थर्मल हाइड्रोलिक्स: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Study of hydraulic flow in thermal fluids}} | {{Short description|Study of hydraulic flow in thermal fluids}} | ||
थर्मल [[जलगति विज्ञान|थर्मल हाइड्रोलिक्स]] (जिसे थर्मोहाइड्रोलिक्स भी कहा जाता है) [[थर्मल तरल पदार्थ]] में हाइड्रोलिक्स प्रवाह का अध्ययन है। क्षेत्र को मुख्य रूप से तीन भागों में विभाजित किया जा सकता है: [[ ऊष्मप्रवैगिकी ]], [[द्रव [[यांत्रिकी]]]], एवं | थर्मल [[जलगति विज्ञान|थर्मल हाइड्रोलिक्स]] (जिसे थर्मोहाइड्रोलिक्स भी कहा जाता है) [[थर्मल तरल पदार्थ]] में हाइड्रोलिक्स प्रवाह का अध्ययन है। क्षेत्र को मुख्य रूप से तीन भागों में विभाजित किया जा सकता है: [[ ऊष्मप्रवैगिकी | ऊष्माप्रवैगिकी]] , [[द्रव [[यांत्रिकी]]]], एवं ऊष्मा हस्तांतरण, किन्तु वे प्रायः दूसरे से निकटता से जुड़े होते हैं। सामान्य उदाहरण [[बिजली संयंत्र|विद्युत संयंत्र]] में [[भाप]] उत्पादन एवं यांत्रिकी गति से संबंधित ऊर्जा हस्तांतरण एवं इस प्रक्रिया से प्रवाहित होते समय [[पानी]] की [[थर्मोडायनामिक अवस्था]] में परिवर्तन है। थर्मल-हाइड्रोलिक विश्लेषण रि्टर डिजाइन के लिए महत्वपूर्ण पैरामीटर जैसे [[संयंत्र दक्षता]] एवं प्रणाली की शीतलता निर्धारित कर सकता है।<ref>{{Cite book|last=Akimoto|first=Hajime|last2=Anoda|first2=Yoshinari|last3=Takase|first3=Kazuyuki|last4=Yoshida|first4=Hiroyuki|last5=Tamai|first5=Hidesada|date=2016|title=परमाणु थर्मल हाइड्रोलिक्स|journal=An Advanced Course in Nuclear Engineering|volume=4|doi=10.1007/978-4-431-55603-9|issn=2195-3708|isbn=978-4-431-55602-2}}</ref>सामान्य विशेषण थर्मोहाइड्रोलिक, थर्मल-हाइड्रोलिक एवं थर्मलहाइड्रोलिक हैं। | ||
== थर्मोडायनामिक विश्लेषण == | == थर्मोडायनामिक विश्लेषण == | ||
थर्मोडायनामिक विश्लेषण में, प्रणाली में परिभाषित सभी थर्मोडायनामिक अवस्था को [[थर्मोडायनामिक संतुलन]] में माना जाता है; प्रत्येक अवस्था में यांत्रिक, तापीय एवं चरण संतुलन होता है, एवं समय के संबंध में कोई स्थूल परिवर्तन नहीं होता है। प्रणाली के विश्लेषण के लिए, थर्मोडायनामिक्स का प्रथम नियम एवं थर्मोडायनामिक्स का [[ऊष्मागतिकी का दूसरा नियम]] प्रारम्भ किया जा सकता है।<ref>{{Cite book|title=핵기계공학|last=No|first=Hee Cheon|publisher=Korean Nuclear Society.|year=1989|location=Seoul}}</ref>[[ बिजली संयंत्र |विद्युत संयंत्र]] विश्लेषण में, राज्यों की श्रृंखला में [[थर्मोडायनामिक चक्र]] सम्मिलित हो सकता है। इस विषय में, प्रत्येक राज्य व्यक्तिगत घटक के इनलेट/आउटलेट पर स्थिति का प्रतिनिधित्व करता है। घटकों के उदाहरण [[पंप]] [[कंप्रेसर]], [[टर्बाइन]], रि्टर एवं [[ उष्मा का आदान प्रदान करने वाला ]] हैं। दिए गए प्रकार के तरल पदार्थ के लिए संवैधानिक समीकरण पर विचार करके, प्रत्येक बिंदु की थर्मोडायनामिक