गणित में क्रम संरचनाओं की सूची: Difference between revisions
From Vigyanwiki
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
गणित में, विशेष रूप से '''क्रम सिद्धांत में''', कई भिन्न-भिन्न प्रकार के क्रमबद्ध समुच्चय का अध्ययन किया गया है। | गणित में, विशेष रूप से '''क्रम सिद्धांत में''', कई भिन्न-भिन्न प्रकार के क्रमबद्ध समुच्चय का अध्ययन किया गया है। | ||
वे सम्मिलित करते हैं: | वे सम्मिलित करते हैं,जो इस प्रकार है:- | ||
* चक्रीय क्रम, वह क्रम जिसमें तत्वों के त्रिक या तो दक्षिणावर्त या वामावर्त होते हैं। | * चक्रीय क्रम, वह क्रम है, जिसमें तत्वों के त्रिक या तो दक्षिणावर्त या वामावर्त होते हैं। | ||
* [[जाली (आदेश)|लैटिस (क्रम)]], आंशिक क्रम जिसमें तत्वों की प्रत्येक जोड़ी में सबसे बड़ी निचली सीमा और सबसे कम ऊपरी सीमा होती है। कई भिन्न-भिन्न प्रकार | * [[जाली (आदेश)|लैटिस (क्रम)]], वह आंशिक क्रम जिसमें तत्वों की प्रत्येक जोड़ी में सबसे बड़ी निचली सीमा और सबसे कम ऊपरी सीमा होती है। कई भिन्न-भिन्न प्रकार के लैटिस का अध्ययन किया गया है; सूची के लिए लैटिस का मानचित्र देखें। | ||
* आंशिक रूप से क्रम किए गए समुच्चय (या पॉ समुच्चय), जिसमें कुछ जोड़े तुलनीय हैं और अन्य नहीं हो सकते हैं। | * आंशिक रूप से क्रम किए गए समुच्चय (या पॉ समुच्चय), जिसमें कुछ जोड़े तुलनीय हैं और अन्य नहीं हो सकते हैं। | ||
* [[पूर्व आदेश|पूर्व क्रम]], संबंधों की अनुमति | * [[पूर्व आदेश|पूर्व क्रम]], संबंधों की अनुमति प्रदान करने वाले आंशिक क्रमों का सामान्यीकरण (समतुल्यता के रूप में प्रदर्शित किया गया है और अतुलनीयताओं से भिन्न है) हो सकते हैं। | ||
* अर्धक्रम, संख्यात्मक मानों की तुलना द्वारा निर्धारित आंशिक क्रम, जिसमें एक-दूसरे के अधिक निकट वाले मान अतुलनीय होते हैं; कुछ प्रतिबंधों के साथ आंशिक क्रमों का उप सदस्य है। | * अर्धक्रम, संख्यात्मक मानों की तुलना द्वारा निर्धारित आंशिक क्रम, जिसमें एक-दूसरे के अधिक निकट वाले मान अतुलनीय होते हैं; कुछ प्रतिबंधों के साथ आंशिक क्रमों का उप सदस्य होते है। | ||
* कुल क्रम, क्रम जो निर्दिष्ट करते हैं, प्रत्येक दो भिन्न-भिन्न तत्वों के लिए, कौन सा दूसरे से कम है। | * कुल क्रम, क्रम जो निर्दिष्ट करते हैं, प्रत्येक दो भिन्न-भिन्न तत्वों के लिए, कौन सा दूसरे से कम है। | ||
* विषम क्रम, संबंधों की अनुमति | * विषम क्रम, संबंधों की अनुमति प्रदान करने वाले कुल क्रमों का सामान्यीकरण (या तो समतुल्य के रूप में या समिष्ट विषम क्रमों में, संक्रमणीय अतुलनीयताओं के रूप में प्रदर्शित किया गया है) हो सकते हैं। | ||
* [[ अच्छी तरह से आदेश |वेल क्रम]], कुल क्रम जिसमें प्रत्येक अरिक्त उपसमुच्चय में कम से कम तत्व होता है। | * [[ अच्छी तरह से आदेश |वेल क्रम]], कुल क्रम जिसमें प्रत्येक अरिक्त उपसमुच्चय में कम से कम तत्व होता है। | ||
* [[अच्छी तरह से अर्ध-आदेश|वेल-क्वासी-क्रमिक]], प्री-क्रम का वर्ग जो वेल-क्रम को सामान्य बनाता है। | * [[अच्छी तरह से अर्ध-आदेश|वेल-क्वासी-क्रमिक]], प्री-क्रम का वर्ग जो वेल-क्रम को सामान्य बनाता है। |
Revision as of 06:32, 10 August 2023
गणित में, विशेष रूप से क्रम सिद्धांत में, कई भिन्न-भिन्न प्रकार के क्रमबद्ध समुच्चय का अध्ययन किया गया है।
वे सम्मिलित करते हैं,जो इस प्रकार है:-
- चक्रीय क्रम, वह क्रम है, जिसमें तत्वों के त्रिक या तो दक्षिणावर्त या वामावर्त होते हैं।
- लैटिस (क्रम), वह आंशिक क्रम जिसमें तत्वों की प्रत्येक जोड़ी में सबसे बड़ी निचली सीमा और सबसे कम ऊपरी सीमा होती है। कई भिन्न-भिन्न प्रकार के लैटिस का अध्ययन किया गया है; सूची के लिए लैटिस का मानचित्र देखें।
- आंशिक रूप से क्रम किए गए समुच्चय (या पॉ समुच्चय), जिसमें कुछ जोड़े तुलनीय हैं और अन्य नहीं हो सकते हैं।
- पूर्व क्रम, संबंधों की अनुमति प्रदान करने वाले आंशिक क्रमों का सामान्यीकरण (समतुल्यता के रूप में प्रदर्शित किया गया है और अतुलनीयताओं से भिन्न है) हो सकते हैं।
- अर्धक्रम, संख्यात्मक मानों की तुलना द्वारा निर्धारित आंशिक क्रम, जिसमें एक-दूसरे के अधिक निकट वाले मान अतुलनीय होते हैं; कुछ प्रतिबंधों के साथ आंशिक क्रमों का उप सदस्य होते है।
- कुल क्रम, क्रम जो निर्दिष्ट करते हैं, प्रत्येक दो भिन्न-भिन्न तत्वों के लिए, कौन सा दूसरे से कम है।
- विषम क्रम, संबंधों की अनुमति प्रदान करने वाले कुल क्रमों का सामान्यीकरण (या तो समतुल्य के रूप में या समिष्ट विषम क्रमों में, संक्रमणीय अतुलनीयताओं के रूप में प्रदर्शित किया गया है) हो सकते हैं।
- वेल क्रम, कुल क्रम जिसमें प्रत्येक अरिक्त उपसमुच्चय में कम से कम तत्व होता है।
- वेल-क्वासी-क्रमिक, प्री-क्रम का वर्ग जो वेल-क्रम को सामान्य बनाता है।
यह भी देखें
श्रेणी:गणित-संबंधी सूचियाँ
श्रेणी:क्रम सिद्धांत