संयुक्त बलपूर्वक और प्राकृतिक संवहन: Difference between revisions
(Created page with "{{Short description|Type of heat transfer within a fluid}} थर्मल तरल पदार्थों में, संयुक्त मजबूर संव...") |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Type of heat transfer within a fluid}} | {{Short description|Type of heat transfer within a fluid}} | ||
[[थर्मल तरल पदार्थ]] | [[थर्मल तरल पदार्थ]] में, संयुक्त [[मजबूर संवहन]] और [[प्राकृतिक संवहन]], या मिश्रित संवहन, तब होता है जब प्राकृतिक संवहन और मजबूर संवहन तंत्र गर्मी हस्तांतरण के लिए साथ कार्य करते हैं। इसे उन स्थितियों के रूप में भी परिभाषित किया जाता है जहां [[दबाव]] बल और उत्प्लावन बल दोनों परस्पर क्रिया करते हैं।<ref name="Vertical Channels">{{cite journal|last=Sun|first=Hua|author2=Ru Li |author3=Eric Chenier |author4=Guy Lauriat |title=ऊर्ध्वाधर चैनलों में मिश्रित संवहन की सहायता के मॉडलिंग पर|journal=International Journal of Heat and Mass Transfer|year=2012|volume=48|issue=7|pages=1125–1134|doi=10.1007/s00231-011-0964-8|bibcode=2012HMT....48.1125S|url=http://hal.archives-ouvertes.fr/docs/00/69/02/36/PDF/HMT-VF4-revised_EC.pdf}}</ref> संवहन का प्रत्येक रूप गर्मी हस्तांतरण में कितना योगदान देता है यह काफी हद तक द्रव की गतिशीलता, [[तापमान]], [[ज्यामिति]] और अभिविन्यास द्वारा निर्धारित होता है। द्रव की प्रकृति भी प्रभावशाली होती है, क्योंकि तापमान बढ़ने पर द्रव में [[ग्राशोफ़ संख्या]] बढ़ जाती है, लेकिन [[गैस]] के लिए कुछ बिंदु पर यह अधिकतम हो जाती है।<ref name="Mixed Convection">{{cite journal|last=Joye|first=Donald D.|author2=Joseph P. Bushinsky |author3=Paul E. Saylor |title=एक ऊर्ध्वाधर ट्यूब में उच्च ग्राशोफ संख्या पर मिश्रित संवहन ताप स्थानांतरण|journal=Industrial and Engineering Chemistry Research|year=1989|volume=28|issue=12|pages=1899–1903|doi=10.1021/ie00096a025}}</ref> | ||
==विशेषता== | ==विशेषता== | ||
मिश्रित संवहन समस्याओं की विशेषता ग्राशोफ़ संख्या (प्राकृतिक संवहन के लिए) और [[रेनॉल्ड्स संख्या]] (मजबूर संवहन के लिए) है। मिश्रित संवहन पर उछाल का सापेक्ष प्रभाव [[रिचर्डसन संख्या]] के माध्यम से व्यक्त किया जा सकता है: | मिश्रित संवहन समस्याओं की विशेषता ग्राशोफ़ संख्या (प्राकृतिक संवहन के लिए) और [[रेनॉल्ड्स संख्या]] (मजबूर संवहन के लिए) है। मिश्रित संवहन पर उछाल का सापेक्ष प्रभाव [[रिचर्डसन संख्या]] के माध्यम से व्यक्त किया जा सकता है: | ||
:<math> \mathrm{Ri}=\frac{\mathrm{Gr}}{\mathrm{Re}^2}</math> | :<math> \mathrm{Ri}=\frac{\mathrm{Gr}}{\mathrm{Re}^2}</math> | ||
