अनुवर्ती सीमा: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|The limit of some subsequence}} | {{Short description|The limit of some subsequence}} | ||
गणित में, किसी [[अनुक्रम]] की '''अनुवर्ती सीमा''' कुछ अनुवर्ती की [[अनुक्रम की सीमा]] होती है।<ref name="ross">{{cite book |last1=Ross |first1=Kenneth A. |title=Elementary Analysis: The Theory of Calculus |date=3 March 1980 |publisher=Springer |isbn=9780387904597 |url=https://books.google.com/books?id=5JxHZNpMq3AC |access-date=5 April 2023}}</ref> प्रत्येक अनुवर्ती सीमा एक क्लस्टर बिंदु है, लेकिन इसके विपरीत नहीं है। प्रथम-गणनीय रिक्त समष्टि में, दोनों अवधारणाएँ मेल खाती हैं। | गणित में, किसी [[अनुक्रम]] की '''अनुवर्ती सीमा''' कुछ अनुवर्ती की [[अनुक्रम की सीमा]] होती है।<ref name="ross">{{cite book |last1=Ross |first1=Kenneth A. |title=Elementary Analysis: The Theory of Calculus |date=3 March 1980 |publisher=Springer |isbn=9780387904597 |url=https://books.google.com/books?id=5JxHZNpMq3AC |access-date=5 April 2023}}</ref> प्रत्येक अनुवर्ती सीमा एक क्लस्टर बिंदु है, लेकिन इसके विपरीत नहीं है। प्रथम-गणनीय रिक्त समष्टि में, दोनों अवधारणाएँ मेल खाती हैं। | ||
Line 24: | Line 23: | ||
==संदर्भ== | ==संदर्भ== | ||
{{reflist}} | {{reflist}} | ||
[[Category: सीमाएँ (गणित)]] [[Category: अनुक्रम और श्रृंखला]] | [[Category: सीमाएँ (गणित)]] [[Category: अनुक्रम और श्रृंखला]] | ||
Revision as of 13:04, 8 August 2023
गणित में, किसी अनुक्रम की अनुवर्ती सीमा कुछ अनुवर्ती की अनुक्रम की सीमा होती है।[1] प्रत्येक अनुवर्ती सीमा एक क्लस्टर बिंदु है, लेकिन इसके विपरीत नहीं है। प्रथम-गणनीय रिक्त समष्टि में, दोनों अवधारणाएँ मेल खाती हैं।
एक टोपोलॉजिकल समष्टि में, यदि प्रत्येक अनुवर्ती की एक ही बिंदु पर एक अनुवर्ती सीमा होती है, तो मूल अनुक्रम भी उस सीमा तक परिवर्तित हो जाता है। इसे अभिसरण की अधिक सामान्यीकृत धारणाओं में सम्मिलित करने की आवश्यकता नहीं है, जैसे कि लगभग हर जगह अभिसरण की जगह है।
किसी अनुक्रम की सभी अनुवर्ती सीमाओं के समुच्चय के सर्वोच्च को सीमा श्रेष्ठ या लिमसुप कहा जाता है। इसी प्रकार, ऐसे समुच्चय के अनंत को सीमा अवर, या सीमित कहा जाता है। सीमा श्रेष्ठ और सीमा निम्न देखें।[1]
यदि एक मापीय (मीट्रिक) समष्टि है और एक कॉची अनुक्रम है जैसे कि कुछ में परिवर्तित होने वाला अनुवर्ती है, तो अनुक्रम भी में परिवर्तित हो जाता है।
यह भी देखें
- अभिसरण फिल्टर
- सीमाओं की सूची
- अनुक्रम की सीमा
- श्रेष्ठ को सीमित करें और निम्न को सीमित करें
- नेट (गणित)
- टोपोलॉजी में फ़िल्टर#अनुवर्ती परिणामों के अधीनता एनालॉग
संदर्भ
- ↑ 1.0 1.1 Ross, Kenneth A. (3 March 1980). Elementary Analysis: The Theory of Calculus. Springer. ISBN 9780387904597. Retrieved 5 April 2023.