मैट्रिक्स फ़ील्ड: Difference between revisions

From Vigyanwiki
(Created page with "{{More citations needed|date=July 2022}} अमूर्त बीजगणित में, एक मैट्रिक्स फ़ील्ड एक फ़ील्...")
 
No edit summary
Line 1: Line 1:
{{More citations needed|date=July 2022}}
[[अमूर्त बीजगणित]] में, मैट्रिक्स फ़ील्ड एक [[फ़ील्ड (गणित)]] है जिसमें तत्वों के रूप में [[मैट्रिक्स (गणित)]] होता है। फ़ील्ड (गणित) में फ़ील्ड दो प्रकार के होते हैं: परिमित फ़ील्ड और [[अनंत सेट]] फ़ील्ड। विभिन्न विशेषताओं (बीजगणित) और [[प्रमुखता]] के मैट्रिक्स फ़ील्ड के कई उदाहरण हैं।
[[अमूर्त बीजगणित]] में, एक मैट्रिक्स फ़ील्ड एक [[फ़ील्ड (गणित)]] है जिसमें तत्वों के रूप में [[मैट्रिक्स (गणित)]] होता है। फ़ील्ड (गणित) में फ़ील्ड दो प्रकार के होते हैं: परिमित फ़ील्ड और [[अनंत सेट]] फ़ील्ड। विभिन्न विशेषताओं (बीजगणित) और [[प्रमुखता]] के मैट्रिक्स फ़ील्ड के कई उदाहरण हैं।


प्रत्येक [[अभाज्य संख्या]] ''पी'' के लिए कार्डिनैलिटी ''पी'' का एक सीमित मैट्रिक्स क्षेत्र है। किसी भी अभाज्य संख्या ''पी'' के लिए विशेषता ''पी'' के कई परिमित मैट्रिक्स फ़ील्ड पा सकते हैं। सामान्य तौर पर, प्रत्येक [[परिमित क्षेत्र]] के अनुरूप एक मैट्रिक्स क्षेत्र होता है। चूँकि समान कार्डिनैलिटी के कोई भी दो परिमित क्षेत्र [[समरूपी]] होते हैं, परिमित क्षेत्र के तत्वों को आव्यूहों द्वारा दर्शाया जा सकता है।<ref>{{cite book| last=Lidl | first=Rudolf | last2=Niederreiter | first2=Harald | author2-link = Harald Niederreiter | title=परिमित क्षेत्रों और उनके अनुप्रयोगों का परिचय| url=https://archive.org/details/introductiontofi0000lidl | url-access=registration | edition=1st | year=1986 | publisher=[[Cambridge University Press]] | isbn=0-521-30706-6 }}</ref>
प्रत्येक [[अभाज्य संख्या]] ''पी'' के लिए कार्डिनैलिटी ''पी'' का सीमित मैट्रिक्स क्षेत्र है। किसी भी अभाज्य संख्या ''पी'' के लिए विशेषता ''पी'' के कई परिमित मैट्रिक्स फ़ील्ड पा सकते हैं। सामान्य तौर पर, प्रत्येक [[परिमित क्षेत्र]] के अनुरूप मैट्रिक्स क्षेत्र होता है। चूँकि समान कार्डिनैलिटी के कोई भी दो परिमित क्षेत्र [[समरूपी]] होते हैं, परिमित क्षेत्र के तत्वों को आव्यूहों द्वारा दर्शाया जा सकता है।<ref>{{cite book| last=Lidl | first=Rudolf | last2=Niederreiter | first2=Harald | author2-link = Harald Niederreiter | title=परिमित क्षेत्रों और उनके अनुप्रयोगों का परिचय| url=https://archive.org/details/introductiontofi0000lidl | url-access=registration | edition=1st | year=1986 | publisher=[[Cambridge University Press]] | isbn=0-521-30706-6 }}</ref>
[[मैट्रिक्स गुणन]] के सामान्य मामले के विपरीत, मैट्रिक्स फ़ील्ड में गुणन क्रमविनिमेय गुण है (यदि सामान्य संचालन का उपयोग किया जाता है)। चूंकि आव्यूहों के जोड़ और गुणन में गुणन की क्रमविनिमेयता और गुणक व्युत्क्रमों के अस्तित्व को छोड़कर क्षेत्र संचालन के लिए सभी आवश्यक गुण होते हैं, इसलिए यह सत्यापित करने का एक तरीका है कि क्या आव्यूहों का एक [[शिनाख्त सांचा]] योग और गुणन के सामान्य संचालन वाला एक क्षेत्र है या नहीं
[[मैट्रिक्स गुणन]] के सामान्य मामले के विपरीत, मैट्रिक्स फ़ील्ड में गुणन क्रमविनिमेय गुण है (यदि सामान्य संचालन का उपयोग किया जाता है)। चूंकि आव्यूहों के जोड़ और गुणन में गुणन की क्रमविनिमेयता और गुणक व्युत्क्रमों के अस्तित्व को छोड़कर क्षेत्र संचालन के लिए सभी आवश्यक गुण होते हैं, इसलिए यह सत्यापित करने का तरीका है कि क्या आव्यूहों का [[शिनाख्त सांचा]] योग और गुणन के सामान्य संचालन वाला क्षेत्र है या नहीं