स्थिति का विश्लेषण किया जा सकता है। परिणामस्वरूप, चक्र की तापीय दक्षता को परिभाषित किया जा सकता है। | थर्मोडायनामिक विश्लेषण में, प्रणाली में परिभाषित सभी थर्मोडायनामिक अवस्था को [[थर्मोडायनामिक संतुलन]] में माना जाता है; प्रत्येक अवस्था में यांत्रिक, तापीय एवं चरण संतुलन होता है, एवं समय के संबंध में कोई स्थूल परिवर्तन नहीं होता है। प्रणाली के विश्लेषण के लिए, थर्मोडायनामिक्स का प्रथम नियम एवं थर्मोडायनामिक्स का [[ऊष्मागतिकी का दूसरा नियम|ऊष्माागतिकी का दूसरा नियम]] प्रारम्भ किया जा सकता है।<ref>{{Cite book|title=핵기계공학|last=No|first=Hee Cheon|publisher=Korean Nuclear Society.|year=1989|location=Seoul}}</ref>[[ बिजली संयंत्र |विद्युत संयंत्र]] विश्लेषण में, राज्यों की श्रृंखला में [[थर्मोडायनामिक चक्र]] सम्मिलित हो सकता है। इस विषय में, प्रत्येक राज्य व्यक्तिगत घटक के इनलेट/आउटलेट पर स्थिति का प्रतिनिधित्व करता है। घटकों के उदाहरण [[पंप]] [[कंप्रेसर]], [[टर्बाइन]], रि्टर एवं [[ उष्मा का आदान प्रदान करने वाला ]] हैं। दिए गए प्रकार के तरल पदार्थ के लिए संवैधानिक समीकरण पर विचार करके, प्रत्येक बिंदु की थर्मोडायनामिक स्थिति का विश्लेषण किया जा सकता है। परिणामस्वरूप, चक्र की तापीय दक्षता को परिभाषित किया जा सकता है। | ||
चक्र के उदाहरणों में [[कार्नोट चक्र]], [[ब्रेटन चक्र]] एवं [[रैंकिन चक्र]] सम्मिलित हैं। सरल चक्र के आधार पर संशोधित या संयुक्त चक्र भी अस्तित्व में है। | चक्र के उदाहरणों में [[कार्नोट चक्र]], [[ब्रेटन चक्र]] एवं [[रैंकिन चक्र]] सम्मिलित हैं। सरल चक्र के आधार पर संशोधित या संयुक्त चक्र भी अस्तित्व में है। | ||
== थर्मो-हाइड्रोलिक सुधार पैरामीटर (THIP) == | == थर्मो-हाइड्रोलिक सुधार पैरामीटर (THIP) == | ||
लेखक (साहू एट अल.[6]) मानते हैं कि थर्मो-हाइड्रोलिक पैरामीटर (टीएचपी) घर्षण कारक सुधार कारक (FFER) के प्रति कम संवेदनशील है। (रे) 2900 - 14,000 के साथ खुरदरेपन एवं अन्य मापदंडों की सीमा के लिए (एफआर/एफएस) एवं (एफआर/एफएस)0.33 के मध्य विचलन 48% से 64% पाया गया है, जिसका उपयोग वर्तमान अध्ययन के लिए किया गया है। इसलिए, थर्मल प्रणाली में | लेखक (साहू एट अल.[6]) मानते हैं कि थर्मो-हाइड्रोलिक पैरामीटर (टीएचपी) घर्षण कारक सुधार कारक (FFER) के प्रति कम संवेदनशील है। (रे) 2900 - 14,000 के साथ खुरदरेपन एवं अन्य मापदंडों की सीमा के लिए (एफआर/एफएस) एवं (एफआर/एफएस)0.33 के मध्य विचलन 48% से 64% पाया गया है, जिसका उपयोग वर्तमान अध्ययन के लिए किया गया है। इसलिए, थर्मल प्रणाली में ऊष्मा हस्तांतरण (एनयू) एवं घर्षण कारक (एफ) में वृद्धि के समान अनुपात में मूल्यांकन करने के लिए वर्तमान कार्य का उपयोग करके नया पैरामीटर प्रस्तावित एवं प्रस्तुत किया गया है, जो अधिक यथार्थवादी है एवं इसे थर्मो- नाम दिया गया है। हाइड्रोलिक इम्प्रूवमेंट पैरामीटर (THIP), एवं इसका मूल्यांकन (NNIF) से (FFIF)[6] के अनुपात के रूप में किया जा सकता है। | ||
