समान अभिसरण: Difference between revisions
(Created page with "{{Short description|Mode of convergence of a function sequence}} गणितीय विश्लेषण के गणित क्षेत्र में, एकस...") |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Mode of convergence of a function sequence}} | {{Short description|Mode of convergence of a function sequence}} | ||
कैलकुलस के इतिहास में आरंभ में समान अभिसरण और बिंदुवार अभिसरण के बीच अंतर को पूरी तरह से सराहा नहीं गया था, जिससे दोषपूर्ण तर्क के उदाहरण सामने आए। अवधारणा, जिसे पहली बार | |||
विश्लेषण के गणितीय क्षेत्र में, समान अभिसरण बिंदुवार अभिसरण से अधिक प्रबल कार्यों के अभिसरण का एक विधि है। कार्य का एक क्रम <math>(f_n)</math> सेट <math>E</math> पर कार्य डोमेन के रूप में एक सीमित कार्य <math>f</math> में समान रूप से परिवर्तित होता है, यदि कोई इच्छानुसार से छोटी सकारात्मक संख्या <math>\epsilon</math> दी गई हो, तो एक संख्या <math>N</math> पाया जा सकता है जैसे कि प्रत्येक कार्य <math>f_N, f_{N+1},f_{N+2},\ldots</math> <math>E</math> में प्रत्येक बिंदु <math>x</math> पर <math>f</math> से <math>\epsilon</math> से अधिक भिन्न नहीं है। अनौपचारिक विधि से वर्णित है, यदि <math>f_n</math> समान रूप से <math>f</math> में परिवर्तित होता है, तो वह दर जिस पर<math>f_n(x)</math>, <math>f(x)</math> तक पहुंचता है निम्नलिखित अर्थों में अपने संपूर्ण डोमेन में "समान" है: यह दिखाने के लिए कि <math>f_n(x)</math>समान रूप से एक निश्चित दूरी <math>f(x)</math>के अंदर आता है, हमें प्रश्न में <math>\epsilon</math> का मान जानने की आवश्यकता नहीं है — प्रश्न में <math>x\in E</math> का एक ही मान पाया जा सकता है -<math>N=N(\epsilon)</math> का एक ही मान पाया जा सकता है से स्वतंत्र, जैसे कि <math>n\geq N</math> चुनने से यह सुनिश्चित हो जाएगा कि <math>f_n(x)</math> सभी <math>x\in E</math> के लिए <math>f(x)</math> के <math>\epsilon</math> के अंदर है। इसके विपरीत, <math>f_n</math> से <math>f</math> का बिंदुवार अभिसरण केवल यह आश्वासन देता है कि पहले से दिए गए किसी भी <math>x\in E</math> के लिए, हम <math>N=N(\epsilon, x)</math> पा सकते हैं (अथार्त , <math>N</math>, <math>x</math> के मान पर निर्भर हो सकता है) जैसे कि, उस विशेष <math>x</math> के लिए,<math>f_n(x)</math> <math>\epsilon</math> के अंतर्गत आता है <math>f(x)</math> का जब भी <math>n\geq N</math> (एक अलग x को बिंदुवार अभिसरण के लिए एक अलग N की आवश्यकता होती है)। | |||
कैलकुलस के इतिहास में आरंभ में समान अभिसरण और बिंदुवार अभिसरण के बीच अंतर को पूरी तरह से सराहा नहीं गया था, जिससे दोषपूर्ण तर्क के उदाहरण सामने आए। यह अवधारणा, जिसे पहली बार कार्ल वीयरस्ट्रैस द्वारा औपचारिक रूप दिया गया था, महत्वपूर्ण है क्योंकि कार्यों <math>f_n</math> के कई गुण, जैसे निरंतरता, रीमैन इंटीग्रेबिलिटी, और, अतिरिक्त परिकल्पनाओं के साथ, भिन्नता, अभिसरण होने पर सीमा <math>f</math> में स्थानांतरित हो जाते हैं एक समान है, किंतु जरूरी नहीं कि अभिसरण एक समान न हो। | |||
== इतिहास == | == इतिहास == | ||
1821 में [[ऑगस्टिन-लुई कॉची]] ने एक प्रमाण प्रकाशित किया कि निरंतर कार्यों का एक अभिसरण योग | 1821 में [[ऑगस्टिन-लुई कॉची]] ने एक प्रमाण प्रकाशित किया कि निरंतर कार्यों का एक अभिसरण योग सदैव निरंतर होता है, जिसके लिए 1826 में [[नील्स हेनरिक एबेल]] ने फूरियर श्रृंखला के संदर्भ में कथित प्रति-उदाहरण पाए, यह तर्क देते हुए कि कॉची का प्रमाण गलत होना चाहिए। उस समय अभिसरण की पूरी तरह से मानक धारणाएं उपस्थित नहीं थीं, और कॉची ने अनंत विधियों का उपयोग करके अभिसरण को संभाला जाता है। आधुनिक भाषा में कहें तो, कॉची ने जो सिद्ध किया वह यह है कि निरंतर कार्यों के एक समान रूप से अभिसरण अनुक्रम की एक निरंतर सीमा होती है। निरंतर कार्यों को एक सतत कार्य में परिवर्तित करने के लिए केवल बिंदुवार-अभिसरण सीमा की विफलता कार्यों के अनुक्रमों को संभालते समय विभिन्न प्रकार के अभिसरण के बीच अंतर करने के महत्व को दर्शाती है।<ref>{{cite journal | doi=10.1016/j.hm.2004.11.010 | volume=32 | issue=4 | title=Exceptions and counterexamples: Understanding Abel's comment on Cauchy's Theorem | journal=Historia Mathematica | pages=453–480| year=2005 | last1=Sørensen | first1=Henrik Kragh | doi-access=free }}</ref> | ||
वर्दी अभिसरण शब्द का प्रयोग संभवत: सबसे पहले | |||
वर्दी अभिसरण शब्द का प्रयोग संभवत: सबसे पहले क्रिस्टोफ गुडेरमैन ने 1838 में अण्डाकार कार्यों पर एक पेपर में किया था, जहां उन्होंने "समान विधि से अभिसरण" वाक्यांश का प्रयोग तब किया था जब एक श्रृंखला <math display="inline">\sum_{n=1}^\infty f_n(x,\phi,\psi)</math> का "अभिसरण का विधि " चर से स्वतंत्र होता है। <math>\phi</math> और <math>\psi.</math> जबकि उन्होंने सोचा कि यह एक "उल्लेखनीय तथ्य" है जब एक श्रृंखला इस तरह से मिलती है, उन्होंने कोई औपचारिक परिभाषा नहीं दी, न ही अपने किसी भी प्रमाण में संपत्ति का उपयोग किया।<ref>{{Cite book | |||
|title=A history of analysis | |title=A history of analysis | ||
|first=Hans Niels | |first=Hans Niels | ||
Line 18: | Line 22: | ||
|page=184 | |page=184 | ||
}}</ref> | }}</ref> | ||
वीयरस्ट्रैस और [[बर्नहार्ड रीमैन]] के प्रभाव में इस अवधारणा और संबंधित प्रश्नों का 19वीं शताब्दी के अंत में [[हरमन हैंकेल]], [[पॉल डू बोइस-रेमंड]], [[यूलिसिस दीनी]], सेसारे अर्ज़ेला और अन्य द्वारा गहन अध्ययन किया | बाद में गुडरमैन के शिष्य कार्ल वेइरस्ट्रैस, जिन्होंने 1839-1840 में अण्डाकार कार्यों पर उनके पाठ्यक्रम में भाग लिया था, ने ग्लीचमाज़िग कन्वर्जेंट (जर्मन: समान रूप से अभिसरण) शब्द गढ़ा, जिसका उपयोग उन्होंने 1894 में प्रकाशित अपने 1841 के पेपर ज़ूर थियोरी डेर पोटेंज़रेइहेन में किया। स्वतंत्र रूप से, समान अवधारणाएं थीं फिलिप लुडविग वॉन सीडेल<ref>{{cite book |last=Lakatos |first=Imre |author-link=Imre Lakatos |title=प्रमाण एवं खण्डन|year=1976|publisher=Cambridge University Press |pages=[https://archive.org/details/proofsrefutation0000laka/page/141 141] |isbn=978-0-521-21078-2|title-link=प्रमाण एवं खण्डन }}</ref> और जॉर्ज गेब्रियल स्टोक्स द्वारा व्यक्त। जी. एच. हार्डी ने अपने पेपर "सर जॉर्ज स्टोक्स और एक समान अभिसरण की अवधारणा" में तीन परिभाषाओं की तुलना की और टिप्पणी की: "वीयरस्ट्रैस की खोज सबसे प्रारंभिक थी, और उन्होंने अकेले ही विश्लेषण के मौलिक विचारों में से एक के रूप में इसके दूरगामी महत्व को पूरी तरह से अनुभव किया।" | ||