# सेट जोड़, घटाव और गुणा के तहत क्लोजर (गणित) है;
# सेट जोड़, घटाव और गुणा के तहत क्लोजर (गणित) है;
# मैट्रिक्स जोड़ के लिए तटस्थ तत्व (अर्थात, [[शून्य मैट्रिक्स]]) शामिल है;
# मैट्रिक्स जोड़ के लिए तटस्थ तत्व (अर्थात, [[शून्य मैट्रिक्स]]) शामिल है;
# गुणन क्रमविनिमेय है;
# गुणन क्रमविनिमेय है;
# सेट में एक गुणात्मक [[पहचान तत्व]] शामिल है (ध्यान दें कि यह पहचान मैट्रिक्स होना जरूरी नहीं है); और
# सेट में गुणात्मक [[पहचान तत्व]] शामिल है (ध्यान दें कि यह पहचान मैट्रिक्स होना जरूरी नहीं है); और
# प्रत्येक मैट्रिक्स जो शून्य मैट्रिक्स नहीं है, उसमें गुणात्मक व्युत्क्रम होता है।
# प्रत्येक मैट्रिक्स जो शून्य मैट्रिक्स नहीं है, उसमें गुणात्मक व्युत्क्रम होता है।



Revision as of 12:21, 21 July 2023

अमूर्त बीजगणित में, मैट्रिक्स फ़ील्ड एक फ़ील्ड (गणित) है जिसमें तत्वों के रूप में मैट्रिक्स (गणित) होता है। फ़ील्ड (गणित) में फ़ील्ड दो प्रकार के होते हैं: परिमित फ़ील्ड और अनंत सेट फ़ील्ड। विभिन्न विशेषताओं (बीजगणित) और प्रमुखता के मैट्रिक्स फ़ील्ड के कई उदाहरण हैं।

प्रत्येक अभाज्य संख्या पी के लिए कार्डिनैलिटी पी का सीमित मैट्रिक्स क्षेत्र है। किसी भी अभाज्य संख्या पी के लिए विशेषता पी के कई परिमित मैट्रिक्स फ़ील्ड पा सकते हैं। सामान्य तौर पर, प्रत्येक परिमित क्षेत्र के अनुरूप मैट्रिक्स क्षेत्र होता है। चूँकि समान कार्डिनैलिटी के कोई भी दो परिमित क्षेत्र समरूपी होते हैं, परिमित क्षेत्र के तत्वों को आव्यूहों द्वारा दर्शाया जा सकता है।[1] मैट्रिक्स गुणन के सामान्य मामले के विपरीत, मैट्रिक्स फ़ील्ड में गुणन क्रमविनिमेय गुण है (यदि सामान्य संचालन का उपयोग किया जाता है)। चूंकि आव्यूहों के जोड़ और गुणन में गुणन की क्रमविनिमेयता और गुणक व्युत्क्रमों के अस्तित्व को छोड़कर क्षेत्र संचालन के लिए सभी आवश्यक गुण होते हैं, इसलिए यह सत्यापित करने का तरीका है कि क्या आव्यूहों का शिनाख्त सांचा योग और गुणन के सामान्य संचालन वाला क्षेत्र है या नहीं

  1. सेट जोड़, घटाव और गुणा के तहत क्लोजर (गणित) है;
  2. मैट्रिक्स जोड़ के लिए तटस्थ तत्व (अर्थात, शून्य मैट्रिक्स) शामिल है;
  3. गुणन क्रमविनिमेय है;
  4. सेट में गुणात्मक पहचान तत्व शामिल है (ध्यान दें कि यह पहचान मैट्रिक्स होना जरूरी नहीं है); और
  5. प्रत्येक मैट्रिक्स जो शून्य मैट्रिक्स नहीं है, उसमें गुणात्मक व्युत्क्रम होता है।

उदाहरण

1. फॉर्म के सभी n × n आव्यूहों का सेट (गणित) लें

साथ – अर्थात्, पहली पंक्ति को छोड़कर, जो समान वास्तविक संख्या स्थिरांक से भरी होती है, शून्य से भरी आव्यूह . ये आव्यूह गुणन के लिए क्रमविनिमेय हैं:

.

गुणात्मक पहचान है .

मैट्रिक्स का गुणनात्मक व्युत्क्रम साथ द्वारा दिया गया है यह देखना आसान है कि यह मैट्रिक्स फ़ील्ड मानचित्र के अंतर्गत वास्तविक संख्याओं के फ़ील्ड के समरूपी है .

2. प्रपत्र के आव्यूहों का समुच्चय

कहाँ और वास्तविक संख्याओं के क्षेत्र में सीमा, एक मैट्रिक्स फ़ील्ड बनाता है जो फ़ील्ड के लिए समरूपता है सम्मिश्र संख्या का: जबकि, संख्या की सम्मिश्र संख्या से मेल खाती है सम्मिश्र संख्या से मेल खाता है. तो संख्या , उदाहरण के लिए, के रूप में दर्शाया जाएगा

कोई भी इसे आसानी से सत्यापित कर सकता है :

और साथ ही, मैट्रिक्स घातांक की गणना करके, यूलर की पहचान|यूलर की पहचान, यह सही है:

.

यह भी देखें

संदर्भ

  1. Lidl, Rudolf; Niederreiter, Harald (1986). परिमित क्षेत्रों और उनके अनुप्रयोगों का परिचय (1st ed.). Cambridge University Press. ISBN 0-521-30706-6.