जहां (NNIF)=नुसेल्ट संख्या सुधार कारक एवं (FFIF)=घर्षण कारक सुधार कारक | जहां (NNIF)=नुसेल्ट संख्या सुधार कारक एवं (FFIF)=घर्षण कारक सुधार कारक | ||
==[[तापमान]] वितरण== | ==[[तापमान]] वितरण== | ||
प्रणाली को समझने के लिए तापमान महत्वपूर्ण मात्रा है। [[घनत्व]], तापीय चालकता, चिपचिपाहट एवं | प्रणाली को समझने के लिए तापमान महत्वपूर्ण मात्रा है। [[घनत्व]], तापीय चालकता, चिपचिपाहट एवं ऊष्माा क्षमता जैसे भौतिक गुण तापमान पर निर्भर करते हैं, एवं अधिक या कम तापमान प्रणाली में अप्रत्याशित परिवर्तन ला सकता है। ठोस में, ऊष्माा समीकरण का उपयोग दी गई ज्यामिति के साथ सामग्री के अंदर तापमान वितरण प्राप्त करने के लिए किया जा सकता है। | ||
स्थिर-अवस्था एवं स्थिर स्थिति के लिए, | स्थिर-अवस्था एवं स्थिर स्थिति के लिए, ऊष्माा समीकरण को इस प्रकार लिखा जा सकता है | ||
: <math>0 =\,\nabla\cdot k \,\nabla T\ \ +q''' </math> | : <math>0 =\,\nabla\cdot k \,\nabla T\ \ +q''' </math> | ||
Line 22: | Line 22: | ||
द्रव गतिकी में सीमा स्थितियों को प्रारम्भ करने से तापमान वितरण के लिए समाधान मिलता है। | द्रव गतिकी में सीमा स्थितियों को प्रारम्भ करने से तापमान वितरण के लिए समाधान मिलता है। | ||
== | == एकल-चरण ताप स्थानांतरण == | ||
एकल-चरण ऊष्माा स्थानांतरण में, संवहन प्रायः ऊष्माा स्थानांतरण की प्रमुख प्रणाली होती है। रुद्धोष्म प्रवाह के लिए जहां प्रवाह को ऊष्मा प्राप्त होती है, शीतलक का तापमान प्रवाहित होने पर परिवर्तित हो जाता है। एकल-चरण ताप स्थानांतरण का उदाहरण [[गैस-ठंडा रिएक्टर|गैस-ठंडा रि्टर]] एवं [[पिघला हुआ नमक रिएक्टर|पिघला हुआ नमक रि्टर]] पिघला हुआ नमक रि्टर है। | |||
एकल-चरण ऊष्मा हस्तांतरण को चिह्नित करने का सबसे सुविधाजनक उपाय अनुभवजन्य दृष्टिकोण पर आधारित है, जहां दीवार एवं थोक प्रवाह के मध्य तापमान अंतर [[गर्मी हस्तांतरण गुणांक|ऊष्मा हस्तांतरण गुणांक]] से प्राप्त किया जा सकता है। ऊष्मा हस्तांतरण गुणांक कई कारकों पर निर्भर करता है। ऊष्मा हस्तांतरण का उपाय (उदाहरण के लिए, [[आंतरिक प्रवाह]] या बाहरी प्रवाह), तरल पदार्थ का प्रकार, प्रणाली की ज्यामिति, प्रवाह शासन (उदाहरण के लिए, लैमिनर प्रवाह या [[अशांत प्रवाह]]), सीमा स्थिति, आदि। | |||
गर्मी हस्तांतरण सहसंबंध के उदाहरण [[डिटस-बोएल्टर समीकरण]] (अशांत [[मजबूर संवहन|विवश संवहन]]), चर्चिल और चू (प्राकृतिक संवहन) हैं। | |||
== बहु-चरण ताप स्थानांतरण == | == बहु-चरण ताप स्थानांतरण == | ||
ल-चरण | ल-चरण ऊष्माा स्थानांतरण की तुलना में, चरण परिवर्तन के साथ ऊष्माा स्थानांतरण ऊष्माा स्थानांतरण का प्रभावी उपाय है। इसमें आम तौर पर प्रवाह के प्रेरित मिश्रण के बाद चरण परिवर्तन की गुप्त ऊष्मा के बड़े मूल्य के कारण ऊष्मा हस्तांतरण गुणांक का उच्च मूल्य होता है। उबलना एवं संघनन ऊष्माा स्थानांतरण व्यापक श्रेणी की घटनाओं से संबंधित हैं। | ||
