प्रसंभाव्यता अस्थिरता: Difference between revisions

From Vigyanwiki
Line 86: Line 86:
Pages 933-949 </ref> यह पाया गया है कि लॉग-अस्थिरता किसी भी उचित समय पैमाने पर क्रम <math>H = 0.1</math> के हर्स्ट घातांक के साथ एक भिन्नात्मक ब्राउनियन गति के रूप में व्यवहार करती है। इसके कारण भिन्नात्मक प्रसंभाव्यता अस्थिरता (एफएसवी) मॉडल को अपनाया गया,<ref>Fabienne Comte and Eric Renault (1998). Long memory in continuous-time stochastic volatility models. Math. Finance, 8(4), 291–323</ref> जिससे समग्र अमतल एफएसवी (आरएफएसवी) तैयार हुआ, जहां "असमतल" का अर्थ उस <math>H < 1/2</math> को उजागर करना है। आरएफएसवी (RFSV) मॉडल समय श्रृंखला डेटा के अनुरूप है, जो वास्तविक अस्थिरता के बेहतर पूर्वानुमान की अनुमति देता है।<ref name="GJR" />
Pages 933-949 </ref> यह पाया गया है कि लॉग-अस्थिरता किसी भी उचित समय पैमाने पर क्रम <math>H = 0.1</math> के हर्स्ट घातांक के साथ एक भिन्नात्मक ब्राउनियन गति के रूप में व्यवहार करती है। इसके कारण भिन्नात्मक प्रसंभाव्यता अस्थिरता (एफएसवी) मॉडल को अपनाया गया,<ref>Fabienne Comte and Eric Renault (1998). Long memory in continuous-time stochastic volatility models. Math. Finance, 8(4), 291–323</ref> जिससे समग्र अमतल एफएसवी (आरएफएसवी) तैयार हुआ, जहां "असमतल" का अर्थ उस <math>H < 1/2</math> को उजागर करना है। आरएफएसवी (RFSV) मॉडल समय श्रृंखला डेटा के अनुरूप है, जो वास्तविक अस्थिरता के बेहतर पूर्वानुमान की अनुमति देता है।<ref name="GJR" />
==अंशांकन और अनुमान==
==अंशांकन और अनुमान==
एक बार एक विशेष एसवी मॉडल चुने जाने के बाद, इसे मौजूदा बाजार डेटा के अनुसार कैलिब्रेट किया जाना चाहिए। कैलिब्रेशन मॉडल मापदंडों के सेट की पहचान करने की प्रक्रिया है जो देखे गए डेटा को दिए जाने की सबसे अधिक संभावना है। एक लोकप्रिय तकनीक अधिकतम संभावना (एमएलई) का उपयोग करना है। उदाहरण के लिए, हेस्टन मॉडल में, मॉडल मापदंडों का सेट <math>\Psi_0 = \{\omega, \theta, \xi, \rho\} \,</math> ऐतिहासिक अंतर्निहित सुरक्षा कीमतों के अवलोकन के लिए पॉवेल [[ निर्देशित सेट ]] विधि [http://www.library.cornell.edu/nr/bookcpdf.html] जैसे एमएलई एल्गोरिदम को लागू करने का अनुमान लगाया जा सकता है।
एक बार विशेष एसवी (SV) मॉडल चुने जाने के बाद, इसे मौजूदा बाजार डेटा के अनुसार अंशांकित किया जाना चाहिए। अंशांकन मॉडल मापदंडों के समुच्चय की पहचान करने की प्रक्रिया है जो देखे गए डेटा को दिए जाने की सबसे अधिक संभावना है। एक लोकप्रिय तकनीक अधिकतम संभावना अनुमान (एमएलई) का उपयोग करना है। उदाहरण के लिए, हेस्टन मॉडल में, मॉडल मापदंडों के समुच्चय <math>\Psi_0 = \{\omega, \theta, \xi, \rho\} \,</math> का अनुमान ऐतिहासिक अंतर्निहित प्रतिभूति मूल्यों के अवलोकन के लिए पॉवेल [[ निर्देशित सेट |डायरेक्टेड सेट]] विधि[http://www.library.cornell.edu/nr/bookcpdf.html] जैसे एमएलई (MLE) एल्गोरिदम को लागू करके लगाया जा सकता है।  


