकी के साथ n − 1 स्वतंत्रता की कोटियां। इसलिए हम ज्ञात सटीक वितरण का उपयोग कर सकते हैं tn−1 निष्कर्ष निकालने के लिए.

स्पर्शोन्मुख वितरण: विल्क्स प्रमेय

यदि किसी विशेष शून्य एवं वैकल्पिक परिकल्पना के अनुरूप संभावना अनुपात का वितरण स्पष्ट रूप से निर्धारित किया जा सकता है तो इसका उपयोग सीधे निर्णय क्षेत्र बनाने (शून्य परिकल्पना को बनाए रखने या अस्वीकार करने के लिए) के लिए किया जा सकता है। चूँकि, ज्यादातर मामलों में, विशिष्ट परिकल्पनाओं के अनुरूप संभावना अनुपात का सटीक वितरण निर्धारित करना अधिक मुश्किल है।[citation needed]

यह मानते हुए H0 सच है, सैमुअल एस विल्क्स द्वारा मौलिक परिणाम है: प्रतिरूप आकार के रूप में अनंत तक पहुंचता है|, परीक्षण आँकड़ा ऊपर परिभाषित एसिम्प्टोटिक सिद्धांत (सांख्यिकी) ची-स्क्वेर्ड वितरण होगा | ची-स्क्वेर्ड वितरित () स्वतंत्रता की डिग्री (सांख्यिकी) के साथ आयामीता में एहसास के बराबर एवं .[13] इसका तात्पर्य यह है कि विभिन्न प्रकार की परिकल्पनाओं के लिए, हम संभावना अनुपात की गणना कर सकते हैं डेटा के लिए एवं फिर देखे गए की अपेक्षा करें तक अनुमानित सांख्यिकीय परीक्षण के रूप में वांछित सांख्यिकीय महत्व के अनुरूप मूल्य। अन्य ्सटेंशन मौजूद हैं.[which?]

यह भी देखें

संदर्भ

  1. King, Gary (1989). Unifying Political Methodology : The Likelihood Theory of Statistical Inference. New York: Cambridge University Press. p. 84. ISBN 0-521-36697-6.
  2. Li, Bing; Babu, G. Jogesh (2019). सांख्यिकीय अनुमान पर एक स्नातक पाठ्यक्रम. Springer. p. 331. ISBN 978-1-4939-9759-6.
  3. Maddala, G. S.; Lahiri, Kajal (2010). अर्थमिति का परिचय (Fourth ed.). New York: Wiley. p. 200.
  4. Buse, A. (1982). "The Likelihood Ratio, Wald, and Lagrange Multiplier Tests: An Expository Note". The American Statistician. 36 (3a): 153–157. doi:10.1080/00031305.1982.10482817.
  5. Pickles, Andrew (1985). संभावना विश्लेषण का एक परिचय. Norwich: W. H. Hutchins & Sons. pp. 24–27. ISBN 0-86094-190-6.
  6. Severini, Thomas A. (2000). सांख्यिकी में संभावना पद्धतियाँ. New York: Oxford University Press. pp. 120–121. ISBN 0-19-850650-3.
  7. Neyman, J.; Pearson, E. S. (1933), "On the problem of the most efficient tests of statistical hypotheses" (PDF), Philosophical Transactions of the Royal Society of London A, 231 (694–706): 289–337, Bibcode:1933RSPTA.231..289N, doi:10.1098/rsta.1933.0009, JSTOR 91247
  8. Koch, Karl-Rudolf (1988). रैखिक मॉडल में पैरामीटर अनुमान और परिकल्पना परीक्षण. New York: Springer. p. 306. ISBN 0-387-18840-1.
  9. Silvey, S.D. (1970). सांख्यिकीय निष्कर्ष. London: Chapman & Hall. pp. 112–114. ISBN 0-412-13820-4.
  10. Mittelhammer, Ron C.; Judge, George G.; Miller, Douglas J. (2000). अर्थमितीय नींव. New York: Cambridge University Press. p. 66. ISBN 0-521-62394-4.
  11. Mood, A.M.; Graybill, F.A.; Boes, D.C. (1974). सांख्यिकी के सिद्धांत का परिचय (3rd ed.). McGraw-Hill. §9.2.
  12. Cox, D. R.; Hinkley, D. V. (1974), Theoretical Statistics, Chapman & Hall, p. 92, ISBN 0-412-12420-3
  13. Wilks, S.S. (1938). "मिश्रित परिकल्पनाओं के परीक्षण के लिए संभावना अनुपात का बड़ा-नमूना वितरण". Annals of Mathematical Statistics. 9 (1): 60–62. doi:10.1214/aoms/1177732360.


अग्रिम पठन


बाहरी संबंध