निमज्जित सीमा विधि: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
कम्प्यूटेशनल | कम्प्यूटेशनल द्रव गतिकी में, '''इम्मरसेड सीमा विधि''' मूल रूप से द्रव-संरचना (फाइबर) अंतःक्रिया को अनुकरण करने के लिए 1972 में चार्ल्स एस. पेस्किन द्वारा विकसित एक दृष्टिकोण को संदर्भित है।<ref>{{Cite journal|last=Peskin|first=Charles S|date=1972-10-01|title=Flow patterns around heart valves: A numerical method|journal=Journal of Computational Physics|volume=10|issue=2|pages=252–271|doi=10.1016/0021-9991(72)90065-4|bibcode=1972JCoPh..10..252P |issn=0021-9991}}</ref> संरचना विकृतियों और द्रव प्रवाह के युग्मन का ट्रीटमेंट [[कंप्यूटर सिमुलेशन|संख्यात्मक सिमुलेशन]] के लिए कई चुनौतीपूर्ण समस्याएं उत्पन्न करता है (इलास्टिक सीमा तरल पदार्थ के प्रवाह को परिवर्तित करती है और द्रव इलास्टिक सीमा को एक साथ स्थानांतरित करता है)। इम्मरसेड सीमा विधि में द्रव को यूलेरियन समन्वय प्रणाली में प्रदर्शित किया जाता है और संरचना को लैग्रैन्जियन निर्देशांक में प्रदर्शित किया जाता है। नेवियर-स्टोक्स समीकरणों द्वारा गवर्न [[न्यूटोनियन तरल पदार्थ|न्यूटोनियन द्रव]] के लिए, द्रव समीकरण निम्न प्रकार हैं | ||
:<math> | :<math> | ||
Line 6: | Line 6: | ||
= -\nabla p + \mu\, \Delta u(x,t) + f(x,t) | = -\nabla p + \mu\, \Delta u(x,t) + f(x,t) | ||
</math> | </math> | ||
और यदि | और यदि प्रवाह असम्पीडित होता है, तो हमारे पास आगे की कंडीशन इस प्रकार है | ||
और यदि प्रवाह असम्पीडित है, तो हमारे पास आगे के नियम कुछ इस प्रकार है | |||
:<math> | :<math> | ||
\nabla \cdot u = 0. \, | \nabla \cdot u = 0. \, | ||
</math> | </math> | ||
इम्मरसेड | इम्मरसेड संरचनाओं को सामान्यतः एक-आयामी फाइबर के संग्रह के रूप में प्रदर्शित किया जाता है, जिसे <math> \Gamma </math> द्वारा प्रदर्शित किया जाता है। प्रत्येक फाइबर को पैरामीट्रिक वक्र <math> X(s,t) </math> के रूप में देखा जा सकता है जहाँ <math> s </math> फाइबर के साथ लैग्रेंजियन समन्वय होता है और <math>t </math> समय होता है। फाइबर की भौतिकी को फाइबर बल वितरण फ़ंक्शन <math> F(s,t) </math> के माध्यम से प्रदर्शित किया जाता है। स्प्रिंग बल, बेन्डिंग प्रतिरोध या किसी अन्य प्रकार का व्यवहार इस शब्द में निर्मित किया जा सकता है। द्रव पर संरचना द्वारा लगाए गए बल को फिर संवेग समीकरण में स्रोत शब्द के रूप में प्रक्षेपित किया जाता है | ||
:<math> | :<math> | ||
f(x,t) = \int_\Gamma F(s,t) \, \delta\big(x - X(s,t)\big) \, ds, | f(x,t) = \int_\Gamma F(s,t) \, \delta\big(x - X(s,t)\big) \, ds, | ||