=== पूल उबलना === | === पूल उबलना === | ||
पूल का उबलना स्थिर तरल पदार्थ पर उबलना है। इसका व्यवहार न्यूक्लियेट उबलने # तंत्र द्वारा अच्छी तरह से चित्रित किया गया है,<ref>{{Cite journal|last=Nukiyama|first=Shiro|date=December 1966|title=वायुमंडलीय दबाव के तहत धातु से उबलते पानी में संचारित ऊष्मा Q का अधिकतम और न्यूनतम मान|journal=International Journal of Heat and Mass Transfer|volume=9|issue=12|pages=1419–1433|doi=10.1016/0017-9310(66)90138-4|issn=0017-9310}}</ref> जो सतह की अतिताप की मात्रा एवं सतह पर प्रारम्भ | पूल का उबलना स्थिर तरल पदार्थ पर उबलना है। इसका व्यवहार न्यूक्लियेट उबलने # तंत्र द्वारा अच्छी तरह से चित्रित किया गया है,<ref>{{Cite journal|last=Nukiyama|first=Shiro|date=December 1966|title=वायुमंडलीय दबाव के तहत धातु से उबलते पानी में संचारित ऊष्मा Q का अधिकतम और न्यूनतम मान|journal=International Journal of Heat and Mass Transfer|volume=9|issue=12|pages=1419–1433|doi=10.1016/0017-9310(66)90138-4|issn=0017-9310}}</ref> जो सतह की अतिताप की मात्रा एवं सतह पर प्रारम्भ ऊष्माा प्रवाह के मध्य संबंध को दर्शाता है। सुपरहीट की अलग-अलग डिग्री के साथ, वक्र प्राकृतिक संवहन, न्यूक्लियेट उबलने की शुरुआत, न्यूक्लियेट उबलने, महत्वपूर्ण ऊष्मा प्रवाह, संक्रमण उबलते, एवं फिल्म उबलने से बना है। प्रत्येक शासन में ऊष्माा स्थानांतरण का अलग तंत्र होता है एवं ऊष्माा स्थानांतरण गुणांक के लिए अलग-अलग सहसंबंध होता है। | ||
=== प्रवाह उबलना === | === प्रवाह उबलना === | ||
प्रवाह उबलना बहते हुए तरल पदार्थ पर उबलना है। पूल उबलने की तुलना में, प्रवाह उबलने वाला ताप स्थानांतरण प्रवाह दबाव, द्रव्यमान प्रवाह दर, द्रव प्रकार, अपस्ट्रीम स्थिति, दीवार सामग्री, प्रणाली ज्यामिति एवं प्रारम्भ ताप प्रवाह सहित कई कारकों पर निर्भर करता है। प्रवाह उबलने की विशेषता के लिए परिचालन स्थिति पर व्यापक विचार की आवश्यकता होती है।<ref name=":0">{{Cite book|title=Nuclear Systems Volume I : Thermal Hydraulic Fundamentals, Second Edition.|last=E.|first=Todreas, Neil|date=2011|publisher=CRC Press|isbn=9781439808887|oclc=910553956}}</ref> 2021 में फ्लो बॉयलिंग का उपयोग करके प्रोटोटाइप [[विद्युतीय वाहन]] चार्जिंग केबल 24.22 किलोवाट | प्रवाह उबलना बहते हुए तरल पदार्थ पर उबलना है। पूल उबलने की तुलना में, प्रवाह उबलने वाला ताप स्थानांतरण प्रवाह दबाव, द्रव्यमान प्रवाह दर, द्रव प्रकार, अपस्ट्रीम स्थिति, दीवार सामग्री, प्रणाली ज्यामिति एवं प्रारम्भ ताप प्रवाह सहित कई कारकों पर निर्भर करता है। प्रवाह उबलने की विशेषता के लिए परिचालन स्थिति पर व्यापक विचार की आवश्यकता होती है।