वीयरस्ट्रैस और [[बर्नहार्ड रीमैन]] के प्रभाव में इस अवधारणा और संबंधित प्रश्नों का 19वीं शताब्दी के अंत में [[हरमन हैंकेल]], [[पॉल डू बोइस-रेमंड]], [[यूलिसिस दीनी]], सेसारे अर्ज़ेला और अन्य द्वारा गहन अध्ययन किया गया था। | |||
== परिभाषा == | == परिभाषा == | ||
हम पहले वास्तविक-मूल्यवान | हम पहले वास्तविक-मूल्यवान कार्य के लिए समान अभिसरण को परिभाषित करते हैं | वास्तविक-मूल्यवान फ़ंक्शन, चूँकि अवधारणा को [[मीट्रिक स्थान]] और अधिक सामान्यतः [[एकसमान स्थान]] (यूनिफ़ॉर्म कन्वर्जेंस या सामान्यीकरण देखें) के लिए कार्य मैपिंग के लिए आसानी से सामान्यीकृत किया जाता है। | ||
मान लीजिए कि <math>E</math> एक समुच्चय है और <math>(f_n)_{n \in \N}</math> उस पर वास्तविक-मूल्यवान कार्यों का एक क्रम है। हम कहते हैं कि अनुक्रम <math>(f_n)_{n \in \N}</math> , <math>E</math> पर सीमा <math>f: E \to \R</math> के साथ समान रूप से अभिसरण है यदि प्रत्येक <math>\epsilon > 0,</math> के लिए, एक प्राकृतिक संख्या <math>N</math> उपस्थित है जैसे कि सभी <math>n \geq N</math> के लिए और सभी <math>x \in E</math> के लिए है | |||
:<math>|f_n(x)-f(x)|<\epsilon.</math> | :<math>|f_n(x)-f(x)|<\epsilon.</math> | ||
<math>f_n</math> से <math>f</math> के समान अभिसरण के लिए संकेतन अधिक मानकीकृत नहीं है और विभिन्न लेखकों ने विभिन्न प्रकार के प्रतीकों का उपयोग किया है, जिनमें (लोकप्रियता के लगभग घटते क्रम में) सम्मिलित हैं: | |||
:<math>f_n\rightrightarrows f, \quad \underset{n\to\infty}{\mathrm{unif\ lim}}f_n = f, \quad f_n \overset{\mathrm{unif.}}{\longrightarrow} f, \quad f=u-\lim_{n\to\infty} f_n .</math> | :<math>f_n\rightrightarrows f, \quad \underset{n\to\infty}{\mathrm{unif\ lim}}f_n = f, \quad f_n \overset{\mathrm{unif.}}{\longrightarrow} f, \quad f=u-\lim_{n\to\infty} f_n .</math> | ||
अधिकांशतः किसी विशेष प्रतीक का उपयोग नहीं किया जाता है, और लेखक बस लिखते हैं | |||
:<math>f_n\to f \quad \mathrm{uniformly}</math> यह इंगित करने के लिए कि अभिसरण एक समान है। (इसके विपरीत, अभिव्यक्ति <math>f_n\to f</math> | :<math>f_n\to f \quad \mathrm{uniformly}</math> | ||
:यह इंगित करने के लिए कि अभिसरण एक समान है। (इसके विपरीत, क्रियाविशेषण के बिना E पर अभिव्यक्ति <math>f_n\to f</math> को <math>E</math> पर बिंदुवार अभिसरण के रूप में लिया जाता है: सभी <math> x \in E </math>, <math>f_n(x)\to f(x)</math> के लिए <math>n\to\infty</math> के रूप में है। | |||
चूँकि <math>\R</math> एक पूर्ण मीट्रिक स्थान है, कॉची मानदंड का उपयोग समान अभिसरण के लिए समकक्ष वैकल्पिक सूत्रीकरण देने के लिए किया जा सकता है: <math>(f_n)_{n\in\N}</math>} <math>E</math>पर समान रूप से अभिसरण करता है (पिछले अर्थ में) यदि और केवल तभी यदि प्रत्येक <math> \epsilon > 0 </math> के लिए, ऐसी कोई प्राकृतिक संख्या <math>N</math> उपस्थित होता है | |||
:<math>x\in E, m,n\geq N \implies |f_m(x)-f_n(x)|<\epsilon</math>. | :<math>x\in E, m,n\geq N \implies |f_m(x)-f_n(x)|<\epsilon</math>. | ||
Line 49: | Line 56: | ||
:<math>f_n\rightrightarrows f\iff d(f_n,f) \to 0</math>. | :<math>f_n\rightrightarrows f\iff d(f_n,f) \to 0</math>. | ||
अनुक्रम <math>(f_n)_{n \in \N}</math> को स्थानीय रूप से सीमा <math>f</math> के साथ समान रूप से अभिसरण कहा जाता है यदि <math>E </math> एक मीट्रिक स्थान है और <math>x\in E</math> में प्रत्येक के लिए, एक<math>r > 0</math> उपस्थित है जैसे कि <math>(f_n)</math> समान रूप से <math>B(x,r)\cap E.</math> पर अभिसरण करता है। यह स्पष्ट है कि एक समान अभिसरण का तात्पर्य स्थानीय समान अभिसरण से है, जिसका तात्पर्य बिंदुवार अभिसरण से है। | |||
=== टिप्पणियाँ === | === टिप्पणियाँ === | ||
Line 60: | Line 67: | ||
=== सामान्यीकरण === | === सामान्यीकरण === | ||
कोई सीधे | कोई सीधे रूप से अवधारणा को कार्य E → M तक विस्तारित कर सकता है, जहां (M, d) प्रतिस्थापित करके एक मीट्रिक स्थान है जिसके स्थान पर<math>|f_n(x)-f(x)|</math> साथ <math>d(f_n(x),f(x))</math>. | ||
सबसे सामान्य सेटिंग | सबसे सामान्य सेटिंग कार्य ''E'' → ''X'', के [[नेट (गणित)]] का एक समान अभिसरण है, जहां ''X'' एक समान स्थान है। हम कहते हैं कि नेट <math>(f_\alpha)</math> सीमा f : E → X के साथ समान रूप से अभिसरण होता है यदि और केवल यदि X में <math>\alpha_0</math>प्रत्येक [[प्रतिवेश (टोपोलॉजी)]] V के लिए एक उपस्थित है, जैसे कि E और प्रत्येक में प्रत्येक x के लिए <math>\alpha\geq \alpha_0</math>, <math>(f_\alpha(x),f(x))</math> V में है। इस स्थिति में सतत फलनों की एकसमान सीमा सतत् बनी रहती है। | ||
===अतिवास्तविक सेटिंग में परिभाषा=== | ===अतिवास्तविक सेटिंग में परिभाषा=== | ||
एकसमान अभिसरण | एकसमान अभिसरण एक अतियथार्थवादी सेटिंग में एक सरलीकृत परिभाषा को स्वीकार करता है। इस प्रकार, एक अनुक्रम <math>f_n</math> समान रूप से f में परिवर्तित हो जाता है यदि <math>f^*</math>के डोमेन में सभी x और सभी अनंत n के लिए, <math>f_n^*(x)</math> अपरिमित रूप से <math>f^*(x)</math> के समीप है (समान निरंतरता की समान परिभाषा के लिए सूक्ष्म निरंतरता देखें)। | ||
== उदाहरण == | == उदाहरण == | ||
<math>x \in [0,1)</math> के लिए, एक समान अभिसरण का एक मूल उदाहरण इस प्रकार चित्रित किया जा सकता है: अनुक्रम <math>(1/2)^{x+n}</math>समान रूप से अभिसरण करता है, जबकि <math>x^n</math>नहीं करता. विशेष रूप से, मान लें कि <math>\epsilon=1/4</math> x के मान की परवाह किए बिना, <math>n \geq 2</math> होने पर प्रत्येक फ़ंक्शन<math>(1/2)^{x+n}</math> <math>1/4</math> से कम या उसके समान होता है। दूसरी ओर,<math>x^n</math><math>n</math> के लगातार बढ़ते मानों पर केवल <math>1/4</math> से कम या उसके समान होता है जब <math>x</math>के मानों को 1 के समीप और समीप चुना जाता है (नीचे और अधिक गहराई से समझाया गया है)। | |||
एक [[टोपोलॉजिकल स्पेस]] | एक [[टोपोलॉजिकल स्पेस]] | ||
Line 77: | Line 84: | ||
:<math>\lim_{n\to\infty}\|f_n-f\|_{\infty}=0</math>. | :<math>\lim_{n\to\infty}\|f_n-f\|_{\infty}=0</math>. | ||
कार्यों का क्रम <math>(f_n)</math> :<math>\begin{cases} f_n:[0,1]\to [0,1] \\ f_n(x)=x^n \end{cases}</math> फ़ंक्शंस के अनुक्रम का एक उत्कृष्ट उदाहरण है जो किसी फ़ंक्शन | कार्यों का क्रम <math>(f_n)</math> :<math>\begin{cases} f_n:[0,1]\to [0,1] \\ f_n(x)=x^n \end{cases}</math> | ||