प्रत्येक आयामहीन संख्या के लिए संबंधित लंबाई के पैमाने को समस्या के आधार पर चुना जाना चाहिए, उदाहरण के लिए ग्राशोफ़ संख्या के लिए | प्रत्येक आयामहीन संख्या के लिए संबंधित लंबाई के पैमाने को समस्या के आधार पर चुना जाना चाहिए, उदाहरण के लिए ग्राशोफ़ संख्या के लिए ऊर्ध्वाधर लंबाई और रेनॉल्ड्स संख्या के लिए क्षैतिज पैमाना। छोटे रिचर्डसन संख्याएं मजबूर संवहन के प्रभुत्व वाले प्रवाह की विशेषता बताती हैं। रिचर्डसन की संख्या अधिक है <math> \mathrm{Ri}\approx 16</math> संकेत मिलता है कि प्रवाह समस्या शुद्ध प्राकृतिक संवहन है और मजबूर संवहन के प्रभाव को नजरअंदाज किया जा सकता है।<ref name="Sparrow">{{cite journal|last=Sparrow|first=E.M.|author2=Eichhorn, R. |author3=Gregg, J.L. |title=एक सीमा परत प्रवाह में संयुक्त मजबूर और मुक्त संवहन।|journal=Physics of Fluids|year=1959|volume=2|issue=3|pages=319–328|doi=10.1063/1.1705928|bibcode=1959PhFl....2..319S}}</ref> | ||
प्राकृतिक संवहन की तरह, मिश्रित संवहन प्रवाह की प्रकृति गर्मी हस्तांतरण पर अत्यधिक निर्भर होती है (क्योंकि उछाल ड्राइविंग तंत्र में से है) और अशांति प्रभाव महत्वपूर्ण भूमिका निभाते हैं।<ref name="Garbrecht">{{cite web |url= http://publications.rwth-aachen.de/record/718097/files/718097.pdf | title= एक ऊर्ध्वाधर प्लेट पर त्रि-आयामी मिश्रित संवहन का बड़ा एड़ी अनुकरण|first1= Oliver |last1=Garbrecht | publisher=[[RWTH Aachen University]] |date= August 23, 2017}}</ref> | |||
==मामले== | ==मामले== | ||
[[चर और विशेषता (अनुसंधान)]] की विस्तृत श्रृंखला के कारण, विभिन्न प्रकार के तरल पदार्थों और ज्यामिति से जुड़े [[प्रयोग]] | [[चर और विशेषता (अनुसंधान)]] की विस्तृत श्रृंखला के कारण, विभिन्न प्रकार के तरल पदार्थों और ज्यामिति से जुड़े [[प्रयोग]] के लिए सैकड़ों पेपर प्रकाशित किए गए हैं। यह विविधता व्यापक सहसंबंध प्राप्त करना कठिन बना देती है, और जब ऐसा होता है, तो यह आमतौर पर बहुत सीमित मामलों के लिए होता है।<ref name="Mixed Convection" /> हालाँकि, संयुक्त मजबूर और प्राकृतिक संवहन को आम तौर पर तीन तरीकों में से में वर्णित किया जा सकता है। | ||
===सहायक प्रवाह के साथ द्वि-आयामी मिश्रित संवहन === | ===सहायक प्रवाह के साथ द्वि-आयामी मिश्रित संवहन === | ||