<ref name=":0">{{Cite book|title=Nuclear Systems Volume I : Thermal Hydraulic Fundamentals, Second Edition.|last=E.|first=Todreas, Neil|date=2011|publisher=CRC Press|isbn=9781439808887|oclc=910553956}}</ref> 2021 में फ्लो बॉयलिंग का उपयोग करके प्रोटोटाइप [[विद्युतीय वाहन]] चार्जिंग केबल 24.22 किलोवाट ऊष्मा को दूर करने में सक्षम थी, जिससे चार्जिंग करंट 2,400 एम्पियर तक पहुंच गया, जो कि 520 एम्पीयर तक की अत्याधुनिक चार्जिंग केबलों की तुलना में कहीं अधिक है।<ref>{{Cite web|last=Lavars|first=Nick|date=2021-11-16|title=Liquid-to-vapor-cooled cable beats the heat for 5-minute EV charging|url=https://newatlas.com/automotive/liquid-to-vapor-cooling-five-minute-ev-charging/|url-status=live|access-date=2021-11-16|website=New Atlas|language=en-US}}</ref> | ||
'''क्रिटिकल हीट फ्लक्स''' | '''क्रिटिकल हीट फ्लक्स''' | ||
न्यूक्लियेट उबलने के कारण | न्यूक्लियेट उबलने के कारण ऊष्मा हस्तांतरण गुणांक दीवार सुपरहीट के साथ बढ़ता है जब तक कि वे निश्चित बिंदु तक नहीं पहुंच जाते। जब प्रारम्भ ऊष्माा प्रवाह निश्चित सीमा से अधिक हो जाता है, तो प्रवाह की ऊष्माा स्थानांतरण क्षमता कम हो जाती है या काफी कम हो जाती है। आम तौर पर, महत्वपूर्ण ताप प्रवाह न्यूक्लियेट उबलने से मेल खाता है # दबाव वाले पानी रि्टर में न्यूक्लियेट उबलते से प्रस्थान एवं उबलते पानी रि्टर में सूखापन। पोस्ट-डीएनबी या पोस्ट-ड्राईआउट में देखी गई कम ऊष्मा हस्तांतरण गुणांक के परिणामस्वरूप उबलने वाली सतह को नुकसान होने की संभावना है। क्रिटिकल हीट फ्लक्स से संबंधित सटीक बिंदु एवं ट्रिगरिंग तंत्र को समझना रुचि का विषय है। | ||
=== पोस्ट-सीएचएफ हीट ट्रांसफर === | === पोस्ट-सीएचएफ हीट ट्रांसफर === | ||
डीएनबी प्रकार के उबलने के संकट के लिए, प्रवाह को तरल एवं दीवार के मध्य वाष्प द्रव के रेंगने की विशेषता है। संवहनशील | डीएनबी प्रकार के उबलने के संकट के लिए, प्रवाह को तरल एवं दीवार के मध्य वाष्प द्रव के रेंगने की विशेषता है। संवहनशील ऊष्माा स्थानांतरण के शीर्ष पर, थर्मल विकिरण ऊष्माा स्थानांतरण में योगदान देता है। सूखने के बाद, प्रवाह व्यवस्था को उल्टे कुंडलाकार से धुंध प्रवाह में स्थानांतरित कर दिया जाता है। | ||
== अन्य घटनाएँ == | == अन्य घटनाएँ == | ||
Line 55: | Line 55: | ||
==यह भी देखें== | ==यह भी देखें== | ||
* [[गर्मी| | * [[गर्मी|ऊष्मा]] | ||
* [[गर्मी पंप| | * [[गर्मी पंप|ऊष्मा पंप]] | ||
* | * ऊष्मा हस्तांतरण गुणांक | ||
== संदर्भ == | == संदर्भ == |
Revision as of 18:46, 9 August 2023
