कहाँ <math>\Delta_\mathbf{1},\Delta_\sigma,\Delta_\epsilon</math> प्राथमिक क्षेत्रों के अनुरूप आयाम और छोड़े गए पद हैं <math>O(z)</math> द्वि-आयामी_अनुरूप_क्षेत्र_सिद्धांत#राज्य-क्षेत्र_पत्राचार के योगदान हैं।
जहाँ <math>\Delta_\mathbf{1},\Delta_\sigma,\Delta_\epsilon</math> प्राथमिक क्षेत्रों के अनुरूप आयाम और त्यागे गए पद हैं <math>O(z)</math> अवरोही-क्षेत्रके योगदान हैं।
=== गोले पर सहसंबंध कार्य ===
=== वृत्त पर सहसंबंध फलन ===
प्राथमिक क्षेत्रों का कोई भी -, दो- और तीन-बिंदु कार्य गुणात्मक स्थिरांक तक अनुरूप समरूपता द्वारा निर्धारित किया जाता है। क्षेत्र सामान्यीकरण के विकल्प द्वारा यह स्थिरांक - और दो-बिंदु कार्यों के लिए निर्धारित किया गया है। मात्र गैर-तुच्छ गतिशील मात्राएँ तीन-बिंदु संरचना स्थिरांक हैं, जो ऑपरेटर उत्पाद विस्तार के संदर्भ में ऊपर दिए गए थे।
प्राथमिक क्षेत्रों का कोई भी -, दो- और तीन-बिंदु कार्य गुणात्मक स्थिरांक तक अनुरूप समरूपता द्वारा निर्धारित किया जाता है। क्षेत्र सामान्यीकरण के विकल्प द्वारा यह स्थिरांक - और दो-बिंदु कार्यों के लिए निर्धारित किया गया है। मात्र गैर-तुच्छ गतिशील मात्राएँ तीन-बिंदु संरचना स्थिरांक हैं, जो ऑपरेटर उत्पाद विस्तार के संदर्भ में ऊपर दिए गए थे।
Line 204:
Line 204:
इन सूत्रों में टोरस पर सहसंबंध कार्यों का सामान्यीकरण है, जिसमें थीटा फलन सम्मिलित हैं।<ref name="BYB"/>
इन सूत्रों में टोरस पर सहसंबंध कार्यों का सामान्यीकरण है, जिसमें थीटा फलन सम्मिलित हैं।<ref name="BYB"/>
== अन्य अवलोकन योग्य ==
== अन्य अवलोकनीय ==
=== विकार संचालिका ===
=== डिसऑर्डर ऑपरेटर ===
द्वि-आयामी आइसिंग मॉडल को उच्च-निम्न तापमान द्वंद्व द्वारा स्वयं मैप किया जाता है। स्पिन ऑपरेटर की छवि <math>\sigma</math> इस द्वैत के अंतर्गत विकार संचालिका है <math>\mu</math>, जिसके बाएँ और दाएँ अनुरूप आयाम समान हैं <math>(\Delta_\mu,\bar\Delta_\mu) = (\Delta_\sigma,\bar \Delta_\sigma)=(\tfrac{1}{16},\tfrac{1}{16})</math>. यद्यपि विकार संचालक न्यूनतम मॉडल से संबंधित नहीं है, उदाहरण के लिए, विकार संचालक से जुड़े सहसंबंध कार्यों की सटीक गणना की जा सकती है<ref name="BYB"/>
द्वि-आयामी आइसिंग मॉडल को उच्च-निम्न तापमान द्वंद्व द्वारा स्वयं मैप किया जाता है। स्पिन ऑपरेटर की छवि इस डुअलिटी <math>\sigma</math> के अंतर्गत डिसऑर्डर ऑपरेटर <math>\mu</math> है, जिसके बाएँ और दाएँ अनुरूप आयाम <math>(\Delta_\mu,\bar\Delta_\mu) = (\Delta_\sigma,\bar \Delta_\sigma)=(\tfrac{1}{16},\tfrac{1}{16})</math> समान हैं। यद्यपि डिसऑर्डर ऑपरेटर न्यूनतम मॉडल से संबंधित नहीं है, उदाहरण के लिए, डिसऑर्डर ऑपरेटर से जुड़े सहसंबंध फलनों की त्रुटिहीन गणना की जा सकती है:<ref name="BYB"/>
फोर्टुइन और कस्टेलिन के कारण इज़िंग मॉडल का वर्णन [[यादृच्छिक क्लस्टर मॉडल]] के रूप में किया गया है। इस विवरण में, प्राकृतिक अवलोकन क्लस्टरों की कनेक्टिविटी हैं, यानी संभावनाएँ कि कई बिंदु ही क्लस्टर से संबंधित हैं।
फोर्टुइन और कस्टेलिन के कारण इज़िंग मॉडल का वर्णन [[यादृच्छिक क्लस्टर मॉडल]] के रूप में किया गया है। इस विवरण में, प्राकृतिक अवलोकन क्लस्टरों की कनेक्टिविटी हैं, अर्थात संभावनाएँ यह है कि कई बिंदु एक ही क्लस्टर से संबंधित हैं।
आइसिंग मॉडल को तब मामले के रूप में देखा जा सकता है <math>q=2</math> की <math>q</math>-स्टेट [[पॉट्स मॉडल]], जिसका पैरामीटर <math>q</math> लगातार भिन्न हो सकता है, और विरासोरो बीजगणित के केंद्रीय प्रभार से संबंधित है।