पहला मामला तब होता है जब प्राकृतिक संवहन बलपूर्वक संवहन में सहायता करता है। यह तब देखा जाता है जब उत्प्लावन गति, मजबूर गति के समान दिशा में होती है, इस प्रकार सीमा परत में तेजी आती है और गर्मी हस्तांतरण में वृद्धि होती है।<ref name="Heat Transfer">{{cite book|last=Cengal|first=Yunus A.|title=ऊष्मा एवं द्रव्यमान स्थानांतरण|year=2007|publisher=McGraw-Hill|isbn=978-0-07-339812-9|pages=548–549|edition=4|author2=Afshin J. Ghajar}}</ref> हालाँकि, अशांति में परिवर्तन में देरी हो सकती है।<ref name="Abedin">{{cite journal|last=Abedin|first=M.Z.|author2=Tsuji, T. |author3=Lee, J. |title=गर्म ऊर्ध्वाधर सपाट प्लेट के साथ थर्मली संचालित सीमा परतों की विशेषताओं पर फ्रीस्ट्रीम का प्रभाव।|journal=International Journal of Heat and Fluid Flow|year=2012|volume=36|pages=92–100|doi=10.1016/j.ijheatfluidflow.2012.03.003}}</ref> इसका | पहला मामला तब होता है जब प्राकृतिक संवहन बलपूर्वक संवहन में सहायता करता है। यह तब देखा जाता है जब उत्प्लावन गति, मजबूर गति के समान दिशा में होती है, इस प्रकार सीमा परत में तेजी आती है और गर्मी हस्तांतरण में वृद्धि होती है।<ref name="Heat Transfer">{{cite book|last=Cengal|first=Yunus A.|title=ऊष्मा एवं द्रव्यमान स्थानांतरण|year=2007|publisher=McGraw-Hill|isbn=978-0-07-339812-9|pages=548–549|edition=4|author2=Afshin J. Ghajar}}</ref> हालाँकि, अशांति में परिवर्तन में देरी हो सकती है।<ref name="Abedin">{{cite journal|last=Abedin|first=M.Z.|author2=Tsuji, T. |author3=Lee, J. |title=गर्म ऊर्ध्वाधर सपाट प्लेट के साथ थर्मली संचालित सीमा परतों की विशेषताओं पर फ्रीस्ट्रीम का प्रभाव।|journal=International Journal of Heat and Fluid Flow|year=2012|volume=36|pages=92–100|doi=10.1016/j.ijheatfluidflow.2012.03.003}}</ref> इसका उदाहरण गर्म प्लेट पर ऊपर की ओर उड़ने वाला पंखा होगा। चूंकि गर्मी स्वाभाविक रूप से बढ़ती है, हवा को प्लेट के ऊपर ऊपर की ओर धकेला जाता है जिससे गर्मी का स्थानांतरण बढ़ जाता है। | ||
===विपरीत प्रवाह के साथ द्वि-आयामी मिश्रित संवहन === | ===विपरीत प्रवाह के साथ द्वि-आयामी मिश्रित संवहन === | ||
दूसरा मामला तब होता है जब प्राकृतिक संवहन, मजबूर संवहन के विपरीत तरीके से कार्य करता है। | दूसरा मामला तब होता है जब प्राकृतिक संवहन, मजबूर संवहन के विपरीत तरीके से कार्य करता है। ठंडी प्लेट पर हवा को ऊपर की ओर धकेलने वाले पंखे पर विचार करें।<ref name="Heat Transfer" /> इस मामले में, ठंडी हवा का उत्प्लावन बल स्वाभाविक रूप से इसे गिरने का कारण बनता है, लेकिन ऊपर की ओर मजबूर होने वाली हवा इस प्राकृतिक गति का विरोध करती है। रिचर्डसन संख्या के आधार पर, ठंडी प्लेट की सीमा परत मुक्त धारा की तुलना में कम वेग प्रदर्शित करती है, या विपरीत दिशा में भी तेज हो जाती है। इसलिए यह दूसरा मिश्रित संवहन मामला सीमा परत में मजबूत कतरनी का अनुभव करता है और जल्दी से अशांत प्रवाह स्थिति में परिवर्तित हो जाता है। | ||
