स्कोर परीक्षण: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|Statistical test based on the gradient of the likelihood function}}
{{Short description|Statistical test based on the gradient of the likelihood function}}
{{distinguish|Test score}}
{{distinguish|परीक्षा अंक}}


आंकड़ों में, स्कोर परीक्षण संभावना फ़ंक्शन के [[ ग्रेडियेंट ]] के आधार पर सांख्यिकीय मापदंडों पर [[बाधा (गणित)]] का आकलन करता है - जिसे ''[[स्कोर (सांख्यिकी)]]'' के रूप में जाना जाता है - जिसका मूल्यांकन [[शून्य परिकल्पना]] के तहत परिकल्पित पैरामीटर मान पर किया जाता है। सहज रूप से, यदि प्रतिबंधित अनुमानक संभावना फ़ंक्शन की [[मैक्सिमा और मिनिमा]] के करीब है, तो स्कोर नमूना त्रुटि से अधिक शून्य से भिन्न नहीं होना चाहिए। जबकि स्कोर परीक्षणों के नमूनाकरण वितरण आम तौर पर अज्ञात होते हैं, उनमें स्पर्शोन्मुख ची-वर्ग वितरण होता है|χ<sup>2</sup>-शून्य परिकल्पना के अंतर्गत वितरण, जैसा कि पहली बार 1948 में सी. आर. राव द्वारा सिद्ध किया गया था,<ref>{{cite journal |first=C. Radhakrishna |last=Rao |title=अनुमान की समस्याओं के अनुप्रयोगों के साथ कई मापदंडों से संबंधित सांख्यिकीय परिकल्पनाओं का बड़ा नमूना परीक्षण|journal=[[Mathematical Proceedings of the Cambridge Philosophical Society]] |volume=44 |issue=1 |year=1948 |pages=50–57 |doi=10.1017/S0305004100023987 }}</ref> तथ्य जिसका उपयोग सांख्यिकीय महत्व निर्धारित करने के लिए किया जा सकता है।
सांख्यिकी में, स्कोर परीक्षण संभावना फलन के [[ ग्रेडियेंट |ग्रेडिएंट]] के आधार पर सांख्यिकीय मापदंडों पर [[बाधा (गणित)|बाधाओं (गणित)]] का आकलन करता है, जिसे ''[[स्कोर (सांख्यिकी)]]'' के रूप में भी जाना जाता है तथा जिसका मूल्यांकन [[शून्य परिकल्पना]] के अंतर्गत परिकल्पित पैरामीटर मान पर किया जाता है। सहज रूप से, यदि प्रतिबंधित अनुमानक संभावना फलन के [[मैक्सिमा और मिनिमा|उच्चिष्ट और निम्निष्ट]] के निकट है, तो स्कोर प्रारूपकरण त्रुटि से अधिक शून्य से भिन्न नहीं होना चाहिए। यद्यपि स्कोर परीक्षणों के परिमित प्रारूप वितरण सामान्यतः अज्ञात होते हैं, उनमें स्पर्शोन्मुख χ<sup>2</sup>-वितरण होता है, जिस प्रकार सर्वप्रथम 1948 में सी. आर. राव द्वारा सिद्ध किया गया था,<ref>{{cite journal |first=C. Radhakrishna |last=Rao |title=अनुमान की समस्याओं के अनुप्रयोगों के साथ कई मापदंडों से संबंधित सांख्यिकीय परिकल्पनाओं का बड़ा नमूना परीक्षण|journal=[[Mathematical Proceedings of the Cambridge Philosophical Society]] |volume=44 |issue=1 |year=1948 |pages=50–57 |doi=10.1017/S0305004100023987 }}</ref> तथा सांख्यिकीय महत्व निर्धारित करने के लिए इस प्रकार के तथ्य का उपयोग किया जा सकता है।