फ़ंक्शंस के अनुक्रम का एक उत्कृष्ट उदाहरण है जो किसी फ़ंक्शन <math>f</math> में बिंदुवार रूप से परिवर्तित होता है लेकिन समान रूप से नहीं। इसे दिखाने के लिए, हम पहले देखते हैं कि <math>(f_n)</math> की बिंदुवार सीमा <math>n\to\infty</math>के रूप में फ़ंक्शन <math>f</math> है, जो द्वारा दिया गया है | |||
: <math>f(x) = \lim_{n\to \infty} f_n(x) = \begin{cases} 0, & x \in [0,1); \\ 1, & x=1. \end{cases} </math> | : <math>f(x) = \lim_{n\to \infty} f_n(x) = \begin{cases} 0, & x \in [0,1); \\ 1, & x=1. \end{cases} </math> | ||
बिंदुवार अभिसरण: | बिंदुवार अभिसरण: <math>x=0</math> और <math>x=1</math> के लिए अभिसरण तुच्छ है, क्योंकि<math>f_n(0)=f(0)=0</math> और <math>f_n(1)=f(1)=1</math>, सभी <math>n</math> के लिए <math>x \in (0,1)</math> और दिए गए <math>\epsilon>0</math> के लिए, हम यह सुनिश्चित कर सकते हैं कि <math>|f_n(x)-f(x)|<\epsilon</math> जब भी <math>n\geq N</math> <math>N = \lceil\log\epsilon/\log x\rceil</math> चुनकर (यहां ऊपरी वर्ग कोष्ठक गोल करने का संकेत देते हैं, सीलिंग फ़ंक्शन देखें)। इसलिए, सभी <math>x\in[0,1]</math> के लिए <math>f_n\to f</math> बिंदुवार। ध्यान दें कि <math>N</math> का चुनाव <math>\epsilon</math> और <math>x</math> के मान पर निर्भर करता है। इसके अतिरिक्त ,<math>\epsilon</math> की एक निश्चित पसंद के लिए, <math>N</math> (जिसे छोटे के रूप में परिभाषित नहीं किया जा सकता है) जैसे-जैसे <math>x</math> 1 के समीप पहुंचता है, बिना किसी सीमा के बढ़ता है। ये अवलोकन एकसमान अभिसरण की संभावना को रोकते हैं। | ||
अभिसरण की गैर-एकरूपता: अभिसरण एक समान नहीं है, क्योंकि हम एक | अभिसरण की गैर-एकरूपता: अभिसरण एक समान नहीं है, क्योंकि हम एक <math>\epsilon>0</math> पा सकते हैं ताकि हम कितना भी बड़ा <math>N,</math> चुनें, <math>x \in [0,1]</math> और <math>n \geq N</math> जैसे मान होंगे कि<math>|f_n(x)-f(x)|\geq\epsilon.</math>इसे देखने के लिए, पहले देखें कि चाहे <math>n</math> कितना भी बड़ा हो जाए जो सदैव एक <math>x_0 \in [0,1)</math> होता है जैसे कि <math>f_n(x_0)=1/2.</math> इस प्रकार, यदि हम <math>\epsilon = 1/4,</math> चुनते हैं तो हम कभी नहीं पा सकते हैं एक <math>N</math> ऐसा कि सभी <math>|f_n(x)-f(x)|<\epsilon</math> और <math>n\geq N</math> के लिए <math>x\in[0,1]</math> स्पष्ट रूप से, हम <math>N</math> के लिए जो भी उम्मीदवार चुनते हैं, वह <math>x_0 = (1/2)^{1/N}</math> पर <math>f_N</math> के मान पर विचार करता है। तब से | ||
:<math>\left|f_N(x_0) - f(x_0)\right| = \left| \left[ \left(\frac{1}{2}\right)^{\frac{1}{N}} \right]^N - 0 \right| = \frac{1}{2} > \frac{1}{4} = \epsilon,</math> | :<math>\left|f_N(x_0) - f(x_0)\right| = \left| \left[ \left(\frac{1}{2}\right)^{\frac{1}{N}} \right]^N - 0 \right| = \frac{1}{2} > \frac{1}{4} = \epsilon,</math> | ||
उम्मीदवार असफल हो जाता है क्योंकि हमें इसका एक उदाहरण मिला है <math>x\in[0,1]</math> यह प्रत्येक को सीमित करने के हमारे प्रयास से बच गया <math>f_n\ (n\geq N)</math> के दायरे में <math>\epsilon</math> का <math>f </math> सभी के लिए <math>x\in[0,1]</math>. वास्तव में, यह देखना आसान है | उम्मीदवार असफल हो जाता है क्योंकि हमें इसका एक उदाहरण मिला है <math>x\in[0,1]</math> यह प्रत्येक को सीमित करने के हमारे प्रयास से बच गया <math>f_n\ (n\geq N)</math> के दायरे में <math>\epsilon</math> का <math>f </math> सभी के लिए <math>x\in[0,1]</math>. वास्तव में, यह देखना आसान है | ||
:<math>\lim_{n\to\infty}\|f_n-f\|_{\infty}=1,</math> | :<math>\lim_{n\to\infty}\|f_n-f\|_{\infty}=1,</math> | ||
उस आवश्यकता के विपरीत <math>\|f_n-f\|_{\infty}\to 0</math> | उस आवश्यकता के विपरीत <math>\|f_n-f\|_{\infty}\to 0</math> यदि <math>f_n \rightrightarrows f</math>. | ||
इस उदाहरण में कोई आसानी से देख सकता है कि बिंदुवार अभिसरण भिन्नता या निरंतरता को संरक्षित नहीं करता है। जबकि अनुक्रम का प्रत्येक कार्य सुचारू है, कहने का तात्पर्य यह है कि सभी n के लिए, <math>f_n\in C^{\infty}([0,1])</math>, सीमा <math>\lim_{n\to \infty}f_n</math> सतत भी नहीं है. | इस उदाहरण में कोई आसानी से देख सकता है कि बिंदुवार अभिसरण भिन्नता या निरंतरता को संरक्षित नहीं करता है। जबकि अनुक्रम का प्रत्येक कार्य सुचारू है, कहने का तात्पर्य यह है कि सभी n के लिए, <math>f_n\in C^{\infty}([0,1])</math>, सीमा <math>\lim_{n\to \infty}f_n</math> सतत भी नहीं है. | ||
=== घातीय फलन === | === घातीय फलन === | ||
घातीय | वेइरस्ट्रैस एम-टेस्ट का उपयोग करके घातीय फ़ंक्शन के श्रृंखला विस्तार को किसी भी परिबद्ध उपसमुच्चय <math>S \subset \C</math> पर समान रूप से अभिसरण के रूप में दिखाया जा सकता है। | ||
प्रमेय (वीयरस्ट्रैस एम-टेस्ट)। '' | प्रमेय (वीयरस्ट्रैस एम-टेस्ट)। मान लीजिए ''<math>(f_n)</math>'' कार्यों का एक अनुक्रम है और मान लीजिए कि ''<math>f_n:E\to \C</math>'' सभी ''<math>x\in E</math>'' के लिए ''<math>M_n </math>'' है, तो यह सकारात्मक वास्तविक संख्याओं का एक क्रम है।और ''<math>n=1,2, 3, \ldots</math>'' में यदि ''<math display="inline">\sum_n M_n</math>''अभिसरण होता है, तो ''<math display="inline">\sum_n f_n</math>''पूर्णतः और समान रूप से ''<math>E</math>'' पर अभिसरण होता है। | ||
जटिल घातीय फलन को श्रृंखला के रूप में व्यक्त किया जा सकता है: | जटिल घातीय फलन को श्रृंखला के रूप में व्यक्त किया जा सकता है: | ||
:<math>\sum_{n=0}^{\infty}\frac{z^n}{n!}.</math> | :<math>\sum_{n=0}^{\infty}\frac{z^n}{n!}.</math> | ||
कोई भी परिबद्ध उपसमुच्चय | कोई भी परिबद्ध उपसमुच्चय त्रिज्या <math>R,</math> की किसी डिस्क <math>D_R</math> का उपसमुच्चय है, जो जटिल तल में मूल बिंदु पर केन्द्रित है। वीयरस्ट्रैस M-परीक्षण के लिए हमें श्रृंखला की नियमो पर एक ऊपरी सीमा <math>M_n</math> खोजने की आवश्यकता है, जिसमें <math>M_n</math> डिस्क में स्थिति से स्वतंत्र है: | ||
:<math>\left| \frac{z^n}{n!} \right|\le M_n, \forall z\in D_R.</math> | :<math>\left| \frac{z^n}{n!} \right|\le M_n, \forall z\in D_R.</math> | ||
Line 105: | Line 115: | ||
:<math>\left| \frac{z^n}{n!}\right| \le \frac{|z|^n}{n!} \le \frac{R^n}{n!}</math> | :<math>\left| \frac{z^n}{n!}\right| \le \frac{|z|^n}{n!} \le \frac{R^n}{n!}</math> | ||
और | और <math>M_n=\tfrac{R^n}{n!}.</math> | ||
यदि <math>\sum_{n=0}^{\infty}M_n</math> अभिसरण है, तो एम-परीक्षण यह प्रमाणित करता है कि मूल श्रृंखला समान रूप से अभिसरण है। | |||
