{{Short description|Conformal field theory of the 2D Ising model critical point}}
{{Short description|Conformal field theory of the 2D Ising model critical point}}
द्वि-आयामी क्रिटिकल [[आइसिंग मॉडल]] दो आयामों में आइसिंग मॉडल का [[ महत्वपूर्ण बिंदु (ऊष्मप्रवैगिकी) ]] है। यह [[द्वि-आयामी अनुरूप क्षेत्र सिद्धांत]] है जिसका समरूपता बीजगणित केंद्रीय प्रभार के साथ [[विरासोरो बीजगणित]] है <math>c=\tfrac12</math>.
'''द्वि-आयामी क्रिटिकल [[आइसिंग मॉडल]]''' दो आयामों में आइसिंग मॉडल का[[ महत्वपूर्ण बिंदु (ऊष्मप्रवैगिकी) | महत्वपूर्ण बिंदु]] है। यह [[द्वि-आयामी अनुरूप क्षेत्र सिद्धांत]] है जिसका समरूपता बीजगणित केंद्रीय प्रभार के साथ [[विरासोरो बीजगणित]] है <math>c=\tfrac12</math>.
स्पिन और ऊर्जा ऑपरेटरों के सहसंबंध कार्य का वर्णन किया गया है <math>(4, 3)</math> [[न्यूनतम मॉडल (भौतिकी)]]। जबकि न्यूनतम मॉडल बिल्कुल हल कर लिया गया है, यह भी देखें, उदाहरण के लिए, [[आलोचनात्मक प्रतिपादकों को प्रस्तुत करना]] पर आलेख, समाधान क्लस्टर की कनेक्टिविटी जैसे अन्य अवलोकनों को कवर नहीं करता है।
स्पिन और ऊर्जा ऑपरेटरों के सहसंबंध कार्य का वर्णन किया गया है <math>(4, 3)</math> [[न्यूनतम मॉडल (भौतिकी)]]। जबकि न्यूनतम मॉडल बिल्कुल हल कर लिया गया है, यह भी देखें, उदाहरण के लिए, [[आलोचनात्मक प्रतिपादकों को प्रस्तुत करना]] पर आलेख, समाधान क्लस्टर की कनेक्टिविटी जैसे अन्य अवलोकनों को कवर नहीं करता है।
कहाँ <math>\mathcal{R}_\Delta</math> विरासोरो बीजगणित के साथ विरासोरो बीजगणित का अघुलनशील उच्चतम-वजन प्रतिनिधित्व है#उच्चतम_वजन_प्रतिनिधित्व <math>\Delta</math>.
कहाँ <math>\mathcal{R}_\Delta</math> विरासोरो बीजगणित के साथ विरासोरो बीजगणित का अघुलनशील उच्चतम-वजन प्रतिनिधित्व है उच्चतम_वजन_प्रतिनिधित्व <math>\Delta</math>.
न्यूनतम मॉडल (भौतिकी)#का प्रतिनिधित्व न्यूनतम मॉडल है:
इसका मतलब यह है कि द्वि-आयामी_अनुरूप_फ़ील्ड_सिद्धांत#स्पेस_ऑफ_स्टेट्स तीन विरासोरो_बीजगणित#उच्चतम_वजन_प्रतिनिधित्व द्वारा उत्पन्न होता है, जो तीन प्राथमिक क्षेत्रों या ऑपरेटरों के अनुरूप होता है:[1]:
बाएँ और दाएँ गतिमान विरासोरो बीजगणित के उत्पाद के अपरिवर्तनीय प्रतिनिधित्व में राज्यों के स्थान का अपघटन है
कहाँ विरासोरो बीजगणित के साथ विरासोरो बीजगणित का अघुलनशील उच्चतम-वजन प्रतिनिधित्व है उच्चतम_वजन_प्रतिनिधित्व .
विशेष रूप से, आइसिंग मॉडल विकर्ण और ात्मक है।
वर्ण और विभाजन फ़ंक्शन
विरसोरो_बीजगणित#विरासोरो बीजगणित के तीन अभ्यावेदन के वर्ण जो राज्यों के स्थान में दिखाई देते हैं[1]
कहाँ डेडेकाइंड और फ़ंक्शन है, और नोम के थीटा फ़ंक्शन हैं , उदाहरण के लिए .
Virasoro_conformal_block#Zero-point_blocks_on_the_torus|मॉड्यूलर एस-मैट्रिक्स, यानी मैट्रिक्स ऐसा है कि , है[1] :
जहां फ़ील्ड को इस प्रकार क्रमबद्ध किया गया है .
द्वि-आयामी_conformal_field_theory#Conformal_bootstrap_eqations विभाजन फ़ंक्शन है
फ़्यूज़न नियम और ऑपरेटर उत्पाद विस्तार
मॉडल के द्वि-आयामी_अनुरूप_फ़ील्ड_सिद्धांत#फ़्यूज़न_नियम हैं
के अंतर्गत संलयन नियम अपरिवर्तनीय हैं समरूपता .