थर्मल थर्मल हाइड्रोलिक्स (जिसे थर्मोहाइड्रोलिक्स भी कहा जाता है) थर्मल तरल पदार्थ में हाइड्रोलिक्स प्रवाह का अध्ययन है। क्षेत्र को मुख्य रूप से तीन भागों में विभाजित किया जा सकता है: ऊष्माप्रवैगिकी , [[द्रव यांत्रिकी]], एवं ऊष्मा हस्तांतरण, किन्तु वे प्रायः दूसरे से निकटता से जुड़े होते हैं। सामान्य उदाहरण विद्युत संयंत्र में भाप उत्पादन एवं यांत्रिकी गति से संबंधित ऊर्जा हस्तांतरण एवं इस प्रक्रिया से प्रवाहित होते समय पानी की थर्मोडायनामिक अवस्था में परिवर्तन है। थर्मल-हाइड्रोलिक विश्लेषण रि्टर डिजाइन के लिए महत्वपूर्ण पैरामीटर जैसे संयंत्र दक्षता एवं प्रणाली की शीतलता निर्धारित कर सकता है।[1]सामान्य विशेषण थर्मोहाइड्रोलिक, थर्मल-हाइड्रोलिक एवं थर्मलहाइड्रोलिक हैं।
थर्मोडायनामिक विश्लेषण
थर्मोडायनामिक विश्लेषण में, प्रणाली में परिभाषित सभी थर्मोडायनामिक अवस्था को थर्मोडायनामिक संतुलन में माना जाता है; प्रत्येक अवस्था में यांत्रिक, तापीय एवं चरण संतुलन होता है, एवं समय के संबंध में कोई स्थूल परिवर्तन नहीं होता है। प्रणाली के विश्लेषण के लिए, थर्मोडायनामिक्स का प्रथम नियम एवं थर्मोडायनामिक्स का ऊष्माागतिकी का दूसरा नियम प्रारम्भ किया जा सकता है।[2]विद्युत संयंत्र विश्लेषण में, राज्यों की श्रृंखला में थर्मोडायनामिक चक्र सम्मिलित हो सकता है। इस विषय में, प्रत्येक राज्य व्यक्तिगत घटक के इनलेट/आउटलेट पर स्थिति का प्रतिनिधित्व करता है। घटकों के उदाहरण पंप कंप्रेसर, टर्बाइन, रि्टर एवं उष्मा का आदान प्रदान करने वाला हैं। दिए गए प्रकार के तरल पदार्थ के लिए संवैधानिक समीकरण पर विचार करके, प्रत्येक बिंदु की थर्मोडायनामिक स्थिति का विश्लेषण किया जा सकता है। परिणामस्वरूप, चक्र की तापीय दक्षता को परिभाषित किया जा सकता है।
चक्र के उदाहरणों में कार्नोट चक्र, ब्रेटन चक्र एवं रैंकिन चक्र सम्मिलित हैं। सरल चक्र के आधार पर संशोधित या संयुक्त चक्र भी अस्तित्व में है।
थर्मो-हाइड्रोलिक सुधार पैरामीटर (THIP)
लेखक (साहू एट अल.[6]) मानते हैं कि थर्मो-हाइड्रोलिक पैरामीटर (टीएचपी) घर्षण कारक सुधार कारक (FFER) के प्रति कम संवेदनशील है। (रे) 2900 - 14,000 के साथ खुरदरेपन एवं अन्य मापदंडों की सीमा के लिए (एफआर/एफएस) एवं (एफआर/एफएस)0.33 के मध्य विचलन 48% से 64% पाया गया है, जिसका उपयोग वर्तमान अध्ययन के लिए किया गया है। इसलिए, थर्मल प्रणाली में ऊष्मा हस्तांतरण (एनयू) एवं घर्षण कारक (एफ) में वृद्धि के समान अनुपात में मूल्यांकन करने के लिए वर्तमान कार्य का उपयोग करके नया पैरामीटर प्रस्तावित एवं प्रस्तुत किया गया है, जो अधिक यथार्थवादी है एवं इसे थर्मो- नाम दिया गया है। हाइड्रोलिक इम्प्रूवमेंट पैरामीटर (THIP), एवं इसका मूल्यांकन (NNIF) से (FFIF)[6] के अनुपात के रूप में किया जा सकता है।
जहां (NNIF)=नुसेल्ट संख्या सुधार कारक एवं (FFIF)=घर्षण कारक सुधार कारक
तापमान वितरण
प्रणाली को समझने के लिए तापमान महत्वपूर्ण मात्रा है। घनत्व, तापीय चालकता, चिपचिपाहट एवं ऊष्माा क्षमता जैसे भौतिक गुण तापमान पर निर्भर करते हैं, एवं अधिक या कम तापमान प्रणाली में अप्रत्याशित परिवर्तन ला सकता है। ठोस में, ऊष्माा समीकरण का उपयोग दी गई ज्यामिति के साथ सामग्री के अंदर तापमान वितरण प्राप्त करने के लिए किया जा सकता है।
