सामग्री की प्रबलता: Difference between revisions

From Vigyanwiki
(Created page with "{{short description|Behavior of solid objects subject to stresses and strains}} {{Use dmy dates|date=March 2020}} सामग्री की ताकत का क्षे...")
 
No edit summary
Line 1: Line 1:
{{short description|Behavior of solid objects subject to stresses and strains}}
{{short description|Behavior of solid objects subject to stresses and strains}}
{{Use dmy dates|date=March 2020}}
{{Use dmy dates|date=March 2020}}
सामग्री की ताकत का क्षेत्र, जिसे सामग्री का यांत्रिकी भी कहा जाता है, आमतौर पर संरचनात्मक सदस्यों, जैसे बीम, कॉलम और शाफ्ट जैसे तनाव (भौतिकी) और तनाव (भौतिकी) की गणना के विभिन्न तरीकों को संदर्भित करता है। लोडिंग के तहत एक संरचना की प्रतिक्रिया की भविष्यवाणी करने के लिए नियोजित विधियां और विभिन्न विफलता मोड के लिए इसकी संवेदनशीलता इसकी उपज शक्ति, अंतिम शक्ति, यंग के मापांक और पॉइसन के अनुपात जैसे सामग्रियों के गुणों को ध्यान में रखते हैं। इसके अलावा, यांत्रिक तत्व के मैक्रोस्कोपिक गुण (ज्यामितीय गुण) जैसे कि इसकी लंबाई, चौड़ाई, मोटाई, सीमा की कमी और ज्यामिति में अचानक परिवर्तन जैसे कि छेद पर विचार किया जाता है।


सिद्धांत संरचनाओं के एक और दो आयामी सदस्यों के व्यवहार के विचार के साथ शुरू हुआ, जिनके तनाव की अवस्थाओं को दो आयामी के रूप में अनुमानित किया जा सकता है, और फिर सामग्री के लोचदार और प्लास्टिक व्यवहार के अधिक पूर्ण सिद्धांत को विकसित करने के लिए तीन आयामों के लिए सामान्यीकृत किया गया था। । सामग्री के यांत्रिकी में एक महत्वपूर्ण संस्थापक अग्रणी स्टीफन टिमोशेंको था।
मैटेरियल्स की स्ट्रेंथ का क्षेत्र (जिसे मैटेरियल्स की मैकेनिकल भी कहा जाता है) आमतौर पर बीम, कॉलम और शाफ्ट जैसे संरचनात्मक मेम्बरों में स्ट्रेसेस और स्ट्रेसेस की गणना करने के विभिन्न तरीकों को संदर्भित करता है। लोडिंग के तहत किसी संरचना की प्रतिक्रिया और विभिन्न विफलता मोड के प्रति इसकी संवेदनशीलता की भविष्यवाणी करने के लिए नियोजित तरीकों में इसकी उपज शक्ति, अंतिम शक्ति, यंग के मापांक और पॉइसन के अनुपात जैसे मैटेरियल्स के गुणों को ध्यान में रखा जाता है। इसके अलावा, यांत्रिक तत्व के स्थूल गुण (ज्यामितीय गुण) जैसे इसकी लंबाई, चौड़ाई, मोटाई, सीमा बाधाएं और ज्यामिति में अचानक परिवर्तन जैसे छेद पर विचार किया जाता है।
 
सिद्धांत संरचनाओं के एक और दो आयामी मेम्बरों के व्यवहार पर विचार करने के साथ शुरू हुआ, जिनके स्ट्रेसेस की स्थिति को दो आयामी के रूप में अनुमानित किया जा सकता है, और फिर मैटेरियल्स के एलास्टिक और प्लास्टिक व्यवहार का अधिक संपूर्ण सिद्धांत विकसित करने के लिए इसे तीन आयामों में सामान्यीकृत किया गया। मैटेरियल्स के मैकेनिकल में एक महत्वपूर्ण संस्थापक अग्रणी स्टीफन टिमोचेंको थे।


== परिभाषा ==
== परिभाषा ==
सामग्री के यांत्रिकी में, एक सामग्री की ताकत विफलता या विरूपण (इंजीनियरिंग) #plastic विरूपण के बिना एक लागू भार का सामना करने की क्षमता है। सामग्री की ताकत का क्षेत्र बलों और विकृति से संबंधित है जो एक सामग्री पर उनके अभिनय से उत्पन्न होता है। एक यांत्रिक सदस्य के लिए लागू एक लोड, जब उन बलों को एक इकाई के आधार पर व्यक्त किया जाता है, तो तनाव नामक सदस्य के भीतर आंतरिक बलों को प्रेरित करेगा। सामग्री पर काम करने वाले तनाव विभिन्न शिष्टाचार में सामग्री के विरूपण का कारण बनते हैं, जिसमें उन्हें पूरी तरह से तोड़ना शामिल है। सामग्री के विरूपण को तनाव कहा जाता है जब उन विकृति को भी एक इकाई के आधार पर रखा जाता है।
मैटेरियल्स के मैकेनिकल में, किसी मैटेरियल्स की स्ट्रेंथ विफलता या प्लास्टिक विरूपण के बिना एप्लाइड लोड का सामना करने की क्षमता है। मैटेरियल्स की स्ट्रेंथ का क्षेत्र उन बलों और विकृतियों से संबंधित है, जो किसी मैटेरियल्स पर उनके कार्य के परिणामस्वरूप होते हैं। एक यांत्रिक मेम्बर पर लगाया गया लोड मेम्बर के के साथ आंतरिक बलों को प्रेरित करेगा जिन्हें स्ट्रेसेस कहा जाता है जब उन बलों को इकाई के आधार पर व्यक्त किया जाता है। मैटेरियल्स पर कार्य करने वाले स्ट्रेसेस मैटेरियल्स को पूरी तरह से तोड़ने सहित विभिन्न तरीकों से विरूपण का कारण बनते हैं। मैटेरियल्स के विरूपण को विकृति कहा जाता है, जब उन विकृतियों को भी इकाई के आधार पर रखा जाता है।