इस मामले में, आप एक अनुमान के साथ शुरुआत करते हैं <math>\Psi_0 \,</math>, परिणामी मॉडल पर ऐतिहासिक मूल्य डेटा लागू करते समय अवशिष्ट त्रुटियों की गणना करें, और फिर समायोजित करें <math>\Psi \,</math> इन त्रुटियों को कम करने का प्रयास करना। एक बार अंशांकन निष्पादित हो जाने के बाद, मॉडल को समय-समय पर पुन: अंशांकित करना मानक अभ्यास है।
इस स्थिति में, आप <math>\Psi_0 \,</math> के अनुमान से प्रारम्भ करते हैं, परिणामी मॉडल पर ऐतिहासिक मूल्य डेटा लागू करते समय अवशिष्ट त्रुटियों की गणना करते हैं, और फिर इन त्रुटियों को कम करने का प्रयास करने के लिए <math>\Psi \,</math> को समायोजित करते हैं। एक बार अंशांकन निष्पादित हो जाने के बाद, मॉडल को समय-समय पर पुन: अंशांकित करना मानक अभ्यास है।  


अंशांकन का एक विकल्प सांख्यिकीय अनुमान है, जिससे पैरामीटर अनिश्चितता का हिसाब लगाया जाता है। कई बारंबारतावादी और बायेसियन तरीकों को प्रस्तावित और कार्यान्वित किया गया है, विशेष रूप से उपर्युक्त मॉडलों के सबसेट के लिए। निम्नलिखित सूची में ओपन सोर्स सांख्यिकीय सॉफ़्टवेयर [[आर (प्रोग्रामिंग भाषा)]] के लिए एक्सटेंशन पैकेज शामिल हैं जिन्हें विशेष रूप से हेटेरोस्केडैस्टिसिटी अनुमान के लिए डिज़ाइन किया गया है। पहले तीन नियतात्मक अस्थिरता वाले GARCH-प्रकार के मॉडल को पूरा करते हैं; चौथा स्टोकेस्टिक अस्थिरता अनुमान से संबंधित है।
अंशांकन का विकल्प सांख्यिकीय अनुमान है, जिससे मापदंड अनिश्चितता की गणना की जाती है। कई बारंबारतावादी और बायेसियन विधियों को प्रस्तावित और कार्यान्वित किया गया है, विशेष रूप से उपर्युक्त मॉडलों के उपसमुच्चय के लिए। निम्नलिखित सूची में ओपन सोर्स सांख्यिकीय सॉफ़्टवेयर [[आर (प्रोग्रामिंग भाषा)|R]] के लिए एक्सटेंशन पैकेज सम्मिलित हैं जिन्हें विशेष रूप से हेटेरोस्केडैस्टिसिटी अनुमान के लिए डिज़ाइन किया गया है। पहले तीन नियतात्मक अस्थिरता वाले जीएआरसीएच-प्रकार के मॉडल को पूरा करते हैं चौथा प्रसंभाव्यता अस्थिरता अनुमान से संबंधित है।  
* [https://cran.r-project.org/web/packages/rugarch/index.html rugarch]: ARFIMA, इन-मीन, बाहरी रजिस्ट्रार और विभिन्न GARCH फ्लेवर, फिट, पूर्वानुमान, सिमुलेशन, अनुमान और प्लॉटिंग के तरीकों के साथ।<ref>{{cite web|last1=Ghalanos|first1=Alexios|title=rugarch: Univariate GARCH models.|url=https://cran.r-project.org/web/packages/rugarch/index.html}}</ref>
* [https://cran.r-project.org/web/packages/rugarch/index.html रूगार्च (rugarch)]- एआरएफआईएमए (ARFIMA), माध्य-में, बाहरी प्रतिगामी और विभिन्न जीएआरसीएच फ्लेवर्स, फिट, पूर्वानुमान, अनुरूपण, अनुमान और प्लॉटिंग के तरीकों के साथ।<ref>{{cite web|last1=Ghalanos|first1=Alexios|title=rugarch: Univariate GARCH models.|url=https://cran.r-project.org/web/packages/rugarch/index.html}}</ref>
* [https://cran.r-project.org/web/packages/fGarch/index.html fGarch]: वित्तीय इंजीनियरिंग और कम्प्यूटेशनल वित्त पढ़ाने के लिए Rmetrics वातावरण का हिस्सा।
* [https://cran.r-project.org/web/packages/fGarch/index.html एफजीएआरसीएच (fGarch)]- "वित्तीय इंजीनियरिंग और कम्प्यूटेशनल वित्त" पढ़ाने के लिए आरमैट्रिक्स परिवेश का भाग।
* [https://cran.r-project.org/web/packages/bayesGARCH/index.html BayesGARCH]: स्टूडेंट के इनोवेशन के साथ GARCH(1,1) मॉडल का बायेसियन अनुमान।<ref>{{cite journal|last1=Ardia|first1=David|last2=Hoogerheide|first2=Lennart F.|title=स्टूडेंट-टी इनोवेशन के साथ GARCH(1,1) मॉडल का बायेसियन अनुमान|journal=The R Journal|date=2010|volume=2|issue=2|pages=41–47|doi=10.32614/RJ-2010-014 |s2cid=17324384 |url=http://journal.r-project.org/archive/2010-2/RJournal_2010-2_Ardia+Hoogerheide.pdf}}</ref>