स्थिर-अवस्था एवं स्थिर स्थिति के लिए, ऊष्माा समीकरण को इस प्रकार लिखा जा सकता है
जहां फूरियर का नियम फूरियर का चालन नियम प्रारम्भ होता है।
द्रव गतिकी में सीमा स्थितियों को प्रारम्भ करने से तापमान वितरण के लिए समाधान मिलता है।
एकल-चरण ताप स्थानांतरण
एकल-चरण ऊष्माा स्थानांतरण में, संवहन प्रायः ऊष्माा स्थानांतरण की प्रमुख प्रणाली होती है। रुद्धोष्म प्रवाह के लिए जहां प्रवाह को ऊष्मा प्राप्त होती है, शीतलक का तापमान प्रवाहित होने पर परिवर्तित हो जाता है। एकल-चरण ताप स्थानांतरण का उदाहरण गैस-ठंडा रि्टर एवं पिघला हुआ नमक रि्टर पिघला हुआ नमक रि्टर है।
एकल-चरण ऊष्मा हस्तांतरण को चिह्नित करने का सबसे सुविधाजनक उपाय अनुभवजन्य दृष्टिकोण पर आधारित है, जहां दीवार एवं थोक प्रवाह के मध्य तापमान अंतर ऊष्मा हस्तांतरण गुणांक से प्राप्त किया जा सकता है। ऊष्मा हस्तांतरण गुणांक कई कारकों पर निर्भर करता है। ऊष्मा हस्तांतरण का उपाय (उदाहरण के लिए, आंतरिक प्रवाह या बाहरी प्रवाह), तरल पदार्थ का प्रकार, प्रणाली की ज्यामिति, प्रवाह शासन (उदाहरण के लिए, लैमिनर प्रवाह या अशांत प्रवाह), सीमा स्थिति, आदि।
गर्मी हस्तांतरण सहसंबंध के उदाहरण डिटस-बोएल्टर समीकरण (अशांत विवश संवहन), चर्चिल और चू (प्राकृतिक संवहन) हैं।
बहु-चरण ताप स्थानांतरण
ल-चरण ऊष्माा स्थानांतरण की तुलना में, चरण परिवर्तन के साथ ऊष्माा स्थानांतरण ऊष्माा स्थानांतरण का प्रभावी उपाय है। इसमें आम तौर पर प्रवाह के प्रेरित मिश्रण के बाद चरण परिवर्तन की गुप्त ऊष्मा के बड़े मूल्य के कारण ऊष्मा हस्तांतरण गुणांक का उच्च मूल्य होता है। उबलना एवं संघनन ऊष्माा स्थानांतरण व्यापक श्रेणी की घटनाओं से संबंधित हैं।
पूल उबलना
पूल का उबलना स्थिर तरल पदार्थ पर उबलना है। इसका व्यवहार न्यूक्लियेट उबलने # तंत्र द्वारा अच्छी तरह से चित्रित किया गया है,[3] जो सतह की अतिताप की मात्रा एवं सतह पर प्रारम्भ ऊष्माा प्रवाह के मध्य संबंध को दर्शाता है। सुपरहीट की अलग-अलग डिग्री के साथ, वक्र प्राकृतिक संवहन, न्यूक्लियेट उबलने की शुरुआत, न्यूक्लियेट उबलने, महत्वपूर्ण ऊष्मा प्रवाह, संक्रमण उबलते, एवं फिल्म उबलने से बना है। प्रत्येक शासन में ऊष्माा स्थानांतरण का अलग तंत्र होता है एवं ऊष्माा स्थानांतरण गुणांक के लिए अलग-अलग सहसंबंध होता है।
प्रवाह उबलना
प्रवाह उबलना बहते हुए तरल पदार्थ पर उबलना है। पूल उबलने की तुलना में, प्रवाह उबलने वाला ताप स्थानांतरण प्रवाह दबाव, द्रव्यमान प्रवाह दर, द्रव प्रकार, अपस्ट्रीम स्थिति, दीवार सामग्री, प्रणाली ज्यामिति एवं प्रारम्भ ताप प्रवाह सहित कई कारकों पर निर्भर करता है। प्रवाह उबलने की विशेषता के लिए परिचालन स्थिति पर व्यापक विचार की आवश्यकता होती है।[4] 2021 में फ्लो बॉयलिंग का उपयोग करके प्रोटोटाइप विद्युतीय वाहन चार्जिंग केबल 24.22 किलोवाट ऊष्मा को दूर करने में सक्षम थी, जिससे चार्जिंग करंट 2,400 एम्पियर तक पहुंच गया, जो कि 520 एम्पीयर तक की अत्याधुनिक चार्जिंग केबलों की तुलना में कहीं अधिक है।[5]