===त्रि-आयामी मिश्रित संवहन=== | ===त्रि-आयामी मिश्रित संवहन=== | ||
तीसरे मामले को त्रि-आयामी मिश्रित संवहन कहा जाता है। यह प्रवाह तब होता है जब उत्प्लावन गति, मजबूर गति के लंबवत कार्य करती है। इस मामले का | तीसरे मामले को त्रि-आयामी मिश्रित संवहन कहा जाता है। यह प्रवाह तब होता है जब उत्प्लावन गति, मजबूर गति के लंबवत कार्य करती है। इस मामले का उदाहरण क्षैतिज प्रवाह वाली गर्म, ऊर्ध्वाधर फ़्लैट प्लेट है, जैसे सौर तापीय केंद्रीय रिसीवर की सतह। जबकि मुक्त धारा निर्धारित दिशा में अपनी गति जारी रखती है, प्लेट पर सीमा परत ऊपर की दिशा में तेज हो जाती है। इस प्रवाह के मामले में, उछाल लामिना-अशांत संक्रमण में प्रमुख भूमिका निभाता है, जबकि लगाया गया वेग अशांति (लैमिनराइजेशन) को दबा सकता है<ref name="Garbrecht" /> | ||
==कुल ताप अंतरण की गणना== | ==कुल ताप अंतरण की गणना== | ||
बस मजबूर और प्राकृतिक संवहन के लिए गर्मी हस्तांतरण गुणांक को जोड़ने या घटाने से मिश्रित संवहन के लिए गलत परिणाम प्राप्त होंगे। इसके अलावा, चूंकि गर्मी हस्तांतरण पर उछाल का प्रभाव कभी-कभी मुक्त धारा के प्रभाव से भी अधिक हो जाता है, इसलिए मिश्रित संवहन को शुद्ध मजबूर संवहन के रूप में नहीं माना जाना चाहिए। परिणामस्वरूप, समस्या-विशिष्ट सहसंबंध आवश्यक हैं। प्रायोगिक डेटा ने यह सुझाव दिया है | बस मजबूर और प्राकृतिक संवहन के लिए गर्मी हस्तांतरण गुणांक को जोड़ने या घटाने से मिश्रित संवहन के लिए गलत परिणाम प्राप्त होंगे। इसके अलावा, चूंकि गर्मी हस्तांतरण पर उछाल का प्रभाव कभी-कभी मुक्त धारा के प्रभाव से भी अधिक हो जाता है, इसलिए मिश्रित संवहन को शुद्ध मजबूर संवहन के रूप में नहीं माना जाना चाहिए। परिणामस्वरूप, समस्या-विशिष्ट सहसंबंध आवश्यक हैं। प्रायोगिक डेटा ने यह सुझाव दिया है | ||
:<math> \mathrm{Nu}=(\mathrm{Nu}_\mathrm{forced}^n + \mathrm{Nu}_\mathrm{natural}^n)^{1/n}</math> | :<math> \mathrm{Nu}=(\mathrm{Nu}_\mathrm{forced}^n + \mathrm{Nu}_\mathrm{natural}^n)^{1/n}</math> | ||
क्षेत्र-औसत ताप अंतरण का वर्णन कर सकता है।<ref name="Siebers">{{cite book|last1=Siebers|first1=D.L.|title=क्षैतिज प्रवाह में एक बड़ी, ऊर्ध्वाधर सतह से प्रायोगिक मिश्रित संवहन ऊष्मा स्थानांतरण।|date=1983|pages=96-101|publisher=Ph.D. thesis, Stanford University}}</ref> क्षैतिज प्रवाह में | क्षेत्र-औसत ताप अंतरण का वर्णन कर सकता है।<ref name="Siebers">{{cite book|last1=Siebers|first1=D.L.|title=क्षैतिज प्रवाह में एक बड़ी, ऊर्ध्वाधर सतह से प्रायोगिक मिश्रित संवहन ऊष्मा स्थानांतरण।