* [https://cran.r-project.org/web/packages/bayesGARCH/index.html बेयसजीएआरसीएच]- छात्र के नवाचारों के साथ जीएआरसीएच(1,1) मॉडल का बायेसियन अनुमान।<ref>{{cite journal|last1=Ardia|first1=David|last2=Hoogerheide|first2=Lennart F.|title=स्टूडेंट-टी इनोवेशन के साथ GARCH(1,1) मॉडल का बायेसियन अनुमान|journal=The R Journal|date=2010|volume=2|issue=2|pages=41–47|doi=10.32614/RJ-2010-014 |s2cid=17324384 |url=http://journal.r-project.org/archive/2010-2/RJournal_2010-2_Ardia+Hoogerheide.pdf}}</ref>
* [https://cran.r-project.org/web/packages/stochvol/index.html Stochvol]: [[मार्कोव श्रृंखला मोंटे कार्लो]] (एमसीएमसी) विधियों के माध्यम से स्टोकेस्टिक अस्थिरता (एसवी) मॉडल के पूरी तरह से बायेसियन अनुमान के लिए कुशल एल्गोरिदम।<ref>{{cite journal|last1=Kastner|first1=Gregor|title=आर पैकेज स्टोचवोल का उपयोग करके समय श्रृंखला में स्टोचैस्टिक अस्थिरता से निपटना|journal=Journal of Statistical Software|date=2016|volume=69|issue=5|pages=1–30|doi=10.18637/jss.v069.i05|arxiv=1906.12134 |url=https://www.jstatsoft.org/index.php/jss/article/view/v069i05/v69i05.pdf|doi-access=free}}</ref><ref>{{cite journal|last1=Kastner|first1=Gregor|last2=Frühwirth-Schnatter|first2=Sylvia|title=स्टोकेस्टिक अस्थिरता मॉडल के एमसीएमसी अनुमान को बढ़ावा देने के लिए सहायक-पर्याप्तता इंटरविविंग रणनीति (एएसआईएस)|journal=Computational Statistics and Data Analysis|date=2014|volume=79|pages=408–423|doi=10.1016/j.csda.2013.01.002|url=http://epub.wu.ac.at/3771/1/paper.pdf|arxiv=1706.05280|s2cid=17019876 }}</ref>
* [https://cran.r-project.org/web/packages/stochvol/index.html स्टोचवोल]- [[मार्कोव श्रृंखला मोंटे कार्लो]] (एमसीएमसी) विधियों के माध्यम से प्रसंभाव्यता अस्थिरता (एसवी) मॉडल के पूर्ण बायेसियन अनुमान के लिए कुशल एल्गोरिदम।<ref>{{cite journal|last1=Kastner|first1=Gregor|title=आर पैकेज स्टोचवोल का उपयोग करके समय श्रृंखला में स्टोचैस्टिक अस्थिरता से निपटना|journal=Journal of Statistical Software|date=2016|volume=69|issue=5|pages=1–30|doi=10.18637/jss.v069.i05|arxiv=1906.12134 |url=https://www.jstatsoft.org/index.php/jss/article/view/v069i05/v69i05.pdf|doi-access=free}}</ref><ref>{{cite journal|last1=Kastner|first1=Gregor|last2=Frühwirth-Schnatter|first2=Sylvia|title=स्टोकेस्टिक अस्थिरता मॉडल के एमसीएमसी अनुमान को बढ़ावा देने के लिए सहायक-पर्याप्तता इंटरविविंग रणनीति (एएसआईएस)|journal=Computational Statistics and Data Analysis|date=2014|volume=79|pages=408–423|doi=10.1016/j.csda.2013.01.002|url=http://epub.wu.ac.at/3771/1/paper.pdf|arxiv=1706.05280|s2cid=17019876 }}</ref>
समय के साथ कई संख्यात्मक तरीके विकसित किए गए हैं और वित्तीय परिसंपत्तियों के मूल्य निर्धारण को हल किया है जैसे कि स्टोकेस्टिक अस्थिरता मॉडल वाले विकल्प। हाल ही में विकसित एक एप्लिकेशन स्थानीय स्टोकेस्टिक अस्थिरता मॉडल है।<ref>{{Cite journal|last=van der Weijst|first=Roel|date=2017|title=स्टोकेस्टिक स्थानीय अस्थिरता मॉडल के लिए संख्यात्मक समाधान|url=https://repository.tudelft.nl/islandora/object/uuid%3A029cbbc3-d4d4-4582-8be2-e0979e9f6bc3|language=en}}</ref> यह स्थानीय स्टोकेस्टिक अस्थिरता मॉडल विदेशी मुद्रा विकल्प जैसी नई वित्तीय परिसंपत्तियों के मूल्य निर्धारण में बेहतर परिणाम देता है।
समय के साथ कई संख्यात्मक विधियाँ विकसित की गई हैं और वित्तीय परिसंपत्तियों के मूल्य निर्धारण को हल किया है जैसे कि प्रसंभाव्यता अस्थिरता मॉडल वाले विकल्प। हाल ही में विकसित किया गया एप्लिकेशन स्थानीय प्रसंभाव्यता अस्थिरता मॉडल है।<ref>{{Cite journal|last=van der Weijst|first=Roel|date=2017|title=स्टोकेस्टिक स्थानीय अस्थिरता मॉडल के लिए संख्यात्मक समाधान|url=https://repository.tudelft.nl/islandora/object/uuid%3A029cbbc3-d4d4-4582-8be2-e0979e9f6bc3|language=en}}</ref> यह स्थानीय प्रसंभाव्यता अस्थिरता मॉडल विदेशी मुद्रा विकल्प जैसी नई वित्तीय परिसंपत्तियों के मूल्य निर्धारण में बेहतर परिणाम देता है।