अनुपात परीक्षण का उपयोग यहां किया जा सकता है: | अनुपात परीक्षण का उपयोग यहां किया जा सकता है: | ||
:<math>\lim_{n \to \infty}\frac{M_{n+1}}{M_n}=\lim_{n \to \infty}\frac{R^{n+1}}{R^n}\frac{n!}{(n+1)!}=\lim_{n \to \infty}\frac{R}{n+1}=0</math> | :<math>\lim_{n \to \infty}\frac{M_{n+1}}{M_n}=\lim_{n \to \infty}\frac{R^{n+1}}{R^n}\frac{n!}{(n+1)!}=\lim_{n \to \infty}\frac{R}{n+1}=0</math> | ||
जिसका अर्थ है कि <math>M_n</math> पर श्रृंखला अभिसरण है। इस प्रकार मूल श्रृंखला सभी <math>z\in D_R,</math> के लिए समान रूप से अभिसरण होती है और <math>S\subset D_R</math> के बाद से, श्रृंखला भी <math>S.</math> पर समान रूप से अभिसरण होती है। | |||
== गुण == | == गुण == | ||
Line 120: | Line 130: | ||
* स्थानीय रूप से कॉम्पैक्ट स्थानों के लिए स्थानीय समान अभिसरण और कॉम्पैक्ट अभिसरण मेल खाते हैं। | * स्थानीय रूप से कॉम्पैक्ट स्थानों के लिए स्थानीय समान अभिसरण और कॉम्पैक्ट अभिसरण मेल खाते हैं। | ||
* मीट्रिक रिक्त स्थान पर निरंतर कार्यों का एक क्रम, छवि मीट्रिक स्थान पूर्ण होने के साथ, समान रूप से अभिसरण होता है यदि और केवल यदि यह [[समान रूप से कॉची अनुक्रम]] है। | * मीट्रिक रिक्त स्थान पर निरंतर कार्यों का एक क्रम, छवि मीट्रिक स्थान पूर्ण होने के साथ, समान रूप से अभिसरण होता है यदि और केवल यदि यह [[समान रूप से कॉची अनुक्रम]] है। | ||
* | * यदि <math>S</math> एक [[ सघन स्थान ]] अंतराल (या सामान्यतः एक कॉम्पैक्ट टोपोलॉजिकल स्पेस) है, और <math> (f_n)</math> एक [[ एकरस ]] अनुक्रम है (अर्थ)। <math> f_n(x) \leq f_{n+1}(x)</math> बिंदुवार सीमा के साथ निरंतर कार्यों के सभी n और x) के लिए <math> f</math> जो निरंतर भी है, तो अभिसरण आवश्यक रूप से एक समान है (दीनी का प्रमेय)। यदि <math> S</math> समान अभिसरण की भी आश्वासन है एक सघन अंतराल है और <math>(f_n)</math> एक समसंगति अनुक्रम है जो बिंदुवार परिवर्तित होता है। | ||
== अनुप्रयोग == | == अनुप्रयोग == | ||
===निरंतरता के लिए=== | ===निरंतरता के लिए=== | ||
{{Main| | {{Main|समान सीमा प्रमेय}} | ||
[[Image:Drini nonuniformconvergence SVG.svg|thumb|350px|right|एकसमान अभिसरण प्रमेय को | [[Image:Drini nonuniformconvergence SVG.svg|thumb|350px|right|एकसमान अभिसरण प्रमेय को प्रबल करने का प्रति उदाहरण, जिसमें एकसमान अभिसरण के अतिरिक्त बिंदुवार अभिसरण माना जाता है। सतत हरित कार्य करता है <math>\sin^n(x)</math> गैर-निरंतर लाल कार्य में परिवर्तित करें। ऐसा तभी हो सकता है जब अभिसरण एक समान न हो।]]यदि <math>E</math> और <math>M</math> टोपोलॉजिकल स्पेस हैं, तो फ़ंक्शंस के निरंतर फ़ंक्शन (टोपोलॉजी) के बारे में बात करना समझ में आता है <math>f_n,f:E\to M</math>. यदि हम आगे यह मान लें <math>M</math> एक मीट्रिक स्थान है, तो (समान) अभिसरण <math>f_n</math> को <math>f</math> भी अच्छी तरह से परिभाषित है. निम्नलिखित परिणाम बताता है कि निरंतरता एक समान अभिसरण द्वारा संरक्षित है: | ||
{{math theorem | name = Uniform limit theorem | math_statement = Suppose <math>E</math> is a topological space, <math>M</math> is a metric space, and <math>(f_n)</math> is a sequence of continuous functions <math>f_n:E\to M</math>. If <math>f_n \rightrightarrows f</math> on <math>E</math>, then <math>f</math> is also continuous.}} | {{math theorem | name = Uniform limit theorem | math_statement = Suppose <math>E</math> is a topological space, <math>M</math> is a metric space, and <math>(f_n)</math> is a sequence of continuous functions <math>f_n:E\to M</math>. If <math>f_n \rightrightarrows f</math> on <math>E</math>, then <math>f</math> is also continuous.}} | ||
यह प्रमेय वास्तविक और फूरियर विश्लेषण के इतिहास में एक महत्वपूर्ण है, क्योंकि 18वीं सदी के कई गणितज्ञों की सहज समझ थी कि निरंतर कार्यों का एक क्रम | यह प्रमेय "{{math|ε/3}} ट्रिक" द्वारा सिद्ध किया गया है, और यह इस ट्रिक का आदर्श उदाहरण है: किसी दी गई असमानता (ε) को साबित करने के लिए, कोई 3 असमानताएं ({{math|ε/3}}) उत्पन्न करने के लिए निरंतरता और समान अभिसरण की परिभाषाओं का उपयोग करता है। और फिर वांछित असमानता उत्पन्न करने के लिए उन्हें त्रिकोण असमानता के माध्यम से जोड़ता है। | ||
यह प्रमेय वास्तविक और फूरियर विश्लेषण के इतिहास में एक महत्वपूर्ण है, क्योंकि 18वीं सदी के कई गणितज्ञों की सहज समझ थी कि निरंतर कार्यों का एक क्रम सदैव एक निरंतर कार्य में परिवर्तित होता है। ऊपर दी गई छवि एक प्रति-उदाहरण दिखाती है, और कई असंतत फ़ंक्शन, वास्तव में, निरंतर कार्यों की फूरियर श्रृंखला के रूप में लिखे जा सकते हैं। यह गलत प्रमाणित कि निरंतर कार्यों के अनुक्रम की बिंदुवार सीमा निरंतर है (मूल रूप से निरंतर कार्यों की अभिसरण श्रृंखला के संदर्भ में कहा गया है) को कॉची के गलत प्रमेय के रूप में जाना जाता है। समान सीमा प्रमेय से पता चलता है कि सीमा कार्य में निरंतरता के संरक्षण को सुनिश्चित करने के लिए अभिसरण, समान अभिसरण का एक प्रबल रूप आवश्यक है। | |||
अधिक | अधिक स्पष्ट रूप से, यह प्रमेय बताता है कि [[समान रूप से निरंतर]] कार्यों की एक समान सीमा समान रूप से निरंतर होती है; [[स्थानीय रूप से सघन]] स्थान के लिए, निरंतरता स्थानीय समान निरंतरता के समान है, और इस प्रकार निरंतर कार्यों की एक समान सीमा निरंतर है। | ||
===विभिन्नता के लिए=== | ===विभिन्नता के लिए=== | ||
'''यदि <math>S</math> एक अंतराल और सभी कार्य हैं <math>f_n</math> व्युत्पन्न हैं और एक सीमा तक अभिसरित होते हैं''' <math>f</math>, व्युत्पन्न कार्य को निर्धारित करना अधिकांशतः वांछनीय होता है <math>f'</math> अनुक्रम की सीमा लेकर <math>f'_n</math>. हालाँकि, यह सामान्य रूप से संभव नहीं है: भले ही अभिसरण एक समान हो, सीमा कार्य को विभेदित करने की आवश्यकता नहीं है (भले ही अनुक्रम में हर जगह-विश्लेषणात्मक कार्य कार्य सम्मिलित हों, [[वीयरस्ट्रैस फ़ंक्शन|वीयरस्ट्रैस]] कार्य देखें), और भले ही यह विभेदित हो, व्युत्पन्न सीमा फलन का व्युत्पन्न की सीमा के समान होना आवश्यक नहीं है। उदाहरण के लिए विचार करें <math>f_n(x) = n^{-1/2}{\sin(nx)}</math> एकसमान सीमा के साथ <math>f_n\rightrightarrows f\equiv 0</math>. स्पष्ट रूप से, <math>f'</math> भी समान रूप से शून्य है. हालाँकि, कार्यों के अनुक्रम के व्युत्पन्न द्वारा दिए गए हैं <math>f'_n(x)=n^{1/2}\cos nx,</math> और क्रम <math>f'_n</math> जुटता नहीं है <math>f',</math> या यहां तक कि किसी भी समारोह के लिए भी। भिन्न-भिन्न कार्यों के अनुक्रम की सीमा और डेरिवेटिव के अनुक्रम की सीमा के बीच संबंध सुनिश्चित करने के लिए, डेरिवेटिव के अनुक्रम का एक समान अभिसरण और कम से कम एक बिंदु पर कार्यों के अनुक्रम का अभिसरण आवश्यक है:<ref>Rudin, Walter (1976). ''[[iarchive:PrinciplesOfMathematicalAnalysis|Principles of Mathematical Analysis]]'' 3rd edition, Theorem 7.17. McGraw-Hill: New York.</ref> | |||