|date=1983|pages=96-101|publisher=Ph.D. thesis, Stanford University}}</ref> क्षैतिज प्रवाह में बड़ी, ऊर्ध्वाधर सतह के मामले में <math>n=3.2</math> कैसे के विवरण के आधार पर सर्वोत्तम फिट प्रदान किया गया <math>\mathrm{Nu}_\mathrm{forced}</math> फिट किया गया है।<ref name="Siebers">{{cite book|last1=Siebers|first1=D.L.|title=क्षैतिज प्रवाह में एक बड़ी, ऊर्ध्वाधर सतह से प्रायोगिक मिश्रित संवहन ऊष्मा स्थानांतरण।|date=1983|pages=96-101|publisher=Ph.D. thesis, Stanford University}}</ref> | ||
==अनुप्रयोग== | ==अनुप्रयोग== | ||
संयुक्त मजबूर और प्राकृतिक संवहन अक्सर बहुत उच्च-शक्ति-आउटपुट उपकरणों में देखा जाता है जहां मजबूर संवहन सभी आवश्यक गर्मी को खत्म करने के लिए पर्याप्त नहीं है। इस बिंदु पर, प्राकृतिक संवहन को मजबूर संवहन के साथ संयोजित करने से अक्सर वांछित परिणाम मिलेंगे। इन प्रक्रियाओं के उदाहरण परमाणु रिएक्टर प्रौद्योगिकी और इलेक्ट्रॉनिक शीतलन के कुछ पहलू हैं।<ref name="Mixed Convection" /> | संयुक्त मजबूर और प्राकृतिक संवहन अक्सर बहुत उच्च-शक्ति-आउटपुट उपकरणों में देखा जाता है जहां मजबूर संवहन सभी आवश्यक गर्मी को खत्म करने के लिए पर्याप्त नहीं है। इस बिंदु पर, प्राकृतिक संवहन को मजबूर संवहन के साथ संयोजित करने से अक्सर वांछित परिणाम मिलेंगे। इन प्रक्रियाओं के उदाहरण परमाणु रिएक्टर प्रौद्योगिकी और इलेक्ट्रॉनिक शीतलन के कुछ पहलू हैं।<ref name="Mixed Convection" /> | ||
==संदर्भ== | ==संदर्भ== | ||
{{reflist}} | {{reflist}} |
Revision as of 08:43, 10 August 2023
थर्मल तरल पदार्थ में, संयुक्त मजबूर संवहन और प्राकृतिक संवहन, या मिश्रित संवहन, तब होता है जब प्राकृतिक संवहन और मजबूर संवहन तंत्र गर्मी हस्तांतरण के लिए साथ कार्य करते हैं। इसे उन स्थितियों के रूप में भी परिभाषित किया जाता है जहां दबाव बल और उत्प्लावन बल दोनों परस्पर क्रिया करते हैं।[1] संवहन का प्रत्येक रूप गर्मी हस्तांतरण में कितना योगदान देता है यह काफी हद तक द्रव की गतिशीलता, तापमान, ज्यामिति और अभिविन्यास द्वारा निर्धारित होता है। द्रव की प्रकृति भी प्रभावशाली होती है, क्योंकि तापमान बढ़ने पर द्रव में ग्राशोफ़ संख्या बढ़ जाती है, लेकिन गैस के लिए कुछ बिंदु पर यह अधिकतम हो जाती है।[2]
विशेषता
मिश्रित संवहन समस्याओं की विशेषता ग्राशोफ़ संख्या (प्राकृतिक संवहन के लिए) और रेनॉल्ड्स संख्या (मजबूर संवहन के लिए) है। मिश्रित संवहन पर उछाल का सापेक्ष प्रभाव रिचर्डसन संख्या के माध्यम से व्यक्त किया जा सकता है:
प्रत्येक आयामहीन संख्या के लिए संबंधित लंबाई के पैमाने को समस्या के आधार पर चुना जाना चाहिए, उदाहरण के लिए ग्राशोफ़ संख्या के लिए ऊर्ध्वाधर लंबाई और रेनॉल्ड्स संख्या के लिए क्षैतिज पैमाना। छोटे रिचर्डसन संख्याएं मजबूर संवहन के प्रभुत्व वाले प्रवाह की विशेषता बताती हैं। रिचर्डसन की संख्या अधिक है संकेत मिलता है कि प्रवाह समस्या शुद्ध प्राकृतिक संवहन है और मजबूर संवहन के प्रभाव को नजरअंदाज किया जा सकता है।[3]