पायथन जैसी अन्य भाषाओं में भी वैकल्पिक सांख्यिकीय अनुमान पुस्तकालय हैं:
पायथन जैसी अन्य भाषाओं में वैकल्पिक सांख्यिकीय अनुमान लाइब्रेरीज़ भी हैं-


* [https://pyflux.readthedocs.io/ PyFlux] इसमें GARCH और बीटा-t-EGARCH मॉडल के लिए बायेसियन और शास्त्रीय अनुमान समर्थन शामिल है।
* [https://pyflux.readthedocs.io/ पायफ्लक्स (PyFlux)] में जीएआरसीएच और बीटा-टी-ईजीएआरसीएच मॉडल के लिए बायेसियन और चिरसम्मत अनुमान समर्थन सम्मिलित है।


==यह भी देखें==
==यह भी देखें==
Line 106: Line 106:
*स्थानीय अस्थिरता
*स्थानीय अस्थिरता
*[[मार्कोव स्विचिंग मल्टीफ्रैक्टल]]
*[[मार्कोव स्विचिंग मल्टीफ्रैक्टल]]
*[[जोखिम-तटस्थ उपाय]]
*[[जोखिम-तटस्थ उपाय|आपत्तिपूर्ण-उदासीन उपाय]]
*एसएबीआर अस्थिरता मॉडल
*एसएबीआर अस्थिरता मॉडल
*[[स्टोकेस्टिक अस्थिरता कूद]]
*[[स्टोकेस्टिक अस्थिरता कूद|प्रसंभाव्यता अस्थिरता विषयांतर]]
*[[अधीनस्थ (गणित)]]
*[[अधीनस्थ (गणित)|अधीनस्थ]]
*अस्थिरता (वित्त)
*अस्थिरता
*[[अस्थिरता क्लस्टरिंग]]
*[[अस्थिरता क्लस्टरिंग]]
*अस्थिरता, अनिश्चितता, जटिलता और अस्पष्टता
*अस्थिरता, अनिश्चितता, जटिलता और अस्पष्टता
Line 116: Line 116:
==संदर्भ==
==संदर्भ==
{{Reflist}}
{{Reflist}}
==स्रोत==
==स्रोत==
* [http://www.wilmot.com/detail.cfm?articleID=245 स्टोकेस्टिक अस्थिरता और माध्य-विचरण विश्लेषण]{{Dead link|date=June 2018 |bot=InternetArchiveBot |fix-attempted=no }}, ह्युंगसोक आह्न, पॉल विल्मोट, (2006)।
* [http://www.wilmot.com/detail.cfm?articleID=245 स्टोकेस्टिक अस्थिरता और माध्य-विचरण विश्लेषण]{{Dead link|date=June 2018 |bot=InternetArchiveBot |fix-attempted=no }}, ह्युंगसोक आह्न, पॉल विल्मोट, (2006)।

Revision as of 23:45, 6 August 2023

सांख्यिकी में, प्रसंभाव्यता अस्थिरता मॉडल वे होते हैं जिनमें प्रसंभाव्यता प्रक्रिया की भिन्नता स्वयं यादृच्छिक रूप से वितरित होती है।[1] इनका उपयोग गणितीय वित्त के क्षेत्र में व्युत्पन्न प्रतिभूतियों, जैसे कि विकल्प, का मूल्यांकन करने के लिए किया जाता है। यह नाम अवस्था चर द्वारा शासित एक यादृच्छिक प्रक्रिया के रूप में अंतर्निहित प्रतिभूति की अस्थिरता के मॉडल के निरूपण से लिया गया है। जैसे कि अंतर्निहित प्रतिभूति का मूल्य स्तर, अस्थिरता की कुछ दीर्घकालिक माध्य मान पर पूर्वस्थिति की प्रवृत्ति, और अस्थिरता प्रक्रिया में भिन्नता, अन्य।