: | : यदि <math>(f_n)</math> पर भिन्न-भिन्न कार्यों का एक क्रम है <math>[a,b]</math> ऐसा है कि <math>\lim_{n\to\infty} f_n(x_0)</math> कुछ के लिए अस्तित्व में है (और सीमित है)। <math>x_0\in[a,b]</math> और क्रम <math>(f'_n)</math> पर समान रूप से अभिसरित होता है <math>[a,b]</math>, तब <math>f_n</math> एक कार्य में समान रूप से परिवर्तित होता है <math>f</math> पर <math>[a,b]</math>, और <math> f'(x) = \lim_{n\to \infty} f'_n(x)</math> के लिए <math>x \in [a, b]</math>. | ||
===अभिन्नता के लिए=== | ===अभिन्नता के लिए=== | ||
इसी तरह, कोई भी | इसी तरह, कोई भी अधिकांशतः इंटीग्रल और सीमा प्रक्रियाओं का आदान-प्रदान करना चाहता है। रीमैन इंटीग्रल के लिए, यह तब किया जा सकता है जब एकसमान अभिसरण मान लिया जाए: | ||
: | : यदि <math>(f_n)_{n=1}^\infty</math> एक कॉम्पैक्ट स्पेस अंतराल पर परिभाषित रीमैन इंटीग्रेबल कार्य का एक अनुक्रम है <math>I</math> जो समान रूप से सीमा के साथ अभिसरण करता है <math> f</math>, तब <math> f</math> रीमैन पूर्णांक है और इसके अभिन्न अंग की गणना इसके अभिन्नों की सीमा के रूप में की जा सकती है <math> f_n</math>: <math display="block">\int_I f = \lim_{n\to\infty}\int_I f_n.</math> | ||
वास्तव में, एक अंतराल पर बंधे हुए कार्यों के एक समान रूप से अभिसरण परिवार के लिए, ऊपरी और निचले रीमैन इंटीग्रल्स सीमा | वास्तव में, एक अंतराल पर बंधे हुए कार्यों के एक समान रूप से अभिसरण परिवार के लिए, ऊपरी और निचले रीमैन इंटीग्रल्स सीमा कार्य के ऊपरी और निचले रीमैन इंटीग्रल्स में परिवर्तित हो जाते हैं। इसका अनुसरण इसलिए किया जाता है क्योंकि, पर्याप्त रूप से बड़े n के लिए, का ग्राफ़ <math>f_n</math> अंदर है {{math|ε}} एफ के ग्राफ का, और इसलिए ऊपरी योग और निचला योग <math>f_n</math> प्रत्येक के अंदर हैं <math>\varepsilon |I|</math> के ऊपरी और निचले योग के मूल्य का <math>f</math>, क्रमश। | ||
इस संबंध में अधिक | इस संबंध में अधिक प्रबल प्रमेय, जिनके लिए बिंदुवार अभिसरण से अधिक की आवश्यकता नहीं होती है, प्राप्त किए जा सकते हैं यदि कोई रीमैन इंटीग्रल को छोड़ देता है और इसके बजाय लेबेस्ग एकीकरण का उपयोग करता है। | ||
===विश्लेषणात्मकता के लिए=== | ===विश्लेषणात्मकता के लिए=== | ||
मोरेरा के प्रमेय का उपयोग करके, कोई यह दिखा सकता है कि यदि विश्लेषणात्मक | मोरेरा के प्रमेय का उपयोग करके, कोई यह दिखा सकता है कि यदि विश्लेषणात्मक कार्य कार्य का अनुक्रम जटिल विमान के क्षेत्र एस में समान रूप से परिवर्तित होता है, तो सीमा एस में विश्लेषणात्मक है। यह उदाहरण दर्शाता है कि जटिल कार्य वास्तविक कार्यों की तुलना में अधिक अच्छी तरह से व्यवहार किए जाते हैं, क्योंकि वास्तविक अंतराल पर विश्लेषणात्मक कार्यों की एकसमान सीमा को विभेदित करने की भी आवश्यकता नहीं है (वीयरस्ट्रैस कार्य देखें)। | ||
===श्रृंखला के लिए=== | ===श्रृंखला के लिए=== | ||
Line 160: | Line 171: | ||
इस परिभाषा के साथ निम्नलिखित परिणाम आता है: | इस परिभाषा के साथ निम्नलिखित परिणाम आता है: | ||
<ब्लॉककोट>मान लीजिए x<sub>0</sub> सेट ई और प्रत्येक एफ में समाहित हो<sub>''n''</sub> x पर निरंतर रहें<sub>0</sub>. | <ब्लॉककोट>मान लीजिए x<sub>0</sub> सेट ई और प्रत्येक एफ में समाहित हो<sub>''n''</sub> x पर निरंतर रहें<sub>0</sub>. यदि <math display="inline"> f = \sum_{n=1}^\infty f_n</math> E पर समान रूप से अभिसरित होता है तो x पर f सतत है<sub>0</sub> ई में. मान लीजिए कि <math>E = [a, b]</math> और प्रत्येक एफ<sub>''n''</sub> ई. पर समाकलनीय है <math display="inline">\sum_{n=1}^\infty f_n</math> E पर समान रूप से अभिसरण करता है तो f, E पर पूर्णांक है और f के अभिन्नों की श्रृंखला है<sub>''n''</sub> एफ की श्रृंखला के अभिन्न अंग के समान है<sub>n</sub>. | ||
==लगभग एकसमान अभिसरण== | ==लगभग एकसमान अभिसरण== | ||
यदि | यदि कार्य का डोमेन एक माप स्थान ई है तो 'लगभग समान अभिसरण' की संबंधित धारणा को परिभाषित किया जा सकता है। हम कार्यों का एक क्रम कहते हैं <math>(f_n)</math> यदि प्रत्येक के लिए E पर लगभग समान रूप से अभिसरण होता है <math>\delta > 0</math> वहाँ एक मापने योग्य सेट उपस्थित है <math>E_\delta</math> से कम माप के साथ <math>\delta</math> जैसे कि कार्यों का क्रम <math>(f_n)</math> पर समान रूप से अभिसरित होता है <math>E \setminus E_\delta</math>. दूसरे शब्दों में, लगभग एकसमान अभिसरण का अर्थ है कि इच्छानुसार से छोटे माप के सेट हैं जिनके लिए कार्यों का क्रम उनके पूरक पर समान रूप से परिवर्तित होता है। | ||
ध्यान दें कि अनुक्रम के लगभग एक समान अभिसरण का | ध्यान दें कि अनुक्रम के लगभग एक समान अभिसरण का अर्थ यह नहीं है कि अनुक्रम [[लगभग हर जगह]] समान रूप से अभिसरण करता है जैसा कि नाम से अनुमान लगाया जा सकता है। हालाँकि, ईगोरोव का प्रमेय यह आश्वासन देता है कि एक सीमित माप स्थान पर, कार्यों का एक क्रम जो बिंदुवार अभिसरण को परिवर्तित करता है#[[लगभग हर जगह अभिसरण]] भी एक ही सेट पर लगभग समान रूप से अभिसरण करता है। | ||
लगभग एकसमान अभिसरण का तात्पर्य लगभग हर जगह [[माप में अभिसरण]] और अभिसरण से है। | लगभग एकसमान अभिसरण का तात्पर्य लगभग हर जगह [[माप में अभिसरण]] और अभिसरण से है। | ||
Line 171: | Line 182: | ||
==यह भी देखें== | ==यह भी देखें== | ||
*संभावना में एकसमान अभिसरण | *संभावना में एकसमान अभिसरण | ||
*[[अभिसरण के तरीके (एनोटेटेड सूचकांक)]] | *[[अभिसरण के तरीके (एनोटेटेड सूचकांक)|अभिसरण के विधि (एनोटेटेड सूचकांक)]] | ||
*दीनी का प्रमेय | *दीनी का प्रमेय | ||
*अर्ज़ेला-एस्कोली प्रमेय | *अर्ज़ेला-एस्कोली प्रमेय |
Revision as of 11:38, 7 July 2023
विश्लेषण के गणितीय क्षेत्र में, समान अभिसरण बिंदुवार अभिसरण से अधिक प्रबल कार्यों के अभिसरण का एक विधि है। कार्य का एक क्रम सेट पर कार्य डोमेन के रूप में एक सीमित कार्य में समान रूप से परिवर्तित होता है, यदि कोई इच्छानुसार से छोटी सकारात्मक संख्या दी गई हो, तो एक संख्या पाया जा सकता है जैसे कि प्रत्येक कार्य में प्रत्येक बिंदु पर से से अधिक भिन्न नहीं है। अनौपचारिक विधि से वर्णित है, यदि समान रूप से में परिवर्तित होता है, तो वह दर जिस पर, तक पहुंचता है निम्नलिखित अर्थों में अपने संपूर्ण डोमेन में "समान" है: यह दिखाने के लिए कि समान रूप से एक निश्चित दूरी के अंदर आता है, हमें प्रश्न में का मान जानने की आवश्यकता नहीं है — प्रश्न में का एक ही मान पाया जा सकता है - का एक ही मान पाया जा सकता है से स्वतंत्र, जैसे कि चुनने से यह सुनिश्चित हो जाएगा कि सभी के लिए के के अंदर है। इसके विपरीत, से का बिंदुवार अभिसरण केवल यह आश्वासन देता है कि पहले से दिए गए किसी भी के लिए, हम पा सकते हैं (अथार्त , , के मान पर निर्भर हो सकता है) जैसे कि, उस विशेष के लिए, के अंतर्गत आता है का जब भी (एक अलग x को बिंदुवार अभिसरण के लिए एक अलग N की आवश्यकता होती है)।