चूँकि समानता की बाधाओं के अधीन फ़ंक्शन अधिकतमीकरण समस्या की लैग्रेंजियन अभिव्यक्ति का उपयोग करके सबसे आसानी से किया जाता है, स्कोर परीक्षण को समान रूप से बाधाओं से जुड़े [[लैग्रेंज गुणक]] के [[परिमाण (गणित)]] के परीक्षण के रूप में समझा जा सकता है, जहां, फिर से, यदि बाधाएं अधिकतम संभावना पर गैर-बाध्यकारी हैं, लैग्रेंज मल्टीप्लायरों का वेक्टर नमूनाकरण त्रुटि से अधिक शून्य से भिन्न नहीं होना चाहिए। इन दोनों दृष्टिकोणों की समानता पहली बार 1959 में एस. डी. सिल्वे द्वारा दिखाई गई थी,<ref>{{cite journal |first=S. D. |last=Silvey |title=लैग्रेंजियन मल्टीप्लायर टेस्ट|journal=[[Annals of Mathematical Statistics]] |volume=30 |issue=2 |year=1959 |pages=389–407 |jstor=2237089 |doi=10.1214/aoms/1177706259|doi-access=free }}</ref> जिसके कारण इसे लैग्रेंज मल्टीप्लायर परीक्षण का नाम दिया गया, जो ट्रेवर एस. ब्रूश और [[एड्रियन पेगन]] के बहुप्रतीक्षित 1980 के पेपर के बाद से, विशेष रूप से अर्थमिति में, अधिक सामान्यतः उपयोग किया जाने लगा है।<ref name=BP>{{cite journal |first=T. S. |last=Breusch |author-link=Trevor S. Breusch |first2=A. R. |last2=Pagan |author-link2=Adrian Pagan |title=लैग्रेंज मल्टीप्लायर टेस्ट और अर्थमिति में मॉडल विशिष्टता के लिए इसके अनुप्रयोग|journal=[[Review of Economic Studies]] |volume=47 |issue=1 |year=1980 |pages=239–253 |jstor=2297111 }}</ref>
चूँकि समानता की बाधाओं के अंतर्गत फलन अधिकतमीकरण समस्या की लैग्रेंजियन अभिव्यक्ति का उपयोग करके अत्यधिक सरलता से किया जाता है, स्कोर परीक्षण का समान रूप से बाधाओं से संयोजित [[लैग्रेंज गुणक]] के [[परिमाण (गणित)]] के परीक्षण के रूप में अध्ययन किया जा सकता है, जहां, पुनः, यदि बाधाएं अधिकतम संभावना पर गैर-बाध्यकारी हैं, तो लैग्रेंज मल्टीप्लायरों का वेक्टर प्रारूपकरण त्रुटि से अधिक शून्य से भिन्न नहीं होना चाहिए। इन दोनों दृष्टिकोणों की समानता सर्वप्रथम 1959 में एस. डी. सिल्वे द्वारा दर्शायी गई थी,<ref>{{cite journal |first=S. D. |last=Silvey |title=लैग्रेंजियन मल्टीप्लायर टेस्ट|journal=[[Annals of Mathematical Statistics]] |volume=30 |issue=2 |year=1959 |pages=389–407 |jstor=2237089 |doi=10.1214/aoms/1177706259|doi-access=free }}</ref> जिसके कारण इसे लैग्रेंज मल्टीप्लायर परीक्षण का नाम दिया गया, जो ट्रेवर एस. ब्रूश और [[एड्रियन पेगन]] के बहुप्रतीक्षित 1980 के समाचार पत्र के पश्चात, विशेष रूप से अर्थमिति में, अधिक सामान्यतः उपयोग किया जाने लगा है।<ref name=BP>{{cite journal |first=T. S. |last=Breusch |author-link=Trevor S. Breusch |first2=A. R. |last2=Pagan |author-link2=Adrian Pagan |title=लैग्रेंज मल्टीप्लायर टेस्ट और अर्थमिति में मॉडल विशिष्टता के लिए इसके अनुप्रयोग|journal=[[Review of Economic Studies]] |volume=47 |issue=1 |year=1980 |pages=239–253 |jstor=2297111 }}</ref>
[[वाल्ड परीक्षण]] और संभावना-अनुपात परीक्षण की तुलना में स्कोर परीक्षण का मुख्य लाभ यह है कि स्कोर परीक्षण के लिए केवल प्रतिबंधित अनुमानक की गणना की आवश्यकता होती है।<ref>{{cite book |first=Ludwig |last=Fahrmeir |first2=Thomas |last2=Kneib |first3=Stefan |last3=Lang |first4=Brian |last4=Marx |title=Regression : Models, Methods and Applications |url=https://archive.org/details/regressionmodels00fahr |url-access=limited |location=Berlin |publisher=Springer |year=2013 |isbn=978-3-642-34332-2 |pages=[https://archive.org/details/regressionmodels00fahr/page/n677 663]–664 }}</ref> यह परीक्षण को तब संभव बनाता है जब अप्रतिबंधित अधिकतम संभावना अनुमान [[पैरामीटर स्थान]] में  [[सीमा बिंदु]] होता है।{{cn|date=March 2019}} इसके अलावा, क्योंकि स्कोर परीक्षण के लिए केवल शून्य परिकल्पना के तहत संभावना फ़ंक्शन के अनुमान की आवश्यकता होती है, यह वैकल्पिक परिकल्पना के बारे में संभावना अनुपात परीक्षण से कम विशिष्ट है।<ref>{{cite book |first=Peter |last=Kennedy |title=अर्थमिति के लिए एक मार्गदर्शिका|location=Cambridge |publisher=MIT Press |edition=Fourth |year=1998 |isbn=0-262-11235-3 |page=68 }}</ref>