प्राकृतिक संवहन की तरह, मिश्रित संवहन प्रवाह की प्रकृति गर्मी हस्तांतरण पर अत्यधिक निर्भर होती है (क्योंकि उछाल ड्राइविंग तंत्र में से है) और अशांति प्रभाव महत्वपूर्ण भूमिका निभाते हैं।[4]
मामले
चर और विशेषता (अनुसंधान) की विस्तृत श्रृंखला के कारण, विभिन्न प्रकार के तरल पदार्थों और ज्यामिति से जुड़े प्रयोग के लिए सैकड़ों पेपर प्रकाशित किए गए हैं। यह विविधता व्यापक सहसंबंध प्राप्त करना कठिन बना देती है, और जब ऐसा होता है, तो यह आमतौर पर बहुत सीमित मामलों के लिए होता है।[2] हालाँकि, संयुक्त मजबूर और प्राकृतिक संवहन को आम तौर पर तीन तरीकों में से में वर्णित किया जा सकता है।
सहायक प्रवाह के साथ द्वि-आयामी मिश्रित संवहन
पहला मामला तब होता है जब प्राकृतिक संवहन बलपूर्वक संवहन में सहायता करता है। यह तब देखा जाता है जब उत्प्लावन गति, मजबूर गति के समान दिशा में होती है, इस प्रकार सीमा परत में तेजी आती है और गर्मी हस्तांतरण में वृद्धि होती है।[5] हालाँकि, अशांति में परिवर्तन में देरी हो सकती है।[6] इसका उदाहरण गर्म प्लेट पर ऊपर की ओर उड़ने वाला पंखा होगा। चूंकि गर्मी स्वाभाविक रूप से बढ़ती है, हवा को प्लेट के ऊपर ऊपर की ओर धकेला जाता है जिससे गर्मी का स्थानांतरण बढ़ जाता है।
विपरीत प्रवाह के साथ द्वि-आयामी मिश्रित संवहन
दूसरा मामला तब होता है जब प्राकृतिक संवहन, मजबूर संवहन के विपरीत तरीके से कार्य करता है। ठंडी प्लेट पर हवा को ऊपर की ओर धकेलने वाले पंखे पर विचार करें।[5] इस मामले में, ठंडी हवा का उत्प्लावन बल स्वाभाविक रूप से इसे गिरने का कारण बनता है, लेकिन ऊपर की ओर मजबूर होने वाली हवा इस प्राकृतिक गति का विरोध करती है। रिचर्डसन संख्या के आधार पर, ठंडी प्लेट की सीमा परत मुक्त धारा की तुलना में कम वेग प्रदर्शित करती है, या विपरीत दिशा में भी तेज हो जाती है। इसलिए यह दूसरा मिश्रित संवहन मामला सीमा परत में मजबूत कतरनी का अनुभव करता है और जल्दी से अशांत प्रवाह स्थिति में परिवर्तित हो जाता है।
त्रि-आयामी मिश्रित संवहन
तीसरे मामले को त्रि-आयामी मिश्रित संवहन कहा जाता है। यह प्रवाह तब होता है जब उत्प्लावन गति, मजबूर गति के लंबवत कार्य करती है। इस मामले का उदाहरण क्षैतिज प्रवाह वाली गर्म, ऊर्ध्वाधर फ़्लैट प्लेट है, जैसे सौर तापीय केंद्रीय रिसीवर की सतह। जबकि मुक्त धारा निर्धारित दिशा में अपनी गति जारी रखती है, प्लेट पर सीमा परत ऊपर की दिशा में तेज हो जाती है। इस प्रवाह के मामले में, उछाल लामिना-अशांत संक्रमण में प्रमुख भूमिका निभाता है, जबकि लगाया गया वेग अशांति (लैमिनराइजेशन) को दबा सकता है[4]