कैलकुलस के इतिहास में आरंभ में समान अभिसरण और बिंदुवार अभिसरण के बीच अंतर को पूरी तरह से सराहा नहीं गया था, जिससे दोषपूर्ण तर्क के उदाहरण सामने आए। यह अवधारणा, जिसे पहली बार कार्ल वीयरस्ट्रैस द्वारा औपचारिक रूप दिया गया था, महत्वपूर्ण है क्योंकि कार्यों के कई गुण, जैसे निरंतरता, रीमैन इंटीग्रेबिलिटी, और, अतिरिक्त परिकल्पनाओं के साथ, भिन्नता, अभिसरण होने पर सीमा में स्थानांतरित हो जाते हैं एक समान है, किंतु जरूरी नहीं कि अभिसरण एक समान न हो।
इतिहास
1821 में ऑगस्टिन-लुई कॉची ने एक प्रमाण प्रकाशित किया कि निरंतर कार्यों का एक अभिसरण योग सदैव निरंतर होता है, जिसके लिए 1826 में नील्स हेनरिक एबेल ने फूरियर श्रृंखला के संदर्भ में कथित प्रति-उदाहरण पाए, यह तर्क देते हुए कि कॉची का प्रमाण गलत होना चाहिए। उस समय अभिसरण की पूरी तरह से मानक धारणाएं उपस्थित नहीं थीं, और कॉची ने अनंत विधियों का उपयोग करके अभिसरण को संभाला जाता है। आधुनिक भाषा में कहें तो, कॉची ने जो सिद्ध किया वह यह है कि निरंतर कार्यों के एक समान रूप से अभिसरण अनुक्रम की एक निरंतर सीमा होती है। निरंतर कार्यों को एक सतत कार्य में परिवर्तित करने के लिए केवल बिंदुवार-अभिसरण सीमा की विफलता कार्यों के अनुक्रमों को संभालते समय विभिन्न प्रकार के अभिसरण के बीच अंतर करने के महत्व को दर्शाती है।[1]
वर्दी अभिसरण शब्द का प्रयोग संभवत: सबसे पहले क्रिस्टोफ गुडेरमैन ने 1838 में अण्डाकार कार्यों पर एक पेपर में किया था, जहां उन्होंने "समान विधि से अभिसरण" वाक्यांश का प्रयोग तब किया था जब एक श्रृंखला का "अभिसरण का विधि " चर से स्वतंत्र होता है। और जबकि उन्होंने सोचा कि यह एक "उल्लेखनीय तथ्य" है जब एक श्रृंखला इस तरह से मिलती है, उन्होंने कोई औपचारिक परिभाषा नहीं दी, न ही अपने किसी भी प्रमाण में संपत्ति का उपयोग किया।[2]
बाद में गुडरमैन के शिष्य कार्ल वेइरस्ट्रैस, जिन्होंने 1839-1840 में अण्डाकार कार्यों पर उनके पाठ्यक्रम में भाग लिया था, ने ग्लीचमाज़िग कन्वर्जेंट (जर्मन: समान रूप से अभिसरण) शब्द गढ़ा, जिसका उपयोग उन्होंने 1894 में प्रकाशित अपने 1841 के पेपर ज़ूर थियोरी डेर पोटेंज़रेइहेन में किया। स्वतंत्र रूप से, समान अवधारणाएं थीं फिलिप लुडविग वॉन सीडेल[3] और जॉर्ज गेब्रियल स्टोक्स द्वारा व्यक्त। जी. एच. हार्डी ने अपने पेपर "सर जॉर्ज स्टोक्स और एक समान अभिसरण की अवधारणा" में तीन परिभाषाओं की तुलना की और टिप्पणी की: "वीयरस्ट्रैस की खोज सबसे प्रारंभिक थी, और उन्होंने अकेले ही विश्लेषण के मौलिक विचारों में से एक के रूप में इसके दूरगामी महत्व को पूरी तरह से अनुभव किया।"
वीयरस्ट्रैस और बर्नहार्ड रीमैन के प्रभाव में इस अवधारणा और संबंधित प्रश्नों का 19वीं शताब्दी के अंत में हरमन हैंकेल, पॉल डू बोइस-रेमंड, यूलिसिस दीनी, सेसारे अर्ज़ेला और अन्य द्वारा गहन अध्ययन किया गया था।
परिभाषा
हम पहले वास्तविक-मूल्यवान कार्य के लिए समान अभिसरण को परिभाषित करते हैं | वास्तविक-मूल्यवान फ़ंक्शन, चूँकि अवधारणा को मीट्रिक स्थान और अधिक सामान्यतः एकसमान स्थान (यूनिफ़ॉर्म कन्वर्जेंस या सामान्यीकरण देखें) के लिए कार्य मैपिंग के लिए आसानी से सामान्यीकृत किया जाता है।
मान लीजिए कि एक समुच्चय है और उस पर वास्तविक-मूल्यवान कार्यों का एक क्रम है। हम कहते हैं कि अनुक्रम , पर सीमा के साथ समान रूप से अभिसरण है यदि प्रत्येक के लिए, एक प्राकृतिक संख्या उपस्थित है जैसे कि सभी के लिए और सभी के लिए है
से के समान अभिसरण के लिए संकेतन अधिक मानकीकृत नहीं है और विभिन्न लेखकों ने विभिन्न प्रकार के प्रतीकों का उपयोग किया है, जिनमें (लोकप्रियता के लगभग घटते क्रम में) सम्मिलित हैं:
अधिकांशतः किसी विशेष प्रतीक का उपयोग नहीं किया जाता है, और लेखक बस लिखते हैं
- यह इंगित करने के लिए कि अभिसरण एक समान है। (इसके विपरीत, क्रियाविशेषण के बिना E पर अभिव्यक्ति को पर बिंदुवार अभिसरण के रूप में लिया जाता है: सभी , के लिए के रूप में है।
चूँकि एक पूर्ण मीट्रिक स्थान है, कॉची मानदंड का उपयोग समान अभिसरण के लिए समकक्ष वैकल्पिक सूत्रीकरण देने के लिए किया जा सकता है: } पर समान रूप से अभिसरण करता है (पिछले अर्थ में) यदि और केवल तभी यदि प्रत्येक के लिए, ऐसी कोई प्राकृतिक संख्या उपस्थित होता है
- .
एक और समतुल्य सूत्रीकरण में, यदि हम परिभाषित करें
तब में एकत्रित हो जाता है समान रूप से यदि और केवल यदि जैसा . इस प्रकार, हम एक समान अभिसरण की विशेषता बता सकते हैं पर (सरल) अभिसरण के रूप में कार्य स्थान में द्वारा परिभाषित समान मानदंड (जिसे सर्वोच्च मीट्रिक भी कहा जाता है) के संबंध में
प्रतीकात्मक रूप से,
- .
अनुक्रम को स्थानीय रूप से सीमा के साथ समान रूप से अभिसरण कहा जाता है यदि एक मीट्रिक स्थान है और में प्रत्येक के लिए, एक उपस्थित है जैसे कि समान रूप से पर अभिसरण करता है। यह स्पष्ट है कि एक समान अभिसरण का तात्पर्य स्थानीय समान अभिसरण से है, जिसका तात्पर्य बिंदुवार अभिसरण से है।
टिप्पणियाँ
Intuitively, a sequence of functions converges uniformly to if, given an arbitrarily small , we can find an so that the functions with all fall within a "tube" of width centered around (i.e., between and ) for the entire domain of the function.
Note that interchanging the order of quantifiers in the definition of uniform convergence by moving "for all " in front of "there exists a natural number " results in a definition of pointwise convergence of the sequence. To make this difference explicit, in the case of uniform convergence, can only depend on , and the choice of has to work for all , for a specific value of that is given. In contrast, in the case of pointwise convergence, may depend on both and , and the choice of only has to work for the specific values of and that are given. Thus uniform convergence implies pointwise convergence, however the converse is not true, as the example in the section below illustrates.
सामान्यीकरण
कोई सीधे रूप से अवधारणा को कार्य E → M तक विस्तारित कर सकता है, जहां (M, d) प्रतिस्थापित करके एक मीट्रिक स्थान है जिसके स्थान पर साथ .