</math> | </math> | ||
जहाँ <math> \delta </math> डिराक डेल्टा फ़ंक्शन है। इलास्टिक सतहों या | जहाँ <math> \delta </math> डिराक डेल्टा फ़ंक्शन है। इलास्टिक सतहों या त्रि-आयामी ठोस पदार्थों को मॉडल करने के लिए बल को कई आयामों तक बढ़ाया जा सकता है। एक द्रव्यमान रहित संरचना मानते हुए, इलास्टिक फाइबर स्थानीय द्रव वेग के साथ चलता है और डेल्टा फ़ंक्शन के माध्यम से प्रक्षेपित किया जा सकता है | ||
:<math> | :<math> | ||
\frac{\partial X(s,t)}{\partial t} = u(X,t) = \int_\Omega u(x,t) \, \delta\big(x - X(s,t)\big) \, dx, | \frac{\partial X(s,t)}{\partial t} = u(X,t) = \int_\Omega u(x,t) \, \delta\big(x - X(s,t)\big) \, dx, | ||
</math> | </math> | ||
जहाँ <math> \Omega </math> संपूर्ण | जहाँ <math> \Omega </math> संपूर्ण द्रव डोमेन को प्रदर्शित करता है। इन समीकरणों का डिसक्रेटीजेशन द्रव पर एक यूलेरियन ग्रिड और फाइबर पर एक अलग लैग्रेंजियन ग्रिड मानकर किया जा सकता है। सुचारू कार्यों द्वारा डेल्टा वितरण का अनुमान हमें दो ग्रिडों के मध्य अंतरण करने की अनुमति देगा। विसर्जित सीमा समीकरणों को हल करने के लिए किसी भी उपस्थित द्रव सॉल्वर को फाइबर समीकरणों के सॉल्वर के साथ जोड़ा जा सकता है। इस मूलभूत दृष्टिकोण के वेरिएंट को इलास्टिक संरचनाओं से युक्त विभिन्न प्रकार की यांत्रिक प्रणालियों को अनुकरण करने के लिए प्रयुक्त किया गया है जो द्रव प्रवाह के साथ अन्तःक्रिया करते हैं। | ||
पेस्किन द्वारा इस | पेस्किन द्वारा इस विधि के मूल विकास के पश्चात् से, ग्रिड पर समष्टि इम्मरसेड निकायों पर प्रवाह अनुकरण करने के लिए कई प्रकार के दृष्टिकोण विकसित किए गए हैं जो सरफेस बॉडी के अनुरूप नहीं होता हैं। इनमें इम्मरसेड इंटरफ़ेस विधि, कार्टेशियन ग्रिड विधि, घोस्ट द्रव विधि और कट-सेल विधि जैसी विधियाँ सम्मिलित होती हैं। मित्तल और इयाकारिनो<ref>{{harvnb|Mittal|Iaccarino|2005}}.</ref> इन सभी (और अन्य संबंधित) विधियों को इम्मरसेड सीमा विधियों के रूप में संदर्भित करते है और इन विधियों के विभिन्न वर्गीकरण करते है। कार्यान्वयन के दृष्टिकोण से, वे इम्मरसेड सीमा विधियों को निरंतर बल और असतत बल विधियों में वर्गीकृत करते हैं। पूर्व में, डिस्क्रेटीजेशन से पहले निरंतर नेवियर-स्टोक्स समीकरणों में एक बल शब्द जोड़ा जाता है, जबकि पश्चात् में, डिस्क्रेटीजेशन समीकरणों पर बल प्रयुक्त किया जाता है (स्पष्ट रूप से या अंतर्निहित रूप से)। इस वर्गीकरण के तहत, पेस्किन की मूल विधि एक सतत बल मेथड है जबकि कार्टेशियन ग्रिड, कट-सेल और भूत-द्रव विधियाँ असतत बल विधियाँ होता हैं। | ||
== यह भी देखें == | == यह भी देखें == | ||