[[वाल्ड परीक्षण]] और संभावना-अनुपात परीक्षण की तुलना में स्कोर परीक्षण का मुख्य लाभ यह है कि स्कोर परीक्षण के लिए केवल प्रतिबंधित अनुमानक की गणना की आवश्यकता होती है।<ref>{{cite book |first=Ludwig |last=Fahrmeir |first2=Thomas |last2=Kneib |first3=Stefan |last3=Lang |first4=Brian |last4=Marx |title=Regression : Models, Methods and Applications |url=https://archive.org/details/regressionmodels00fahr |url-access=limited |location=Berlin |publisher=Springer |year=2013 |isbn=978-3-642-34332-2 |pages=[https://archive.org/details/regressionmodels00fahr/page/n677 663]–664 }}</ref> यह परीक्षण को तब संभव बनाता है जब अप्रतिबंधित अधिकतम संभावना अनुमान [[पैरामीटर स्थान]] में [[सीमा बिंदु]] होता है। इसके अतिरिक्त, क्योंकि स्कोर परीक्षण के लिए केवल शून्य परिकल्पना के अंतर्गत संभावना फलन के अनुमान की आवश्यकता होती है, यह वैकल्पिक परिकल्पना के संबंध में संभावना अनुपात परीक्षण से अल्प विशिष्ट है।<ref>{{cite book |first=Peter |last=Kennedy |title=अर्थमिति के लिए एक मार्गदर्शिका|location=Cambridge |publisher=MIT Press |edition=Fourth |year=1998 |isbn=0-262-11235-3 |page=68 }}</ref>


==ल-पैरामीटर परीक्षण==


===आँकड़ा===
 
==एकल-पैरामीटर परीक्षण==
 
===सांख्यिकीय===
होने देना <math>L</math> संभावना फलन हो जो  अविभाज्य पैरामीटर पर निर्भर करता है <math>\theta</math> और जाने <math>x</math> डेटा हो. स्कोर <math>U(\theta)</math> परिभाषित किया जाता है
होने देना <math>L</math> संभावना फलन हो जो  अविभाज्य पैरामीटर पर निर्भर करता है <math>\theta</math> और जाने <math>x</math> डेटा हो. स्कोर <math>U(\theta)</math> परिभाषित किया जाता है
:<math>
:<math>
Line 80: Line 82:
==विशेष मामले==
==विशेष मामले==
कई स्थितियों में, स्कोर आँकड़े अन्य आमतौर पर उपयोग किए जाने वाले आँकड़ों तक कम हो जाते हैं।<ref>{{cite book |editor-last=Cook |editor-first=T. D. |editor2-last=DeMets |editor2-first=D. L. |year=2007 |title=नैदानिक ​​​​परीक्षणों के लिए सांख्यिकीय तरीकों का परिचय|publisher=Chapman and Hall |isbn=1-58488-027-9 |pages=296–297 }}</ref>
कई स्थितियों में, स्कोर आँकड़े अन्य आमतौर पर उपयोग किए जाने वाले आँकड़ों तक कम हो जाते हैं।<ref>{{cite book |editor-last=Cook |editor-first=T. D. |editor2-last=DeMets |editor2-first=D. L. |year=2007 |title=नैदानिक ​​​​परीक्षणों के लिए सांख्यिकीय तरीकों का परिचय|publisher=Chapman and Hall |isbn=1-58488-027-9 |pages=296–297 }}</ref>
रैखिक प्रतिगमन में, लैग्रेंज गुणक परीक्षण को एफ-टेस्ट|एफ-टेस्ट के  फ़ंक्शन के रूप में व्यक्त किया जा सकता है।<ref>{{cite journal |first=Walter |last=Vandaele |title=एफ परीक्षण के रूप में वाल्ड, संभावना अनुपात और लैग्रेंज गुणक परीक्षण|journal=[[Economics Letters]] |year=1981 |volume=8 |issue=4 |pages=361–365 |doi=10.1016/0165-1765(81)90026-4 }}</ref>
रैखिक प्रतिगमन में, लैग्रेंज गुणक परीक्षण को एफ-टेस्ट|एफ-टेस्ट के  फलन के रूप में व्यक्त किया जा सकता है।<ref>{{cite journal |first=Walter |last=Vandaele |title=एफ परीक्षण के रूप में वाल्ड, संभावना अनुपात और लैग्रेंज गुणक परीक्षण|journal=[[Economics Letters]] |year=1981 |volume=8 |issue=4 |pages=361–365 |doi=10.1016/0165-1765(81)90026-4 }}</ref>
जब डेटा सामान्य वितरण का अनुसरण करता है, तो स्कोर आँकड़ा [[टी आँकड़ा]] के समान होता है।{{clarify|reason=this can't always be true ... eg when null hypothesis is on the variance|date=March 2011}}
जब डेटा सामान्य वितरण का अनुसरण करता है, तो स्कोर आँकड़ा [[टी आँकड़ा]] के समान होता है।{{clarify|reason=this can't always be true ... eg when null hypothesis is on the variance|date=March 2011}}