सबसे सामान्य सेटिंग कार्य E → X, के नेट (गणित) का एक समान अभिसरण है, जहां X एक समान स्थान है। हम कहते हैं कि नेट सीमा f : E → X के साथ समान रूप से अभिसरण होता है यदि और केवल यदि X में प्रत्येक प्रतिवेश (टोपोलॉजी) V के लिए एक उपस्थित है, जैसे कि E और प्रत्येक में प्रत्येक x के लिए , V में है। इस स्थिति में सतत फलनों की एकसमान सीमा सतत् बनी रहती है।
अतिवास्तविक सेटिंग में परिभाषा
एकसमान अभिसरण एक अतियथार्थवादी सेटिंग में एक सरलीकृत परिभाषा को स्वीकार करता है। इस प्रकार, एक अनुक्रम समान रूप से f में परिवर्तित हो जाता है यदि के डोमेन में सभी x और सभी अनंत n के लिए, अपरिमित रूप से के समीप है (समान निरंतरता की समान परिभाषा के लिए सूक्ष्म निरंतरता देखें)।
उदाहरण
के लिए, एक समान अभिसरण का एक मूल उदाहरण इस प्रकार चित्रित किया जा सकता है: अनुक्रम समान रूप से अभिसरण करता है, जबकि नहीं करता. विशेष रूप से, मान लें कि x के मान की परवाह किए बिना, होने पर प्रत्येक फ़ंक्शन से कम या उसके समान होता है। दूसरी ओर, के लगातार बढ़ते मानों पर केवल से कम या उसके समान होता है जब के मानों को 1 के समीप और समीप चुना जाता है (नीचे और अधिक गहराई से समझाया गया है)।
फिर एकसमान अभिसरण का सीधा सा अर्थ है एकसमान मानदंड टोपोलॉजी में एक अनुक्रम की सीमा:
- .
कार्यों का क्रम :
फ़ंक्शंस के अनुक्रम का एक उत्कृष्ट उदाहरण है जो किसी फ़ंक्शन में बिंदुवार रूप से परिवर्तित होता है लेकिन समान रूप से नहीं। इसे दिखाने के लिए, हम पहले देखते हैं कि की बिंदुवार सीमा के रूप में फ़ंक्शन है, जो द्वारा दिया गया है
बिंदुवार अभिसरण: और के लिए अभिसरण तुच्छ है, क्योंकि और , सभी के लिए और दिए गए के लिए, हम यह सुनिश्चित कर सकते हैं कि जब भी चुनकर (यहां ऊपरी वर्ग कोष्ठक गोल करने का संकेत देते हैं, सीलिंग फ़ंक्शन देखें)। इसलिए, सभी के लिए बिंदुवार। ध्यान दें कि का चुनाव और के मान पर निर्भर करता है। इसके अतिरिक्त , की एक निश्चित पसंद के लिए, (जिसे छोटे के रूप में परिभाषित नहीं किया जा सकता है) जैसे-जैसे 1 के समीप पहुंचता है, बिना किसी सीमा के बढ़ता है। ये अवलोकन एकसमान अभिसरण की संभावना को रोकते हैं।
अभिसरण की गैर-एकरूपता: अभिसरण एक समान नहीं है, क्योंकि हम एक पा सकते हैं ताकि हम कितना भी बड़ा चुनें, और जैसे मान होंगे किइसे देखने के लिए, पहले देखें कि चाहे कितना भी बड़ा हो जाए जो सदैव एक होता है जैसे कि इस प्रकार, यदि हम चुनते हैं तो हम कभी नहीं पा सकते हैं एक ऐसा कि सभी और के लिए स्पष्ट रूप से, हम के लिए जो भी उम्मीदवार चुनते हैं, वह पर के मान पर विचार करता है। तब से
उम्मीदवार असफल हो जाता है क्योंकि हमें इसका एक उदाहरण मिला है यह प्रत्येक को सीमित करने के हमारे प्रयास से बच गया के दायरे में का सभी के लिए . वास्तव में, यह देखना आसान है
उस आवश्यकता के विपरीत यदि .
इस उदाहरण में कोई आसानी से देख सकता है कि बिंदुवार अभिसरण भिन्नता या निरंतरता को संरक्षित नहीं करता है। जबकि अनुक्रम का प्रत्येक कार्य सुचारू है, कहने का तात्पर्य यह है कि सभी n के लिए, , सीमा सतत भी नहीं है.
घातीय फलन
वेइरस्ट्रैस एम-टेस्ट का उपयोग करके घातीय फ़ंक्शन के श्रृंखला विस्तार को किसी भी परिबद्ध उपसमुच्चय पर समान रूप से अभिसरण के रूप में दिखाया जा सकता है।
प्रमेय (वीयरस्ट्रैस एम-टेस्ट)। मान लीजिए कार्यों का एक अनुक्रम है और मान लीजिए कि सभी के लिए है, तो यह सकारात्मक वास्तविक संख्याओं का एक क्रम है।और में यदि अभिसरण होता है, तो पूर्णतः और समान रूप से पर अभिसरण होता है।
जटिल घातीय फलन को श्रृंखला के रूप में व्यक्त किया जा सकता है:
कोई भी परिबद्ध उपसमुच्चय त्रिज्या की किसी डिस्क का उपसमुच्चय है, जो जटिल तल में मूल बिंदु पर केन्द्रित है। वीयरस्ट्रैस M-परीक्षण के लिए हमें श्रृंखला की नियमो पर एक ऊपरी सीमा खोजने की आवश्यकता है, जिसमें डिस्क में स्थिति से स्वतंत्र है:
ऐसा करने के लिए, हम नोटिस करते हैं
और
यदि अभिसरण है, तो एम-परीक्षण यह प्रमाणित करता है कि मूल श्रृंखला समान रूप से अभिसरण है।
अनुपात परीक्षण का उपयोग यहां किया जा सकता है:
जिसका अर्थ है कि पर श्रृंखला अभिसरण है। इस प्रकार मूल श्रृंखला सभी के लिए समान रूप से अभिसरण होती है और के बाद से, श्रृंखला भी पर समान रूप से अभिसरण होती है।
गुण
- प्रत्येक समान रूप से अभिसरण अनुक्रम स्थानीय रूप से समान रूप से अभिसरण होता है।
- प्रत्येक स्थानीय रूप से समान रूप से अभिसरण अनुक्रम सघन रूप से अभिसरण होता है।
- स्थानीय रूप से कॉम्पैक्ट स्थानों के लिए स्थानीय समान अभिसरण और कॉम्पैक्ट अभिसरण मेल खाते हैं।
- मीट्रिक रिक्त स्थान पर निरंतर कार्यों का एक क्रम, छवि मीट्रिक स्थान पूर्ण होने के साथ, समान रूप से अभिसरण होता है यदि और केवल यदि यह समान रूप से कॉची अनुक्रम है।
- यदि एक सघन स्थान अंतराल (या सामान्यतः एक कॉम्पैक्ट टोपोलॉजिकल स्पेस) है, और एक एकरस अनुक्रम है (अर्थ)। बिंदुवार सीमा के साथ निरंतर कार्यों के सभी n और x) के लिए जो निरंतर भी है, तो अभिसरण आवश्यक रूप से एक समान है (दीनी का प्रमेय)। यदि समान अभिसरण की भी आश्वासन है एक सघन अंतराल है और एक समसंगति अनुक्रम है जो बिंदुवार परिवर्तित होता है।
अनुप्रयोग
निरंतरता के लिए
यदि और टोपोलॉजिकल स्पेस हैं, तो फ़ंक्शंस के निरंतर फ़ंक्शन (टोपोलॉजी) के बारे में बात करना समझ में आता है . यदि हम आगे यह मान लें एक मीट्रिक स्थान है, तो (समान) अभिसरण को भी अच्छी तरह से परिभाषित है. निम्नलिखित परिणाम बताता है कि निरंतरता एक समान अभिसरण द्वारा संरक्षित है:
Uniform limit theorem — Suppose is a topological space, is a metric space, and is a sequence of continuous functions . If on , then is also continuous.