क्रिटिकल हीट फ्लक्स
न्यूक्लियेट उबलने के कारण ऊष्मा हस्तांतरण गुणांक दीवार सुपरहीट के साथ बढ़ता है जब तक कि वे निश्चित बिंदु तक नहीं पहुंच जाते। जब प्रारम्भ ऊष्माा प्रवाह निश्चित सीमा से अधिक हो जाता है, तो प्रवाह की ऊष्माा स्थानांतरण क्षमता कम हो जाती है या काफी कम हो जाती है। आम तौर पर, महत्वपूर्ण ताप प्रवाह न्यूक्लियेट उबलने से मेल खाता है # दबाव वाले पानी रि्टर में न्यूक्लियेट उबलते से प्रस्थान एवं उबलते पानी रि्टर में सूखापन। पोस्ट-डीएनबी या पोस्ट-ड्राईआउट में देखी गई कम ऊष्मा हस्तांतरण गुणांक के परिणामस्वरूप उबलने वाली सतह को नुकसान होने की संभावना है। क्रिटिकल हीट फ्लक्स से संबंधित सटीक बिंदु एवं ट्रिगरिंग तंत्र को समझना रुचि का विषय है।
पोस्ट-सीएचएफ हीट ट्रांसफर
डीएनबी प्रकार के उबलने के संकट के लिए, प्रवाह को तरल एवं दीवार के मध्य वाष्प द्रव के रेंगने की विशेषता है। संवहनशील ऊष्माा स्थानांतरण के शीर्ष पर, थर्मल विकिरण ऊष्माा स्थानांतरण में योगदान देता है। सूखने के बाद, प्रवाह व्यवस्था को उल्टे कुंडलाकार से धुंध प्रवाह में स्थानांतरित कर दिया जाता है।
अन्य घटनाएँ
अन्य थर्मल हाइड्रोलिक घटनाएं रुचि का विषय हैं:
- अवरुद्ध प्रवाह
- प्रतिधारा प्रवाह सीमा
- वाष्पीकरण
- प्रवाह अस्थिरता
- पुनः गीला करना
यह भी देखें
संदर्भ
[6] Mukesh Kumar Sahu, Manjeet Kharub, Mahalingam Murugesan Matheswaran. “Nusselt number and friction factor correlation development for arc‑shape apex upstream artificial roughness in solar air heater.” Environmental Science and Pollution Research. Vol. 26, Pages-65025–65042, 2022.
- ↑ Akimoto, Hajime; Anoda, Yoshinari; Takase, Kazuyuki; Yoshida, Hiroyuki; Tamai, Hidesada (2016). परमाणु थर्मल हाइड्रोलिक्स. doi:10.1007/978-4-431-55603-9. ISBN 978-4-431-55602-2. ISSN 2195-3708.
{{cite book}}
:|journal=
ignored (help) - ↑ No, Hee Cheon (1989). 핵기계공학. Seoul: Korean Nuclear Society.
- ↑ Nukiyama, Shiro (December 1966). "वायुमंडलीय दबाव के तहत धातु से उबलते पानी में संचारित ऊष्मा Q का अधिकतम और न्यूनतम मान". International Journal of Heat and Mass Transfer. 9 (12): 1419–1433. doi:10.1016/0017-9310(66)90138-4. ISSN 0017-9310.
- ↑ E., Todreas, Neil (2011). Nuclear Systems Volume I : Thermal Hydraulic Fundamentals, Second Edition. CRC Press. ISBN 9781439808887. OCLC 910553956.
{{cite book}}
: CS1 maint: multiple names: authors list (link) - ↑ Lavars, Nick (2021-11-16). "Liquid-to-vapor-cooled cable beats the heat for 5-minute EV charging". New Atlas (in English). Retrieved 2021-11-16.
{{cite web}}
: CS1 maint: url-status (link)