ब्लैक-स्कोल्स मॉडल के दोष को हल करने के लिए स्टोकेस्टिक अस्थिरता मॉडल एक दृष्टिकोण है। विशेष रूप से, ब्लैक-स्कोल्स पर आधारित मॉडल मानते हैं कि अंतर्निहित अस्थिरता व्युत्पन्न के जीवन भर स्थिर रहती है, और अंतर्निहित प्रतिभूति के मूल्य स्तर में बदलाव से अप्रभावित रहती है। हालाँकि, ये मॉडल अंतर्निहित अस्थिरता सतह की लंबे समय से देखी गई विशेषताओं जैसे कि अस्थिरता अनुकूल और विषमतलीय की व्याख्या नहीं कर सकते हैं, जो इंगित करता है कि अंतर्निहित अस्थिरता स्ट्राइक मूल्य और समाप्ति के संबंध में भिन्न होती है। यह मानकर कि अंतर्निहित कीमत की अस्थिरता स्थिरांक के स्थान पर प्रसंभाव्यता प्रक्रिया है, व्युत्पन्नों को अधिक सटीक रूप से मॉडल करना संभव हो जाता है।

मात्र ब्लैक-स्कोल्स मॉडल और प्रसंभाव्यता अस्थिरता मॉडल के बीच मध्य क्षेत्र स्थानीय अस्थिरता मॉडल द्वारा आवृत किया गया है। इन मॉडलों में अंतर्निहित अस्थिरता में कोई नई यादृच्छिकता नहीं है लेकिन यह एक स्थिरांक भी नहीं है। स्थानीय अस्थिरता मॉडल में अस्थिरता बिना किसी अतिरिक्त यादृच्छिकता के, अंतर्निहित परिसंपत्ति का असतहीय फलन है। इस परिभाषा के अनुसार, भिन्नता की स्थिर प्रत्यास्थता जैसे मॉडल स्थानीय अस्थिरता मॉडल होंगे, हालांकि उन्हें कभी-कभी प्रसंभाव्यता अस्थिरता मॉडल के रूप में वर्गीकृत किया जाता है। कुछ स्थितियों में वर्गीकरण थोड़ा अस्पष्ट हो सकता है।

प्रसंभाव्यता अस्थिरता के प्रारंभिक इतिहास की कई रूट (अर्थात प्रसंभाव्यता प्रक्रिया, विकल्प मूल्य निर्धारण और अर्थमिति) हैं, इसकी समीक्षा नील शेफर्ड (2005) "प्रसंभाव्यता अस्थिरता," ऑक्सफोर्ड यूनिवर्सिटी प्रेस के अध्याय 1 में की गई है।

मूल मॉडल

सतत अस्थिरता दृष्टिकोण से प्रारम्भ करते हुए, मान लें कि व्युत्पन्न की अंतर्निहित परिसंपत्ति मूल्य ज्यामितीय ब्राउनियन गति के लिए मानक मॉडल का पालन करती है-

जहां , प्रतिभूति मूल्य का सतत प्रक्षेप (अर्थात अपेक्षित लाभ) है , , सतत अस्थिरता है, और , शून्य माध्य और भिन्नता की इकाई दर के साथ मानक वीनर प्रक्रिया है। इस प्रसंभाव्यता अवकल समीकरण का स्पष्ट हल है

अलग-अलग समय पर दिए गए स्टॉक मूल्यों के लिए सतत अस्थिरता का अनुमान लगाने के लिए अधिकतम संभावना अनुमानक है

इसका अपेक्षित मान है।

सतत अस्थिरता वाला यह मूल मॉडल, ब्लैक-स्कोल्स मॉडल और कॉक्स-रॉस-रुबिनस्टीन मॉडल जैसे गैर-प्रसंभाव्यता अस्थिरता मॉडल के लिए प्रारम्भिक बिंदु है।

प्रसंभाव्यता अस्थिरता मॉडल के लिए, सतत स्थिरता को फलन से बदलें जो की भिन्नता को मॉडल करता है। इस भिन्नता फलन को ब्राउनियन गति के रूप में भी मॉडल किया गया है, और का रूप अध्ययन के तहत विशेष SV मॉडल पर निर्भर करता है।