Revision as of 16:58, 11 July 2023

सांख्यिकी में, स्कोर परीक्षण संभावना फलन के ग्रेडिएंट के आधार पर सांख्यिकीय मापदंडों पर बाधाओं (गणित) का आकलन करता है, जिसे स्कोर (सांख्यिकी) के रूप में भी जाना जाता है तथा जिसका मूल्यांकन शून्य परिकल्पना के अंतर्गत परिकल्पित पैरामीटर मान पर किया जाता है। सहज रूप से, यदि प्रतिबंधित अनुमानक संभावना फलन के उच्चिष्ट और निम्निष्ट के निकट है, तो स्कोर प्रारूपकरण त्रुटि से अधिक शून्य से भिन्न नहीं होना चाहिए। यद्यपि स्कोर परीक्षणों के परिमित प्रारूप वितरण सामान्यतः अज्ञात होते हैं, उनमें स्पर्शोन्मुख χ2-वितरण होता है, जिस प्रकार सर्वप्रथम 1948 में सी. आर. राव द्वारा सिद्ध किया गया था,[1] तथा सांख्यिकीय महत्व निर्धारित करने के लिए इस प्रकार के तथ्य का उपयोग किया जा सकता है।

चूँकि समानता की बाधाओं के अंतर्गत फलन अधिकतमीकरण समस्या की लैग्रेंजियन अभिव्यक्ति का उपयोग करके अत्यधिक सरलता से किया जाता है, स्कोर परीक्षण का समान रूप से बाधाओं से संयोजित लैग्रेंज गुणक के परिमाण (गणित) के परीक्षण के रूप में अध्ययन किया जा सकता है, जहां, पुनः, यदि बाधाएं अधिकतम संभावना पर गैर-बाध्यकारी हैं, तो लैग्रेंज मल्टीप्लायरों का वेक्टर प्रारूपकरण त्रुटि से अधिक शून्य से भिन्न नहीं होना चाहिए। इन दोनों दृष्टिकोणों की समानता सर्वप्रथम 1959 में एस. डी. सिल्वे द्वारा दर्शायी गई थी,[2] जिसके कारण इसे लैग्रेंज मल्टीप्लायर परीक्षण का नाम दिया गया, जो ट्रेवर एस. ब्रूश और एड्रियन पेगन के बहुप्रतीक्षित 1980 के समाचार पत्र के पश्चात, विशेष रूप से अर्थमिति में, अधिक सामान्यतः उपयोग किया जाने लगा है।[3]

वाल्ड परीक्षण और संभावना-अनुपात परीक्षण की तुलना में स्कोर परीक्षण का मुख्य लाभ यह है कि स्कोर परीक्षण के लिए केवल प्रतिबंधित अनुमानक की गणना की आवश्यकता होती है।[4] यह परीक्षण को तब संभव बनाता है जब अप्रतिबंधित अधिकतम संभावना अनुमान पैरामीटर स्थान में सीमा बिंदु होता है। इसके अतिरिक्त, क्योंकि स्कोर परीक्षण के लिए केवल शून्य परिकल्पना के अंतर्गत संभावना फलन के अनुमान की आवश्यकता होती है, यह वैकल्पिक परिकल्पना के संबंध में संभावना अनुपात परीक्षण से अल्प विशिष्ट है।[5]