यह प्रमेय "ε/3 ट्रिक" द्वारा सिद्ध किया गया है, और यह इस ट्रिक का आदर्श उदाहरण है: किसी दी गई असमानता (ε) को साबित करने के लिए, कोई 3 असमानताएं (ε/3) उत्पन्न करने के लिए निरंतरता और समान अभिसरण की परिभाषाओं का उपयोग करता है। और फिर वांछित असमानता उत्पन्न करने के लिए उन्हें त्रिकोण असमानता के माध्यम से जोड़ता है।
यह प्रमेय वास्तविक और फूरियर विश्लेषण के इतिहास में एक महत्वपूर्ण है, क्योंकि 18वीं सदी के कई गणितज्ञों की सहज समझ थी कि निरंतर कार्यों का एक क्रम सदैव एक निरंतर कार्य में परिवर्तित होता है। ऊपर दी गई छवि एक प्रति-उदाहरण दिखाती है, और कई असंतत फ़ंक्शन, वास्तव में, निरंतर कार्यों की फूरियर श्रृंखला के रूप में लिखे जा सकते हैं। यह गलत प्रमाणित कि निरंतर कार्यों के अनुक्रम की बिंदुवार सीमा निरंतर है (मूल रूप से निरंतर कार्यों की अभिसरण श्रृंखला के संदर्भ में कहा गया है) को कॉची के गलत प्रमेय के रूप में जाना जाता है। समान सीमा प्रमेय से पता चलता है कि सीमा कार्य में निरंतरता के संरक्षण को सुनिश्चित करने के लिए अभिसरण, समान अभिसरण का एक प्रबल रूप आवश्यक है।
अधिक स्पष्ट रूप से, यह प्रमेय बताता है कि समान रूप से निरंतर कार्यों की एक समान सीमा समान रूप से निरंतर होती है; स्थानीय रूप से सघन स्थान के लिए, निरंतरता स्थानीय समान निरंतरता के समान है, और इस प्रकार निरंतर कार्यों की एक समान सीमा निरंतर है।
विभिन्नता के लिए
यदि एक अंतराल और सभी कार्य हैं व्युत्पन्न हैं और एक सीमा तक अभिसरित होते हैं , व्युत्पन्न कार्य को निर्धारित करना अधिकांशतः वांछनीय होता है अनुक्रम की सीमा लेकर . हालाँकि, यह सामान्य रूप से संभव नहीं है: भले ही अभिसरण एक समान हो, सीमा कार्य को विभेदित करने की आवश्यकता नहीं है (भले ही अनुक्रम में हर जगह-विश्लेषणात्मक कार्य कार्य सम्मिलित हों, वीयरस्ट्रैस कार्य देखें), और भले ही यह विभेदित हो, व्युत्पन्न सीमा फलन का व्युत्पन्न की सीमा के समान होना आवश्यक नहीं है। उदाहरण के लिए विचार करें एकसमान सीमा के साथ . स्पष्ट रूप से, भी समान रूप से शून्य है. हालाँकि, कार्यों के अनुक्रम के व्युत्पन्न द्वारा दिए गए हैं और क्रम जुटता नहीं है या यहां तक कि किसी भी समारोह के लिए भी। भिन्न-भिन्न कार्यों के अनुक्रम की सीमा और डेरिवेटिव के अनुक्रम की सीमा के बीच संबंध सुनिश्चित करने के लिए, डेरिवेटिव के अनुक्रम का एक समान अभिसरण और कम से कम एक बिंदु पर कार्यों के अनुक्रम का अभिसरण आवश्यक है:[4]
- यदि पर भिन्न-भिन्न कार्यों का एक क्रम है ऐसा है कि कुछ के लिए अस्तित्व में है (और सीमित है)। और क्रम पर समान रूप से अभिसरित होता है , तब एक कार्य में समान रूप से परिवर्तित होता है पर , और के लिए .
अभिन्नता के लिए
इसी तरह, कोई भी अधिकांशतः इंटीग्रल और सीमा प्रक्रियाओं का आदान-प्रदान करना चाहता है। रीमैन इंटीग्रल के लिए, यह तब किया जा सकता है जब एकसमान अभिसरण मान लिया जाए:
- यदि एक कॉम्पैक्ट स्पेस अंतराल पर परिभाषित रीमैन इंटीग्रेबल कार्य का एक अनुक्रम है जो समान रूप से सीमा के साथ अभिसरण करता है , तब रीमैन पूर्णांक है और इसके अभिन्न अंग की गणना इसके अभिन्नों की सीमा के रूप में की जा सकती है :
वास्तव में, एक अंतराल पर बंधे हुए कार्यों के एक समान रूप से अभिसरण परिवार के लिए, ऊपरी और निचले रीमैन इंटीग्रल्स सीमा कार्य के ऊपरी और निचले रीमैन इंटीग्रल्स में परिवर्तित हो जाते हैं। इसका अनुसरण इसलिए किया जाता है क्योंकि, पर्याप्त रूप से बड़े n के लिए, का ग्राफ़ अंदर है ε एफ के ग्राफ का, और इसलिए ऊपरी योग और निचला योग प्रत्येक के अंदर हैं के ऊपरी और निचले योग के मूल्य का , क्रमश।
इस संबंध में अधिक प्रबल प्रमेय, जिनके लिए बिंदुवार अभिसरण से अधिक की आवश्यकता नहीं होती है, प्राप्त किए जा सकते हैं यदि कोई रीमैन इंटीग्रल को छोड़ देता है और इसके बजाय लेबेस्ग एकीकरण का उपयोग करता है।
विश्लेषणात्मकता के लिए
मोरेरा के प्रमेय का उपयोग करके, कोई यह दिखा सकता है कि यदि विश्लेषणात्मक कार्य कार्य का अनुक्रम जटिल विमान के क्षेत्र एस में समान रूप से परिवर्तित होता है, तो सीमा एस में विश्लेषणात्मक है। यह उदाहरण दर्शाता है कि जटिल कार्य वास्तविक कार्यों की तुलना में अधिक अच्छी तरह से व्यवहार किए जाते हैं, क्योंकि वास्तविक अंतराल पर विश्लेषणात्मक कार्यों की एकसमान सीमा को विभेदित करने की भी आवश्यकता नहीं है (वीयरस्ट्रैस कार्य देखें)।
श्रृंखला के लिए
हम ऐसा कहते हैं अभिसरण:
- pointwise on E if and only if the sequence of partial sums converges for every .
- uniformly on E if and only if sn converges uniformly as .
- absolutely on E if and only if converges for every .
इस परिभाषा के साथ निम्नलिखित परिणाम आता है: <ब्लॉककोट>मान लीजिए x0 सेट ई और प्रत्येक एफ में समाहित होn x पर निरंतर रहें0. यदि E पर समान रूप से अभिसरित होता है तो x पर f सतत है0 ई में. मान लीजिए कि और प्रत्येक एफn ई. पर समाकलनीय है E पर समान रूप से अभिसरण करता है तो f, E पर पूर्णांक है और f के अभिन्नों की श्रृंखला हैn एफ की श्रृंखला के अभिन्न अंग के समान हैn.
लगभग एकसमान अभिसरण
यदि कार्य का डोमेन एक माप स्थान ई है तो 'लगभग समान अभिसरण' की संबंधित धारणा को परिभाषित किया जा सकता है। हम कार्यों का एक क्रम कहते हैं यदि प्रत्येक के लिए E पर लगभग समान रूप से अभिसरण होता है वहाँ एक मापने योग्य सेट उपस्थित है से कम माप के साथ जैसे कि कार्यों का क्रम पर समान रूप से अभिसरित होता है . दूसरे शब्दों में, लगभग एकसमान अभिसरण का अर्थ है कि इच्छानुसार से छोटे माप के सेट हैं जिनके लिए कार्यों का क्रम उनके पूरक पर समान रूप से परिवर्तित होता है।
ध्यान दें कि अनुक्रम के लगभग एक समान अभिसरण का अर्थ यह नहीं है कि अनुक्रम लगभग हर जगह समान रूप से अभिसरण करता है जैसा कि नाम से अनुमान लगाया जा सकता है। हालाँकि, ईगोरोव का प्रमेय यह आश्वासन देता है कि एक सीमित माप स्थान पर, कार्यों का एक क्रम जो बिंदुवार अभिसरण को परिवर्तित करता है#लगभग हर जगह अभिसरण भी एक ही सेट पर लगभग समान रूप से अभिसरण करता है।
लगभग एकसमान अभिसरण का तात्पर्य लगभग हर जगह माप में अभिसरण और अभिसरण से है।
यह भी देखें
- संभावना में एकसमान अभिसरण
- अभिसरण के विधि (एनोटेटेड सूचकांक)
- दीनी का प्रमेय
- अर्ज़ेला-एस्कोली प्रमेय
टिप्पणियाँ
- ↑ Sørensen, Henrik Kragh (2005). "Exceptions and counterexamples: Understanding Abel's comment on Cauchy's Theorem". Historia Mathematica. 32 (4): 453–480. doi:10.1016/j.hm.2004.11.010.
- ↑ Jahnke, Hans Niels (2003). "6.7 The Foundation of Analysis in the 19th Century: Weierstrass". A history of analysis. AMS Bookstore. p. 184. ISBN 978-0-8218-2623-2.
- ↑ Lakatos, Imre (1976). प्रमाण एवं खण्डन. Cambridge University Press. pp. 141. ISBN 978-0-521-21078-2.
- ↑ Rudin, Walter (1976). Principles of Mathematical Analysis 3rd edition, Theorem 7.17. McGraw-Hill: New York.
संदर्भ
- Konrad Knopp, Theory and Application of Infinite Series; Blackie and Son, London, 1954, reprinted by Dover Publications, ISBN 0-486-66165-2.
- G. H. Hardy, Sir George Stokes and the concept of uniform convergence; Proceedings of the Cambridge Philosophical Society, 19, pp. 148–156 (1918)
- Bourbaki; Elements of Mathematics: General Topology. Chapters 5–10 (paperback); ISBN 0-387-19374-X
- Walter Rudin, Principles of Mathematical Analysis, 3rd ed., McGraw–Hill, 1976.
- Gerald Folland, Real Analysis: Modern Techniques and Their Applications, Second Edition, John Wiley & Sons, Inc., 1999, ISBN 0-471-31716-0.
- William Wade, An Introduction to Analysis, 3rd ed., Pearson, 2005
बाहरी संबंध
- "Uniform convergence", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
- Graphic examples of uniform convergence of Fourier series from the University of Colorado