जहां और , के कुछ फलन हैं, और एक अन्य मानक गाऊशियन है जो सतत सहसंबंध कारक के साथ के साथ सहसंबद्ध है।

हेस्टन मॉडल

प्रचलित हेस्टन मॉडल प्रायः उपयोग किये जाने वाले SV मॉडल है, जिसमें भिन्नता प्रक्रिया की यादृच्छिकता भिन्नता के वर्गमूल के रूप में भिन्न होती है। इस स्थिति में, भिन्नता के लिए अवकल समीकरण रूप लेता है-

जहां माध्य दीर्घकालिक भिन्नता है, वह दर है जिस पर भिन्नता अपने दीर्घकालिक माध्य की ओर लौटता है, विचरण प्रक्रिया की अस्थिरता है, और , की तरह, शून्य माध्य और भिन्नता वाली एक गॉसियन है। हालाँकि, और सतत सहसंबंध मान के साथ सहसंबद्ध हैं।

दूसरे शब्दों में, हेस्टन SV मॉडल मानता है कि भिन्नता एक यादृच्छिक प्रक्रिया है

  1. दर पर दीर्घावधि माध्य की ओर लौटने की प्रवृत्ति प्रदर्शित करता है,
  2. अपने स्तर के वर्गमूल के अनुपात में अस्थिरता प्रदर्शित करता है
  3. और जिसकी यादृच्छिकता का स्रोत अंतर्निहित मूल्य प्रक्रियाओं की यादृच्छिकता के साथ सहसंबद्ध (सहसंबंध के साथ) है।

अस्थिरता सतह के कुछ पैरामीट्रिज़ेशन, जैसे 'एसवीआई (SVI)',[2] हेस्टन मॉडल पर आधारित हैं।

सीईवी (CEV) मॉडल

सीईवी मॉडल प्रसंभाव्यता अस्थिरता का परिचय देते हुए अस्थिरता और मूल्य के बीच संबंध का वर्णन करता है-

वैचारिक रूप से, कुछ बाजारों में मूल्यों के बढ़ने पर अस्थिरता बढ़ (उदाहरण के लिए वस्तुएं) जाती है, इसलिए । अन्य बाज़ारों में, मूल्यों के गिरने के साथ-साथ अस्थिरता बढ़ जाती है, जिसे के अनुरूप बनाया गया है।

कुछ लोगों का तर्क है कि क्योंकि सीईवी मॉडल अस्थिरता के लिए अपनी स्वयं की प्रसंभाव्यता प्रक्रिया को सम्मिलित नहीं करता है, यह वास्तव में एक प्रसंभाव्यता अस्थिरता मॉडल नहीं है। इसके स्थान पर, वे इसे स्थानीय अस्थिरता मॉडल कहते हैं।

एसएबीआर (SABR) अस्थिरता मॉडल

एसएबीआर मॉडल (स्टोकेस्टिक अल्फा, बीटा, आरएचओ), हेगन एट अल द्वारा प्रस्तुत किया गया है।[3] प्रसंभाव्यता अस्थिरता के तहत एकल अग्रसर (किसी भी परिसंपत्ति जैसे सूचकांक, ब्याज दर, बांड, मुद्रा या इक्विटी से संबंधित) का वर्णन करता है-

प्रारंभिक मान और वर्तमान अग्रेषित मूल्य और अस्थिरता हैं, जबकि और सहसंबंध गुणांक के साथ दो सहसंबद्ध वीनर प्रक्रियाएं (अर्थात ब्राउनियन गति) हैं। स्थिर पैरामीटर ऐसे हैं कि

एसएबीआर मॉडल की मुख्य विशेषता अस्थिरता अनुकूल के अनुकूल प्रभाव को पुन: उत्पन्न करने में सक्षम होना है।

जीएआरसीएच (GARCH) मॉडल

जेनरेलाइजिड ऑटोरेग्रेसिव कंडीशनल हेटेरोस्केडैस्टिसिटी (GARCH) मॉडल प्रसंभाव्यता अस्थिरता का अनुमान लगाने के लिए एक और लोकप्रिय मॉडल है। यह मानते है कि भिन्नता प्रक्रिया की यादृच्छिकता भिन्नता के साथ भिन्न होती है, जैसा कि हेस्टन मॉडल में भिन्नता के वर्गमूल के विपरीत होता है। मानक जीएआरसीएच(1,1) मॉडल में सतत भिन्नता अवकल के लिए निम्नलिखित रूप हैं-[4]

जीएआरसीएच मॉडल को कई प्रकारों के माध्यम से विस्तारित किया गया है, जिनमें एनजीएआरसीएच (NGARCH), टीजीएआरसीएच (TGARCH), आईजीएआरसीएच (IGARCH),एलजीएआरसीएच (LGARCH), ईजीएआरसीएच (EGARCH), जीजेआर-जीएआरसीएच (GJR-GARCH), आदि सम्मिलित हैं।