एकल-पैरामीटर परीक्षण

सांख्यिकीय

होने देना संभावना फलन हो जो अविभाज्य पैरामीटर पर निर्भर करता है और जाने डेटा हो. स्कोर परिभाषित किया जाता है

फिशर की जानकारी है[6]

जहां ˒ संभाव्यता घनत्व है।

परीक्षण के लिए आँकड़ा है जिसका स्पर्शोन्मुख वितरण है , कब क्या सच है। स्पर्शोन्मुख रूप से समान होते हुए भी, फिशर सूचना मैट्रिक्स के बर्नड्ट-हॉल-हॉल-हौसमैन एल्गोरिदम | बाहरी-ग्रेडिएंट-उत्पाद अनुमानक का उपयोग करके एलएम सांख्यिकी की गणना करने से छोटे नमूनों में पूर्वाग्रह हो सकता है।[7]


नोटेशन पर टिप्पणी

ध्यान दें कि कुछ पाठ वैकल्पिक संकेतन का उपयोग करते हैं, जिसमें आँकड़े सामान्य वितरण के विरुद्ध परीक्षण किया जाता है। यह दृष्टिकोण समतुल्य है और समान परिणाम देता है।

छोटे विचलनों के लिए सबसे शक्तिशाली परीक्षण के रूप में

कहाँ संभावना फलन है, शून्य परिकल्पना के अंतर्गत रुचि के पैरामीटर का मान है, और वांछित परीक्षण के आकार (यानी अस्वीकार करने की संभावना) के आधार पर स्थिर सेट है अगर क्या सच है; टाइप I त्रुटि देखें)।

छोटे विचलनों के लिए स्कोर परीक्षण सबसे शक्तिशाली परीक्षण है . इसे देखने के लिए परीक्षण पर विचार करें बनाम . नेमैन-पियर्सन लेम्मा के अनुसार, सबसे शक्तिशाली परीक्षण का रूप होता है

दोनों पक्षों का लॉग लेने से पैदावार मिलती है

प्रतिस्थापन के बाद स्कोर परीक्षण होता है (टेलर श्रृंखला विस्तार द्वारा)

और पहचान कर रहा हूँ ऊपर के साथ .

अन्य परिकल्पना परीक्षणों के साथ संबंध

यदि शून्य परिकल्पना सत्य है, तो संभावना-अनुपात परीक्षण, वाल्ड परीक्षण और स्कोर परीक्षण परिकल्पनाओं के लक्षणहीन समकक्ष परीक्षण हैं।[8][9] सांख्यिकीय_मॉडल#नेस्टेड_मॉडल का परीक्षण करते समय, प्रत्येक परीक्षण के आँकड़े दो मॉडलों में स्वतंत्रता की डिग्री के अंतर के बराबर स्वतंत्रता की डिग्री के साथ ची-वर्ग वितरण में परिवर्तित हो जाते हैं। हालाँकि, यदि शून्य परिकल्पना सत्य नहीं है, तो आँकड़े संभवतः विभिन्न गैर-केंद्रीयता मापदंडों के साथ गैर-केंद्रीय ची-वर्ग वितरण में परिवर्तित हो जाते हैं।

ाधिक पैरामीटर

से अधिक पैरामीटर होने पर अधिक सामान्य स्कोर परीक्षण प्राप्त किया जा सकता है। लगता है कि की अधिकतम संभावना अनुमान है शून्य परिकल्पना के अंतर्गत जबकि और क्रमशः स्कोर वेक्टर और फिशर सूचना मैट्रिक्स हैं। तब

स्पर्शोन्मुख रूप से अंतर्गत , कहाँ शून्य परिकल्पना द्वारा लगाए गए अवरोधों की संख्या है

और

इसका उपयोग परीक्षण के लिए किया जा सकता है .