तीन-बिंदु संरचना स्थिरांक हैं
उदाहरण के लिए, फ़्यूज़न नियमों और तीन-बिंदु संरचना स्थिरांक को जानने के बाद, ऑपरेटर उत्पाद विस्तार लिखना संभव है
कहाँ प्राथमिक क्षेत्रों के अनुरूप आयाम और छोड़े गए पद हैं द्वि-आयामी_अनुरूप_क्षेत्र_सिद्धांत#राज्य-क्षेत्र_पत्राचार के योगदान हैं।
गोले पर सहसंबंध कार्य
प्राथमिक क्षेत्रों का कोई भी -, दो- और तीन-बिंदु कार्य गुणात्मक स्थिरांक तक अनुरूप समरूपता द्वारा निर्धारित किया जाता है। फ़ील्ड सामान्यीकरण के विकल्प द्वारा यह स्थिरांक - और दो-बिंदु कार्यों के लिए निर्धारित किया गया है। मात्र गैर-तुच्छ गतिशील मात्राएँ तीन-बिंदु संरचना स्थिरांक हैं, जो ऑपरेटर उत्पाद विस्तार के संदर्भ में ऊपर दिए गए थे।
साथ .
तीन गैर-तुच्छ चार-बिंदु फ़ंक्शन प्रकार के हैं . चार-बिंदु फ़ंक्शन के लिए , होने देना और एस- और टी-चैनल अनुरूप ब्लॉक बनें, जो क्रमशः के योगदान के अनुरूप हैं (और उसके वंशज) ऑपरेटर उत्पाद विस्तार में , और का (और उसके वंशज) ऑपरेटर उत्पाद विस्तार में . होने देना क्रॉस-अनुपात हो.
के मामले में , फ़्यूज़न नियम सभी चैनलों में केवल प्राथमिक फ़ील्ड, अर्थात् पहचान फ़ील्ड की अनुमति देते हैं।[2]
के मामले में , फ़्यूज़न नियम केवल एस-चैनल में पहचान फ़ील्ड और टी-चैनल में स्पिन फ़ील्ड की अनुमति देते हैं।[2]
के मामले में , संलयन नियम सभी चैनलों में दो प्राथमिक क्षेत्रों की अनुमति देते हैं: पहचान क्षेत्र और ऊर्जा क्षेत्र।[2]इस मामले में हम मामले में अनुरूप ब्लॉक लिखते हैं केवल: सामान्य मामला प्रीफैक्टर सम्मिलित करके प्राप्त किया जाता है , और पहचानना क्रॉस-अनुपात के साथ.
के मामले में , अनुरूप ब्लॉक हैं:
डिराक फर्मियन के संदर्भ में मॉडल के प्रतिनिधित्व से, किसी भी संख्या में स्पिन या ऊर्जा ऑपरेटरों के सहसंबंध कार्यों की गणना करना संभव है:[1] :
इन सूत्रों में टोरस पर सहसंबंध कार्यों का सामान्यीकरण है, जिसमें थीटा फ़ंक्शन शामिल हैं।[1]
अन्य अवलोकन योग्य
विकार संचालिका
द्वि-आयामी आइसिंग मॉडल को उच्च-निम्न तापमान द्वंद्व द्वारा स्वयं मैप किया जाता है। स्पिन ऑपरेटर की छवि इस द्वैत के अंतर्गत विकार संचालिका है , जिसके बाएँ और दाएँ अनुरूप आयाम समान हैं . यद्यपि विकार संचालक न्यूनतम मॉडल से संबंधित नहीं है, उदाहरण के लिए, विकार संचालक से जुड़े सहसंबंध कार्यों की सटीक गणना की जा सकती है[1]
जबकि
समूहों की कनेक्टिविटी
फोर्टुइन और कस्टेलिन के कारण इज़िंग मॉडल का वर्णन यादृच्छिक क्लस्टर मॉडल के रूप में किया गया है। इस विवरण में, प्राकृतिक अवलोकन क्लस्टरों की कनेक्टिविटी हैं, यानी संभावनाएँ कि कई बिंदु ही क्लस्टर से संबंधित हैं।
आइसिंग मॉडल को तब मामले के रूप में देखा जा सकता है की -स्टेट पॉट्स मॉडल, जिसका पैरामीटर लगातार भिन्न हो सकता है, और विरासोरो बीजगणित के केंद्रीय प्रभार से संबंधित है।
महत्वपूर्ण सीमा में, समूहों की कनेक्टिविटी का व्यवहार स्पिन ऑपरेटर के सहसंबंध कार्यों के अनुरूप परिवर्तनों के तहत समान होता है। फिर भी, कनेक्टिविटी स्पिन सहसंबंध कार्यों के साथ मेल नहीं खाती है: उदाहरण के लिए, तीन-बिंदु कनेक्टिविटी गायब नहीं होती है . चार स्वतंत्र चार-बिंदु कनेक्टिविटी हैं, और उनका योग मेल खाता है .[3]चार-बिंदु कनेक्टिविटी के अन्य संयोजन विश्लेषणात्मक रूप से ज्ञात नहीं हैं। विशेष रूप से वे न्यूनतम मॉडल के सहसंबंध कार्यों से संबंधित नहीं हैं,[4]हालाँकि वे इससे संबंधित हैं में स्पिन सहसंबंधकों की सीमा -स्टेट पॉट्स मॉडल.[3]