हालाँकि, दृढ़ता से, जीएआरसीएच मॉडल से सशर्त अस्थिरताएं प्रसंभाव्यता नहीं हैं क्योंकि समय-समय पर पिछले मानों को देखते हुए अस्थिरता पूरी तरह से पूर्व-निर्धारित (नियतात्मक) होती है।[5]

3/2 मॉडल

3/2 मॉडल हेस्टन मॉडल के समान है, लेकिन यह मानता है कि भिन्नता प्रक्रिया की यादृच्छिकता के साथ बदलती रहती है। भिन्नता अवकलन का रूप है-

हालाँकि मापदंडों का अर्थ हेस्टन मॉडल से भिन्न है। इस मॉडल में, भिन्नता मापदंडों की माध्य प्रत्यावर्तन और अस्थिरता दोनों क्रमशः और द्वारा दी गई प्रसंभाव्यता मात्राएँ हैं।

असमतल अस्थिरता मॉडल

उच्च आवृत्ति डेटा से अस्थिरता के अनुमान का उपयोग करके, अस्थिरता प्रक्रिया की समतलता पर सवाल उठाया गया है।[6] यह पाया गया है कि लॉग-अस्थिरता किसी भी उचित समय पैमाने पर क्रम के हर्स्ट घातांक के साथ एक भिन्नात्मक ब्राउनियन गति के रूप में व्यवहार करती है। इसके कारण भिन्नात्मक प्रसंभाव्यता अस्थिरता (एफएसवी) मॉडल को अपनाया गया,[7] जिससे समग्र अमतल एफएसवी (आरएफएसवी) तैयार हुआ, जहां "असमतल" का अर्थ उस को उजागर करना है। आरएफएसवी (RFSV) मॉडल समय श्रृंखला डेटा के अनुरूप है, जो वास्तविक अस्थिरता के बेहतर पूर्वानुमान की अनुमति देता है।[6]

अंशांकन और अनुमान

एक बार विशेष एसवी (SV) मॉडल चुने जाने के बाद, इसे मौजूदा बाजार डेटा के अनुसार अंशांकित किया जाना चाहिए। अंशांकन मॉडल मापदंडों के समुच्चय की पहचान करने की प्रक्रिया है जो देखे गए डेटा को दिए जाने की सबसे अधिक संभावना है। एक लोकप्रिय तकनीक अधिकतम संभावना अनुमान (एमएलई) का उपयोग करना है। उदाहरण के लिए, हेस्टन मॉडल में, मॉडल मापदंडों के समुच्चय का अनुमान ऐतिहासिक अंतर्निहित प्रतिभूति मूल्यों के अवलोकन के लिए पॉवेल डायरेक्टेड सेट विधि[1] जैसे एमएलई (MLE) एल्गोरिदम को लागू करके लगाया जा सकता है।

इस स्थिति में, आप के अनुमान से प्रारम्भ करते हैं, परिणामी मॉडल पर ऐतिहासिक मूल्य डेटा लागू करते समय अवशिष्ट त्रुटियों की गणना करते हैं, और फिर इन त्रुटियों को कम करने का प्रयास करने के लिए को समायोजित करते हैं। एक बार अंशांकन निष्पादित हो जाने के बाद, मॉडल को समय-समय पर पुन: अंशांकित करना मानक अभ्यास है।

अंशांकन का विकल्प सांख्यिकीय अनुमान है, जिससे मापदंड अनिश्चितता की गणना की जाती है। कई बारंबारतावादी और बायेसियन विधियों को प्रस्तावित और कार्यान्वित किया गया है, विशेष रूप से उपर्युक्त मॉडलों के उपसमुच्चय के लिए। निम्नलिखित सूची में ओपन सोर्स सांख्यिकीय सॉफ़्टवेयर R के लिए एक्सटेंशन पैकेज सम्मिलित हैं जिन्हें विशेष रूप से हेटेरोस्केडैस्टिसिटी अनुमान के लिए डिज़ाइन किया गया है। पहले तीन नियतात्मक अस्थिरता वाले जीएआरसीएच-प्रकार के मॉडल को पूरा करते हैं चौथा प्रसंभाव्यता अस्थिरता अनुमान से संबंधित है।