*[[स्टोकेस्टिक यूलेरियन लैग्रेंजियन विधि | *[[स्टोकेस्टिक यूलेरियन लैग्रेंजियन विधि]] | ||
*स्टोकेशियन | *स्टोकेशियन गतिकी | ||
* | *तरल पदार्थ की मात्रा विधि | ||
*लेवल-सेट | *लेवल-सेट विधि | ||
*[[मार्कर-और-सेल विधि | *[[मार्कर-और-सेल विधि]] | ||
== सॉफ्टवेयर: न्यूमेरिकल कोड == | == सॉफ्टवेयर: न्यूमेरिकल कोड == | ||
* [https://www.mentor.com/products/mechanical/floefd/ FloEFD: वाणिज्यिक सीएफडी आईबीएम कोड] | * [https://www.mentor.com/products/mechanical/floefd/ FloEFD: वाणिज्यिक सीएफडी आईबीएम कोड] | ||
* [[उन्नत | * [[उन्नत सिमुलेशन लाइब्रेरी]] | ||
* [http://mango-selm.org/ मैंगो-सेल्म: इम्मरसेड | * [http://mango-selm.org/ मैंगो-सेल्म: इम्मरसेड सीमा विधियाँ और एसईएलएम सिमुलेशन, 3डी पैकेज, (पायथन इंटरफ़ेस, एलएएमएमपीएस एमडी इंटीग्रेशन), पी. एट्ज़बर्गर, यूसीएसबी] | ||
* [http://software.atzberger.org/ 3डी में स्टोकेस्टिक इम्मरसेड | * [http://software.atzberger.org/ 3डी में स्टोकेस्टिक इम्मरसेड सीमा विधि, पी. एट्ज़ बर्गर, यूसीएसबी] | ||
* [http://www.math.utah.edu/IBIS/ 2डी में यूनिफार्म लैटिस के लिए इम्मरसेड | * [http://www.math.utah.edu/IBIS/ 2डी में यूनिफार्म लैटिस के लिए इम्मरसेड सीमा विधि, ए. फोगेलसन, यूटा] | ||
* [https://github.com/IBAMR/IBAMR IBAMR: 3डी में अडाप्टिव मेशेस के लिए इम्मरसेड | * [https://github.com/IBAMR/IBAMR IBAMR: 3डी में अडाप्टिव मेशेस के लिए इम्मरसेड सीमा विधि, बी. ग्रिफ़िथ, एनवाईयू।] | ||
* [https://github.com/nickabattista/ib2d IB2d: 60+ उदाहरणों के साथ 2डी में मैटलैब और पायथन के लिए इम्मरसेड | * [https://github.com/nickabattista/ib2d IB2d: 60+ उदाहरणों के साथ 2डी में मैटलैब और पायथन के लिए इम्मरसेड सीमा विधि, एन.ए. बतिस्ता, टीसीएनजे] | ||
* [http://espressomd.org/html/doc/advanced_methods.html#immersed-सीमा-विधि-for-soft-elastic-objects ESPResSo: सॉफ्ट इलास्टिक वस्तुओं के लिए इम्मरसेड | * [http://espressomd.org/html/doc/advanced_methods.html#immersed-सीमा-विधि-for-soft-elastic-objects ESPResSo: सॉफ्ट इलास्टिक वस्तुओं के लिए इम्मरसेड सीमा विधि] | ||
* [https://openfoamwiki.net/index.php/Extend-bazaar/Toolkits/ImmersedBoundary OpenFoam पर आधारित CFD IBM कोड] | * [https://openfoamwiki.net/index.php/Extend-bazaar/Toolkits/ImmersedBoundary OpenFoam पर आधारित CFD IBM कोड] | ||
* [https://github.com/ChenguangZhang/sdfibm sdfibm: ओपनफोम पर आधारित एक और CFD IBM कोड] | * [https://github.com/ChenguangZhang/sdfibm sdfibm: ओपनफोम पर आधारित एक और CFD IBM कोड] | ||