आइसिंग मॉडल को तब स्थिति <math>q=2</math> की <math>q</math>-स्टेट [[पॉट्स मॉडल]], के रूप में देखा जा सकता है, जिसका पैरामीटर <math>q</math> निरंतर भिन्न हो सकता है, और विरासोरो बीजगणित के केंद्रीय प्रभार से संबंधित है।
महत्वपूर्ण सीमा में, समूहों की कनेक्टिविटी का व्यवहार स्पिन ऑपरेटर के सहसंबंध कार्यों के अनुरूप परिवर्तनों के तहत समान होता है। फिर भी, कनेक्टिविटी स्पिन सहसंबंध कार्यों के साथ मेल नहीं खाती है: उदाहरण के लिए, तीन-बिंदु कनेक्टिविटी गायब नहीं होती है <math>\langle\sigma\sigma\sigma\rangle=0</math>. चार स्वतंत्र चार-बिंदु कनेक्टिविटी हैं, और उनका योग मेल खाता है <math>\langle\sigma\sigma\sigma\sigma\rangle</math>.<ref name="dv11" />चार-बिंदु कनेक्टिविटी के अन्य संयोजन विश्लेषणात्मक रूप से ज्ञात नहीं हैं। विशेष रूप से वे न्यूनतम मॉडल के सहसंबंध कार्यों से संबंधित नहीं हैं,<ref name="dv10" />हालाँकि वे इससे संबंधित हैं <math> q\to 2</math> में स्पिन सहसंबंधकों की सीमा <math>q</math>-स्टेट पॉट्स मॉडल.<ref name="dv11" />
महत्वपूर्ण सीमा में, क्लस्टरों की कनेक्टिविटी का व्यवहार स्पिन ऑपरेटर के सहसंबंध फलनों के अनुरूप परिवर्तनों के अंतर्गत समान होता है। फिर भी, कनेक्टिविटी स्पिन सहसंबंध फलनों के साथ युग्मित नहीं होती है: उदाहरण के लिए, तीन-बिंदु कनेक्टिविटी <math>\langle\sigma\sigma\sigma\rangle=0</math> लुप्त नहीं होती है। चार स्वतंत्र चार-बिंदु कनेक्टिविटी <math>\langle\sigma\sigma\sigma\sigma\rangle</math> हैं, और उनका योग युग्मित होता है।<ref name="dv11" /> चार-बिंदु कनेक्टिविटी के अन्य संयोजन विश्लेषणात्मक रूप से ज्ञात नहीं हैं। विशेष रूप से वे न्यूनतम मॉडल के सहसंबंध फलनों से संबंधित नहीं हैं,<ref name="dv10" /> चूँकि वे इससे संबंधित हैं <math> q\to 2</math> में स्पिन सहसंबंधकों की सीमा <math>q</math>-स्टेट पॉट्स मॉडल है।<ref name="dv11" />
इसका तात्पर्य यह है कि अवस्था की समष्टि तीन प्राथमिक अवस्थाओं द्वारा उत्पन्न होती है, जो तीन प्राथमिक क्षेत्रों या ऑपरेटरों के अनुरूप होते हैं:[1]
बाएँ और दाएँ गति वाले विरासोरो बीजगणित के उत्पाद के अपरिवर्तनीय निरूपण में अवस्थाओं की समष्टि का अपघटन इस प्रकार है:
जहाँ अनुरूप आयाम के साथ विरासोरो बीजगणित का अपरिवर्तनीय उच्चतम-वजन प्रतिनिधित्व है। विशेष रूप से, आइसिंग मॉडल विकर्ण और एकात्मक है।
वर्ण और विभाजन फलन
विरासोरो बीजगणित के तीन अभ्यावेदन के वर्ण जो अवस्थाओं की समष्टि में दिखाई देते हैं:[1]
जहाँ डेडेकाइंड एटा फलन है, और नोम के थीटा फलन हैं, उदाहरण के लिए मॉड्यूलर S-आव्यूह, अर्थात आव्यूह इस प्रकार , है:[1]
जहां क्षेत्र को इस प्रकार क्रमबद्ध किया गया है। मॉड्यूलर अपरिवर्तनीय विभाजन फलन इस प्रकार है:
फ़्यूज़न नियम और ऑपरेटर उत्पाद विस्तार
मॉडल के फ़्यूज़न नियम इस प्रकार हैं:
के अंतर्गत संलयन नियम अपरिवर्तनीय हैं, जिसकी समरूपता है। तीन-बिंदु संरचना स्थिरांक इस प्रकार हैं:
उदाहरण के लिए, फ़्यूज़न नियमों और तीन-बिंदु संरचना स्थिरांक को जानने के पश्चात, ऑपरेटर उत्पाद विस्तार लिखना संभव है।
जहाँ प्राथमिक क्षेत्रों के अनुरूप आयाम और त्यागे गए पद हैं अवरोही-क्षेत्रके योगदान हैं।
वृत्त पर सहसंबंध फलन
प्राथमिक क्षेत्रों का कोई भी -, दो- और तीन-बिंदु कार्य गुणात्मक स्थिरांक तक अनुरूप समरूपता द्वारा निर्धारित किया जाता है। क्षेत्र सामान्यीकरण के विकल्प द्वारा यह स्थिरांक - और दो-बिंदु कार्यों के लिए निर्धारित किया गया है। मात्र गैर-तुच्छ गतिशील मात्राएँ तीन-बिंदु संरचना स्थिरांक हैं, जो ऑपरेटर उत्पाद विस्तार के संदर्भ में ऊपर दिए गए थे।
साथ .
