मैट्रिक्स फ़ील्ड: Difference between revisions

From Vigyanwiki
No edit summary
Line 132: Line 132:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 19/07/2023]]
[[Category:Created On 19/07/2023]]
[[Category:Vigyan Ready]]

Revision as of 14:50, 14 August 2023

अमूर्त बीजगणित में, आव्युह क्षेत्र एक क्षेत्र (गणित) है जिसमें अवयव के रूप में आव्युह (गणित) होता है। क्षेत्र (गणित) सिद्धांत में क्षेत्र दो प्रकार के होते हैं: परिमित क्षेत्र और अनंत समुच्चय क्षेत्र है। विभिन्न विशेषताओं (बीजगणित) और प्रमुखता के आव्युह क्षेत्र के अनेक उदाहरण हैं।

प्रत्येक अभाज्य संख्या p के लिए कार्डिनैलिटी p का सीमित आव्युह क्षेत्र है। किसी भी अभाज्य संख्या p के लिए विशेषता p के अनेक परिमित आव्युह क्षेत्र प्राप्त कर सकते हैं। सामान्यतः, प्रत्येक परिमित क्षेत्र के अनुरूप आव्युह क्षेत्र होता है। चूँकि समान कार्डिनैलिटी के कोई भी दो परिमित क्षेत्र समरूपी होते हैं, परिमित क्षेत्र के अवयव को आव्यूहों द्वारा दर्शाया जा सकता है।[1]

आव्युह गुणन की सामान्य स्थिति के विपरीत, आव्युह क्षेत्र में गुणन क्रमविनिमेय गुण है (यदि सामान्य संचालन का उपयोग किया जाता है)। चूंकि आव्यूहों के जोड़ और गुणन में गुणन की क्रमविनिमेयता और गुणक व्युत्क्रमों के अस्तित्व को छोड़कर क्षेत्र संचालन के लिए सभी आवश्यक गुण होते हैं, इसलिए यह सत्यापित करने की विधि है कि क्या आव्यूहों का समुच्चय आव्युह योग और गुणन के सामान्य संचालन वाला क्षेत्र है या नहीं

  1. समुच्चय जोड़, घटाव और गुणा के अनुसार क्लोजर (गणित) है;
  2. आव्युह जोड़ के लिए तटस्थ अवयव (अर्थात, शून्य आव्युह) सम्मिलित है;
  3. गुणन क्रमविनिमेय है;
  4. समुच्चय में गुणात्मक समानता अवयव सम्मिलित है (ध्यान दें कि यह समानता आव्युह होना आवश्यक नहीं है); और
  5. प्रत्येक आव्युह जो की शून्य आव्युह नहीं है, उसमें गुणात्मक व्युत्क्रम होता है।

उदाहरण

1. रूप के सभी n × n आव्यूहों का समुच्चय (गणित) लें

यदि के साथ – अर्थात्, प्रथम पंक्ति को छोड़कर शून्य से भरी आव्यूह, जो समान वास्तविक संख्या स्थिरांक से भरी होती है, ये आव्यूह गुणन के लिए क्रमविनिमेय हैं:

.

गुणात्मक समानता है .

के साथ आव्युह का गुणनात्मक व्युत्क्रम द्वारा दिया गया है

यह देखना सरल है कि यह आव्युह क्षेत्र मानचित्र के अंतर्गत वास्तविक संख्याओं के क्षेत्र के समरूपी है.

2. रूप के आव्यूहों का समुच्चय

जहाँ और की सीमा वास्तविक संख्याओं के क्षेत्र पर होती है, एक आव्युह क्षेत्र बनाता है जो सम्मिश्र संख्या का क्षेत्र के लिए आइसोमोर्फिक है : , संख्या की सम्मिश्र संख्या से मेल खाती है जबकि सम्मिश्र संख्या से मेल खाता है। तब, उदाहरण के लिए, संख्या , के रूप में दर्शाया जाएगा

कोई भी इसे सरल से सत्यापित कर सकता है :

और साथ ही, आव्युह घातांक की गणना करके, यूलर की समानता, मान्य है:

.

यह भी देखें

संदर्भ

  1. Lidl, Rudolf; Niederreiter, Harald (1986). परिमित क्षेत्रों और उनके अनुप्रयोगों का परिचय (1st ed.). Cambridge University Press. ISBN 0-521-30706-6.