* [https://www.simscale.com/docs/analyses-types/immersed-सीमा-विश्लेषण/ सिमस्केल: क्लाउड में | * [https://www.simscale.com/docs/analyses-types/immersed-सीमा-विश्लेषण/ सिमस्केल: क्लाउड में द्रव यांत्रिकी और संयुग्मी हीट हस्तांतरण ट्रान्सफर के लिए इम्मरसेड सीमा विधि] | ||
==टिप्पणियाँ== | ==टिप्पणियाँ== |
Revision as of 22:17, 10 August 2023
कम्प्यूटेशनल द्रव गतिकी में, इम्मरसेड सीमा विधि मूल रूप से द्रव-संरचना (फाइबर) अंतःक्रिया को अनुकरण करने के लिए 1972 में चार्ल्स एस. पेस्किन द्वारा विकसित एक दृष्टिकोण को संदर्भित है।[1] संरचना विकृतियों और द्रव प्रवाह के युग्मन का ट्रीटमेंट संख्यात्मक सिमुलेशन के लिए कई चुनौतीपूर्ण समस्याएं उत्पन्न करता है (इलास्टिक सीमा तरल पदार्थ के प्रवाह को परिवर्तित करती है और द्रव इलास्टिक सीमा को एक साथ स्थानांतरित करता है)। इम्मरसेड सीमा विधि में द्रव को यूलेरियन समन्वय प्रणाली में प्रदर्शित किया जाता है और संरचना को लैग्रैन्जियन निर्देशांक में प्रदर्शित किया जाता है। नेवियर-स्टोक्स समीकरणों द्वारा गवर्न न्यूटोनियन द्रव के लिए, द्रव समीकरण निम्न प्रकार हैं
और यदि प्रवाह असम्पीडित होता है, तो हमारे पास आगे की कंडीशन इस प्रकार है
और यदि प्रवाह असम्पीडित है, तो हमारे पास आगे के नियम कुछ इस प्रकार है
इम्मरसेड संरचनाओं को सामान्यतः एक-आयामी फाइबर के संग्रह के रूप में प्रदर्शित किया जाता है, जिसे द्वारा प्रदर्शित किया जाता है। प्रत्येक फाइबर को पैरामीट्रिक वक्र के रूप में देखा जा सकता है जहाँ फाइबर के साथ लैग्रेंजियन समन्वय होता है और समय होता है। फाइबर की भौतिकी को फाइबर बल वितरण फ़ंक्शन के माध्यम से प्रदर्शित किया जाता है। स्प्रिंग बल, बेन्डिंग प्रतिरोध या किसी अन्य प्रकार का व्यवहार इस शब्द में निर्मित किया जा सकता है। द्रव पर संरचना द्वारा लगाए गए बल को फिर संवेग समीकरण में स्रोत शब्द के रूप में प्रक्षेपित किया जाता है
जहाँ डिराक डेल्टा फ़ंक्शन है। इलास्टिक सतहों या त्रि-आयामी ठोस पदार्थों को मॉडल करने के लिए बल को कई आयामों तक बढ़ाया जा सकता है। एक द्रव्यमान रहित संरचना मानते हुए, इलास्टिक फाइबर स्थानीय द्रव वेग के साथ चलता है और डेल्टा फ़ंक्शन के माध्यम से प्रक्षेपित किया जा सकता है
जहाँ संपूर्ण द्रव डोमेन को प्रदर्शित करता है। इन समीकरणों का डिसक्रेटीजेशन द्रव पर एक यूलेरियन ग्रिड और फाइबर पर एक अलग लैग्रेंजियन ग्रिड मानकर किया जा सकता है। सुचारू कार्यों द्वारा डेल्टा वितरण का अनुमान हमें दो ग्रिडों के मध्य अंतरण करने की अनुमति देगा। विसर्जित सीमा समीकरणों को हल करने के लिए किसी भी उपस्थित द्रव सॉल्वर को फाइबर समीकरणों के सॉल्वर के साथ जोड़ा जा सकता है। इस मूलभूत दृष्टिकोण के वेरिएंट को इलास्टिक संरचनाओं से युक्त विभिन्न प्रकार की यांत्रिक प्रणालियों को अनुकरण करने के लिए प्रयुक्त किया गया है जो द्रव प्रवाह के साथ अन्तःक्रिया करते हैं।