  • रूगार्च (rugarch)- एआरएफआईएमए (ARFIMA), माध्य-में, बाहरी प्रतिगामी और विभिन्न जीएआरसीएच फ्लेवर्स, फिट, पूर्वानुमान, अनुरूपण, अनुमान और प्लॉटिंग के तरीकों के साथ।[8]
  • एफजीएआरसीएच (fGarch)- "वित्तीय इंजीनियरिंग और कम्प्यूटेशनल वित्त" पढ़ाने के लिए आरमैट्रिक्स परिवेश का भाग।
  • बेयसजीएआरसीएच- छात्र के नवाचारों के साथ जीएआरसीएच(1,1) मॉडल का बायेसियन अनुमान।[9]
  • स्टोचवोल- मार्कोव श्रृंखला मोंटे कार्लो (एमसीएमसी) विधियों के माध्यम से प्रसंभाव्यता अस्थिरता (एसवी) मॉडल के पूर्ण बायेसियन अनुमान के लिए कुशल एल्गोरिदम।[10][11]

समय के साथ कई संख्यात्मक विधियाँ विकसित की गई हैं और वित्तीय परिसंपत्तियों के मूल्य निर्धारण को हल किया है जैसे कि प्रसंभाव्यता अस्थिरता मॉडल वाले विकल्प। हाल ही में विकसित किया गया एप्लिकेशन स्थानीय प्रसंभाव्यता अस्थिरता मॉडल है।[12] यह स्थानीय प्रसंभाव्यता अस्थिरता मॉडल विदेशी मुद्रा विकल्प जैसी नई वित्तीय परिसंपत्तियों के मूल्य निर्धारण में बेहतर परिणाम देता है।

पायथन जैसी अन्य भाषाओं में वैकल्पिक सांख्यिकीय अनुमान लाइब्रेरीज़ भी हैं-

  • पायफ्लक्स (PyFlux) में जीएआरसीएच और बीटा-टी-ईजीएआरसीएच मॉडल के लिए बायेसियन और चिरसम्मत अनुमान समर्थन सम्मिलित है।

यह भी देखें

संदर्भ

  1. Jim Gatheral (18 September 2006). The Volatility Surface: A Practitioner's Guide. Wiley. ISBN 978-0-470-06825-0.
  2. J Gatheral, A Jacquier (2014). "मध्यस्थता मुक्त एसवीआई अस्थिरता सतहें". Quantitative Finance. 14: 59–71. arXiv:1204.0646. doi:10.1080/14697688.2013.819986. S2CID 41434372.
  3. PS Hagan, D Kumar, A Lesniewski, DE Woodward (2002) Managing smile risk, Wilmott, 84-108.
  4. Kluppelberg, Claudia; Lindner, Alexander; Maller, Ross (September 2004). "A Continuous Time GARCH Process Driven by a Lévy Process: Stationarity and Second Order Behaviour". J. Appl. Probab. 41. doi:10.1239/jap/1091543413.
  5. Brooks, Chris (2014). वित्त के लिए परिचयात्मक अर्थमिति (3rd ed.). Cambridge: Cambridge University Press. p. 461. ISBN 9781107661455.
  6. 6.0 6.1 Jim Gatheral, Thibault Jaisson and Mathieu Rosenbaum (2018). Volatility is rough. Quantitative Finance 18(6), Pages 933-949
  7. Fabienne Comte and Eric Renault (1998). Long memory in continuous-time stochastic volatility models. Math. Finance, 8(4), 291–323
  8. Ghalanos, Alexios. "rugarch: Univariate GARCH models".
  9. Ardia, David; Hoogerheide, Lennart F. (2010). "स्टूडेंट-टी इनोवेशन के साथ GARCH(1,1) मॉडल का बायेसियन अनुमान" (PDF). The R Journal. 2 (2): 41–47. doi:10.32614/RJ-2010-014. S2CID 17324384.
  10. Kastner, Gregor (2016). "आर पैकेज स्टोचवोल का उपयोग करके समय श्रृंखला में स्टोचैस्टिक अस्थिरता से निपटना" (PDF). Journal of Statistical Software. 69 (5): 1–30. arXiv:1906.12134. doi:10.18637/jss.v069.i05.
  11. Kastner, Gregor; Frühwirth-Schnatter, Sylvia (2014). "स्टोकेस्टिक अस्थिरता मॉडल के एमसीएमसी अनुमान को बढ़ावा देने के लिए सहायक-पर्याप्तता इंटरविविंग रणनीति (एएसआईएस)" (PDF). Computational Statistics and Data Analysis. 79: 408–423. arXiv:1706.05280. doi:10.1016/j.csda.2013.01.002. S2CID 17019876.
  12. van der Weijst, Roel (2017). "स्टोकेस्टिक स्थानीय अस्थिरता मॉडल के लिए संख्यात्मक समाधान" (in English). {{cite journal}}: Cite journal requires |journal= (help)

स्रोत

श्रेणी:गणितीय वित्त श्रेणी:विकल्प (वित्त) श्रेणी:डेरिवेटिव (वित्त)