परीक्षण आँकड़ों का वास्तविक सूत्र इस बात पर निर्भर करता है कि फिशर सूचना मैट्रिक्स के किस अनुमानक का उपयोग किया जा रहा है।[10]


विशेष मामले

कई स्थितियों में, स्कोर आँकड़े अन्य आमतौर पर उपयोग किए जाने वाले आँकड़ों तक कम हो जाते हैं।[11] रैखिक प्रतिगमन में, लैग्रेंज गुणक परीक्षण को एफ-टेस्ट|एफ-टेस्ट के फलन के रूप में व्यक्त किया जा सकता है।[12] जब डेटा सामान्य वितरण का अनुसरण करता है, तो स्कोर आँकड़ा टी आँकड़ा के समान होता है।[clarification needed]

जब डेटा में बाइनरी अवलोकन शामिल होते हैं, तो स्कोर आँकड़ा पियर्सन के ची-स्क्वायर परीक्षण में ची-स्क्वायर आँकड़ा के समान होता है।

यह भी देखें

संदर्भ

  1. Rao, C. Radhakrishna (1948). "अनुमान की समस्याओं के अनुप्रयोगों के साथ कई मापदंडों से संबंधित सांख्यिकीय परिकल्पनाओं का बड़ा नमूना परीक्षण". Mathematical Proceedings of the Cambridge Philosophical Society. 44 (1): 50–57. doi:10.1017/S0305004100023987.
  2. Silvey, S. D. (1959). "लैग्रेंजियन मल्टीप्लायर टेस्ट". Annals of Mathematical Statistics. 30 (2): 389–407. doi:10.1214/aoms/1177706259. JSTOR 2237089.
  3. Breusch, T. S.; Pagan, A. R. (1980). "लैग्रेंज मल्टीप्लायर टेस्ट और अर्थमिति में मॉडल विशिष्टता के लिए इसके अनुप्रयोग". Review of Economic Studies. 47 (1): 239–253. JSTOR 2297111.
  4. Fahrmeir, Ludwig; Kneib, Thomas; Lang, Stefan; Marx, Brian (2013). Regression : Models, Methods and Applications. Berlin: Springer. pp. 663–664. ISBN 978-3-642-34332-2.
  5. Kennedy, Peter (1998). अर्थमिति के लिए एक मार्गदर्शिका (Fourth ed.). Cambridge: MIT Press. p. 68. ISBN 0-262-11235-3.
  6. Lehmann and Casella, eq. (2.5.16).
  7. Davidson, Russel; MacKinnon, James G. (1983). "लैग्रेंज मल्टीप्लायर परीक्षण के वैकल्पिक रूपों के छोटे नमूना गुण". Economics Letters. 12 (3–4): 269–275. doi:10.1016/0165-1765(83)90048-4.
  8. Engle, Robert F. (1983). "Wald, Likelihood Ratio, and Lagrange Multiplier Tests in Econometrics". In Intriligator, M. D.; Griliches, Z. (eds.). अर्थमिति की पुस्तिका. Vol. II. Elsevier. pp. 796–801. ISBN 978-0-444-86185-6.
  9. Burzykowski, Andrzej Gałecki, Tomasz (2013). Linear mixed-effects models using R : a step-by-step approach. New York, NY: Springer. ISBN 1461438993.{{cite book}}: CS1 maint: multiple names: authors list (link)
  10. Taboga, Marco. "संभाव्यता सिद्धांत और गणितीय सांख्यिकी पर व्याख्यान". statlect.com. Retrieved 31 May 2022.
  11. Cook, T. D.; DeMets, D. L., eds. (2007). नैदानिक ​​​​परीक्षणों के लिए सांख्यिकीय तरीकों का परिचय. Chapman and Hall. pp. 296–297. ISBN 1-58488-027-9. {{cite book}}: zero width space character in |title= at position 9 (help)
  12. Vandaele, Walter (1981). "एफ परीक्षण के रूप में वाल्ड, संभावना अनुपात और लैग्रेंज गुणक परीक्षण". Economics Letters. 8 (4): 361–365. doi:10.1016/0165-1765(81)90026-4.


अग्रिम पठन

  • Buse, A. (1982). "The Likelihood Ratio, Wald, and Lagrange Multiplier Tests: An Expository Note". The American Statistician. 36 (3a): 153–157. doi:10.1080/00031305.1982.10482817.
  • Godfrey, L. G. (1988). "The Lagrange Multiplier Test and Testing for Misspecification : An Extended Analysis". Misspecification Tests in Econometrics. New York: Cambridge University Press. pp. 69–99. ISBN 0-521-26616-5.
  • Rao, C. R. (2005). "Score Test: Historical Review and Recent Developments". Advances in Ranking and Selection, Multiple Comparisons, and Reliability. Boston: Birkhäuser. pp. 3–20. ISBN 978-0-8176-3232-8.