पेस्किन द्वारा इस विधि के मूल विकास के पश्चात् से, ग्रिड पर समष्टि इम्मरसेड निकायों पर प्रवाह अनुकरण करने के लिए कई प्रकार के दृष्टिकोण विकसित किए गए हैं जो सरफेस बॉडी के अनुरूप नहीं होता हैं। इनमें इम्मरसेड इंटरफ़ेस विधि, कार्टेशियन ग्रिड विधि, घोस्ट द्रव विधि और कट-सेल विधि जैसी विधियाँ सम्मिलित होती हैं। मित्तल और इयाकारिनो[2] इन सभी (और अन्य संबंधित) विधियों को इम्मरसेड सीमा विधियों के रूप में संदर्भित करते है और इन विधियों के विभिन्न वर्गीकरण करते है। कार्यान्वयन के दृष्टिकोण से, वे इम्मरसेड सीमा विधियों को निरंतर बल और असतत बल विधियों में वर्गीकृत करते हैं। पूर्व में, डिस्क्रेटीजेशन से पहले निरंतर नेवियर-स्टोक्स समीकरणों में एक बल शब्द जोड़ा जाता है, जबकि पश्चात् में, डिस्क्रेटीजेशन समीकरणों पर बल प्रयुक्त किया जाता है (स्पष्ट रूप से या अंतर्निहित रूप से)। इस वर्गीकरण के तहत, पेस्किन की मूल विधि एक सतत बल मेथड है जबकि कार्टेशियन ग्रिड, कट-सेल और भूत-द्रव विधियाँ असतत बल विधियाँ होता हैं।
यह भी देखें
- स्टोकेस्टिक यूलेरियन लैग्रेंजियन विधि
- स्टोकेशियन गतिकी
- तरल पदार्थ की मात्रा विधि
- लेवल-सेट विधि
- मार्कर-और-सेल विधि
सॉफ्टवेयर: न्यूमेरिकल कोड
- FloEFD: वाणिज्यिक सीएफडी आईबीएम कोड
- उन्नत सिमुलेशन लाइब्रेरी
- मैंगो-सेल्म: इम्मरसेड सीमा विधियाँ और एसईएलएम सिमुलेशन, 3डी पैकेज, (पायथन इंटरफ़ेस, एलएएमएमपीएस एमडी इंटीग्रेशन), पी. एट्ज़बर्गर, यूसीएसबी
- 3डी में स्टोकेस्टिक इम्मरसेड सीमा विधि, पी. एट्ज़ बर्गर, यूसीएसबी
- 2डी में यूनिफार्म लैटिस के लिए इम्मरसेड सीमा विधि, ए. फोगेलसन, यूटा
- IBAMR: 3डी में अडाप्टिव मेशेस के लिए इम्मरसेड सीमा विधि, बी. ग्रिफ़िथ, एनवाईयू।
- IB2d: 60+ उदाहरणों के साथ 2डी में मैटलैब और पायथन के लिए इम्मरसेड सीमा विधि, एन.ए. बतिस्ता, टीसीएनजे
- ESPResSo: सॉफ्ट इलास्टिक वस्तुओं के लिए इम्मरसेड सीमा विधि
- OpenFoam पर आधारित CFD IBM कोड
- sdfibm: ओपनफोम पर आधारित एक और CFD IBM कोड
- सिमस्केल: क्लाउड में द्रव यांत्रिकी और संयुग्मी हीट हस्तांतरण ट्रान्सफर के लिए इम्मरसेड सीमा विधि
टिप्पणियाँ
- ↑ Peskin, Charles S (1972-10-01). "Flow patterns around heart valves: A numerical method". Journal of Computational Physics. 10 (2): 252–271. Bibcode:1972JCoPh..10..252P. doi:10.1016/0021-9991(72)90065-4. ISSN 0021-9991.