कुल ताप अंतरण की गणना
बस मजबूर और प्राकृतिक संवहन के लिए गर्मी हस्तांतरण गुणांक को जोड़ने या घटाने से मिश्रित संवहन के लिए गलत परिणाम प्राप्त होंगे। इसके अलावा, चूंकि गर्मी हस्तांतरण पर उछाल का प्रभाव कभी-कभी मुक्त धारा के प्रभाव से भी अधिक हो जाता है, इसलिए मिश्रित संवहन को शुद्ध मजबूर संवहन के रूप में नहीं माना जाना चाहिए। परिणामस्वरूप, समस्या-विशिष्ट सहसंबंध आवश्यक हैं। प्रायोगिक डेटा ने यह सुझाव दिया है
क्षेत्र-औसत ताप अंतरण का वर्णन कर सकता है।[7] क्षैतिज प्रवाह में बड़ी, ऊर्ध्वाधर सतह के मामले में कैसे के विवरण के आधार पर सर्वोत्तम फिट प्रदान किया गया फिट किया गया है।[7]
अनुप्रयोग
संयुक्त मजबूर और प्राकृतिक संवहन अक्सर बहुत उच्च-शक्ति-आउटपुट उपकरणों में देखा जाता है जहां मजबूर संवहन सभी आवश्यक गर्मी को खत्म करने के लिए पर्याप्त नहीं है। इस बिंदु पर, प्राकृतिक संवहन को मजबूर संवहन के साथ संयोजित करने से अक्सर वांछित परिणाम मिलेंगे। इन प्रक्रियाओं के उदाहरण परमाणु रिएक्टर प्रौद्योगिकी और इलेक्ट्रॉनिक शीतलन के कुछ पहलू हैं।[2]
संदर्भ
- ↑ Sun, Hua; Ru Li; Eric Chenier; Guy Lauriat (2012). "ऊर्ध्वाधर चैनलों में मिश्रित संवहन की सहायता के मॉडलिंग पर" (PDF). International Journal of Heat and Mass Transfer. 48 (7): 1125–1134. Bibcode:2012HMT....48.1125S. doi:10.1007/s00231-011-0964-8.
- ↑ 2.0 2.1 2.2 Joye, Donald D.; Joseph P. Bushinsky; Paul E. Saylor (1989). "एक ऊर्ध्वाधर ट्यूब में उच्च ग्राशोफ संख्या पर मिश्रित संवहन ताप स्थानांतरण". Industrial and Engineering Chemistry Research. 28 (12): 1899–1903. doi:10.1021/ie00096a025.
- ↑ Sparrow, E.M.; Eichhorn, R.; Gregg, J.L. (1959). "एक सीमा परत प्रवाह में संयुक्त मजबूर और मुक्त संवहन।". Physics of Fluids. 2 (3): 319–328. Bibcode:1959PhFl....2..319S. doi:10.1063/1.1705928.
- ↑ 4.0 4.1 Garbrecht, Oliver (August 23, 2017). "एक ऊर्ध्वाधर प्लेट पर त्रि-आयामी मिश्रित संवहन का बड़ा एड़ी अनुकरण" (PDF). RWTH Aachen University.
- ↑ 5.0 5.1 Cengal, Yunus A.; Afshin J. Ghajar (2007). ऊष्मा एवं द्रव्यमान स्थानांतरण (4 ed.). McGraw-Hill. pp. 548–549. ISBN 978-0-07-339812-9.
- ↑ Abedin, M.Z.; Tsuji, T.; Lee, J. (2012). "गर्म ऊर्ध्वाधर सपाट प्लेट के साथ थर्मली संचालित सीमा परतों की विशेषताओं पर फ्रीस्ट्रीम का प्रभाव।". International Journal of Heat and Fluid Flow. 36: 92–100. doi:10.1016/j.ijheatfluidflow.2012.03.003.
- ↑ 7.0 7.1 Siebers, D.L. (1983). क्षैतिज प्रवाह में एक बड़ी, ऊर्ध्वाधर सतह से प्रायोगिक मिश्रित संवहन ऊष्मा स्थानांतरण।. Ph.D. thesis, Stanford University. pp. 96–101.