तीन गैर-तुच्छ चार-बिंदु फलन प्रकार के हैं . चार-बिंदु फलन के लिए , होने देना और एस- और टी-चैनल अनुरूप ब्लॉक बनें, जो क्रमशः के योगदान के अनुरूप हैं (और उसके वंशज) ऑपरेटर उत्पाद विस्तार में , और का (और उसके वंशज) ऑपरेटर उत्पाद विस्तार में . होने देना क्रॉस-अनुपात हो.
के मामले में , फ़्यूज़न नियम सभी चैनलों में केवल प्राथमिक फ़ील्ड, अर्थात् पहचान क्षेत्र की अनुमति देते हैं।[2]
के मामले में , फ़्यूज़न नियम केवल एस-चैनल में पहचान क्षेत्र और टी-चैनल में स्पिन क्षेत्र की अनुमति देते हैं।[2]
के मामले में , संलयन नियम सभी चैनलों में दो प्राथमिक क्षेत्रों की अनुमति देते हैं: पहचान क्षेत्र और ऊर्जा क्षेत्र।[2]इस मामले में हम मामले में अनुरूप ब्लॉक लिखते हैं केवल: सामान्य मामला प्रीफैक्टर सम्मिलित करके प्राप्त किया जाता है , और पहचानना क्रॉस-अनुपात के साथ.
के मामले में , अनुरूप ब्लॉक हैं:
डिराक फर्मियन के संदर्भ में मॉडल के प्रतिनिधित्व से, किसी भी संख्या में स्पिन या ऊर्जा ऑपरेटरों के सहसंबंध कार्यों की गणना करना संभव है:[1] :
इन सूत्रों में टोरस पर सहसंबंध कार्यों का सामान्यीकरण है, जिसमें थीटा फलन सम्मिलित हैं।[1]
अन्य अवलोकनीय
डिसऑर्डर ऑपरेटर
द्वि-आयामी आइसिंग मॉडल को उच्च-निम्न तापमान द्वंद्व द्वारा स्वयं मैप किया जाता है। स्पिन ऑपरेटर की छवि इस डुअलिटी के अंतर्गत डिसऑर्डर ऑपरेटर है, जिसके बाएँ और दाएँ अनुरूप आयाम समान हैं। यद्यपि डिसऑर्डर ऑपरेटर न्यूनतम मॉडल से संबंधित नहीं है, उदाहरण के लिए, डिसऑर्डर ऑपरेटर से जुड़े सहसंबंध फलनों की त्रुटिहीन गणना की जा सकती है:[1]
जबकि;
क्लस्टरों की कनेक्टिविटी
फोर्टुइन और कस्टेलिन के कारण इज़िंग मॉडल का वर्णन यादृच्छिक क्लस्टर मॉडल के रूप में किया गया है। इस विवरण में, प्राकृतिक अवलोकन क्लस्टरों की कनेक्टिविटी हैं, अर्थात संभावनाएँ यह है कि कई बिंदु एक ही क्लस्टर से संबंधित हैं।
आइसिंग मॉडल को तब स्थिति की -स्टेट पॉट्स मॉडल, के रूप में देखा जा सकता है, जिसका पैरामीटर निरंतर भिन्न हो सकता है, और विरासोरो बीजगणित के केंद्रीय प्रभार से संबंधित है।
महत्वपूर्ण सीमा में, क्लस्टरों की कनेक्टिविटी का व्यवहार स्पिन ऑपरेटर के सहसंबंध फलनों के अनुरूप परिवर्तनों के अंतर्गत समान होता है। फिर भी, कनेक्टिविटी स्पिन सहसंबंध फलनों के साथ युग्मित नहीं होती है: उदाहरण के लिए, तीन-बिंदु कनेक्टिविटी लुप्त नहीं होती है। चार स्वतंत्र चार-बिंदु कनेक्टिविटी हैं, और उनका योग युग्मित होता है।[3] चार-बिंदु कनेक्टिविटी के अन्य संयोजन विश्लेषणात्मक रूप से ज्ञात नहीं हैं। विशेष रूप से वे न्यूनतम मॉडल के सहसंबंध फलनों से संबंधित नहीं हैं,[4] चूँकि वे इससे संबंधित हैं में स्पिन सहसंबंधकों की सीमा -स्टेट पॉट्स मॉडल है।[3]