- ↑ Mittal & Iaccarino 2005.
संदर्भ
- Atzberger, Paul J. (2011). "Stochastic Eulerian Lagrangian Methods for Fluid Structure Interactions with Thermal Fluctuations". Journal of Computational Physics. 230 (8): 2821–2837. arXiv:1009.5648. Bibcode:2011JCoPh.230.2821A. doi:10.1016/j.jcp.2010.12.028. S2CID 6067032.
- Atzberger, Paul J.; Kramer, Peter R.; Peskin, Charles S. (2007). "A Stochastic Immersed Boundary Method for Fluid-Structure Dynamics at Microscopic Length Scales". Journal of Computational Physics. 224 (2): 1255–1292. arXiv:0910.5748. Bibcode:2007JCoPh.224.1255A. doi:10.1016/j.jcp.2006.11.015. S2CID 17977915.
- Jindal, S.; Khalighi, B.; Johnson, J.; Chen, K. (2007), "The Immersed Boundary CFD Approach for Complex Aerodynamics Flow Predictions", SAE Technical Paper Series, SAE Technical Paper, vol. 1, doi:10.4271/2007-01-0109.
- Kim, Jungwoo; Kim, Dongjoo; Choi, Haecheon (2001). "An Immersed-Boundary Finite Volume Method for Simulations of Flow in Complex Geometries". Journal of Computational Physics. 171 (1): 132–150. Bibcode:2001JCoPh.171..132K. doi:10.1006/jcph.2001.6778.
- Mittal, Rajat; Iaccarino, Gianluca (2005). "Immersed Boundary Methods". Annual Review of Fluid Mechanics. 37 (1): 239–261. Bibcode:2005AnRFM..37..239M. doi:10.1146/annurev.fluid.37.061903.175743.
- Moria, Yoichiro; Peskin, Charles S. (2008). "Implicit Second-Order Immersed Boundary Methods with Boundary Mass". Computer Methods in Applied Mechanics and Engineering. 197 (25–28): 2049–2067. Bibcode:2008CMAME.197.2049M. doi:10.1016/j.cma.2007.05.028.
- Peskin, Charles S. (2002). "The immersed boundary method". Acta Numerica. 11: 479–517. doi:10.1017/S0962492902000077.
- Peskin, Charles S. (1977). "Numerical analysis of blood flow in the heart". Journal of Computational Physics. 25 (3): 220–252. Bibcode:1977JCoPh..25..220P. doi:10.1016/0021-9991(77)90100-0.
- Roma, Alexandre M.; Peskin, Charles S.; Berger, Marsha J. (1999). "An Adaptive Version of the Immersed Boundary Method". Journal of Computational Physics. 153 (2): 509–534. Bibcode:1999JCoPh.153..509R. doi:10.1006/jcph.1999.6293.
- Singh Bhalla, Amneet Pal; Bale, Rahul; Griffith, Boyce E.; Patankar, Neelesh A. (2013). "A unified mathematical framework and an adaptive numerical method for fluid–structure interaction with rigid, deforming, and elastic bodies". Journal of Computational Physics. 250: 446–476. Bibcode:2013JCoPh.250..446B. doi:10.1016/j.jcp.2013.04.033.
- Zhu, Luoding; Peskin, Charles S. (2002). "Simulation of a Flapping Flexible Filament in a Flowing Soap Film by the Immersed Boundary Method" (PDF). Journal of Computational Physics. 179 (2): 452–468. Bibcode:2002JCoPh.179..452Z. doi:10.1006/jcph.2002.7066. S2CID 947507. Archived from the original (PDF) on 2020-01-01.