एक यांत्रिक सदस्य के भीतर विकसित होने वाले तनावों और उपभेदों की गणना उस सदस्य की लोड क्षमता का आकलन करने के लिए की जानी चाहिए। इसके लिए सदस्य की ज्यामिति, उसकी बाधाओं, सदस्य पर लागू भार और उस सामग्री के गुणों की आवश्यकता होती है, जिसके लिए सदस्य की रचना की जाती है। लागू भार अक्षीय (तन्य या संपीड़ित), या घूर्णी (शक्ति कतरनी) हो सकता है। लोडिंग और सदस्य की ज्यामिति के पूर्ण विवरण के साथ, सदस्य के भीतर किसी भी बिंदु पर तनाव और तनाव की स्थिति की गणना की जा सकती है। एक बार जब सदस्य के भीतर तनाव और तनाव की स्थिति ज्ञात हो जाती है, तो उस सदस्य की ताकत (लोड ले जाने की क्षमता), इसके विकृति (कठोरता गुण), और इसकी स्थिरता (इसके मूल विन्यास को बनाए रखने की क्षमता) की गणना की जा सकती है।
किसी यांत्रिक मेम्बर के के साथ विकसित होने वाले स्ट्रेसेस और स्ट्रेसेस की गणना उस मेम्बर की लोड क्षमता का आकलन करने के लिए की जानी चाहिए। इसके लिए मेम्बर की ज्यामिति, उसकी बाधाओं, मेम्बर पर एप्लाइड लोड और उस मैटेरियल्स के गुणों का पूरा विवरण आवश्यक है, जिससे मेम्बर बना है। एप्लाइड लोड अक्षीय (तन्यता या संपीड़न), या घूर्णी (शक्ति कतरनी) हो सकता है। लोडिंग और मेम्बर की ज्यामिति के पूर्ण विवरण के साथ, मेम्बर के के साथ किसी भी बिंदु पर स्ट्रेसेस की स्थिति और स्ट्रेसेस की स्थिति की गणना की जा सकती है। एक बार जब मेम्बर के के साथ स्ट्रेसेस और स्ट्रेसेस की स्थिति ज्ञात हो जाती है, तो उस मेम्बर की स्ट्रेंथ (लोड वहन करने की क्षमता), उसकी विकृति (कठोरता गुण), और उसकी स्थिरता (उसके मूल विन्यास को बनाए रखने की क्षमता) की गणना की जा सकती है।


गणना किए गए तनावों की तुलना सदस्य की ताकत के कुछ माप से की जा सकती है जैसे कि इसकी सामग्री उपज या अंतिम शक्ति। सदस्य की परिकलित विक्षेपण की तुलना विक्षेपण मानदंडों से की जा सकती है जो सदस्य के उपयोग पर आधारित हैं। सदस्य के परिकलित बकलिंग लोड की तुलना लागू लोड से की जा सकती है। सदस्य की गणना की गई कठोरता और बड़े पैमाने पर वितरण का उपयोग सदस्य की गतिशील प्रतिक्रिया की गणना करने के लिए किया जा सकता है और फिर ध्वनिक वातावरण की तुलना में इसका उपयोग किया जाएगा।
गणना किए गए स्ट्रेसेसों की तुलना मेम्बर की स्ट्रेंथ के कुछ माप से की जा सकती है, जैसे कि इसकी भौतिक उपज या अंतिम स्ट्रेंथ। मेम्बर के परिकलित विक्षेपण की तुलना विक्षेपण मानदंडों से की जा सकती है, जो मेम्बर के उपयोग पर आधारित होते हैं। सदस्य के परिकलित बकलिंग लोड की तुलना एप्लाइड लोड से की जा सकती है। सदस्य की गणना की गई कठोरता और बड़े पैमाने पर वितरण का उपयोग मेम्बर की गतिशील प्रतिक्रिया की गणना करने के लिए किया जा सकता है और फिर उस ध्वनिक वातावरण की तुलना की जा सकती है जिसमें इसका उपयोग किया गया है।


सामग्री की ताकत इंजीनियरिंग तनाव -तनाव वक्र (उपज तनाव) पर बिंदु को संदर्भित करती है, जिसके आगे सामग्री विकृति का अनुभव करती है जो लोडिंग को हटाने पर पूरी तरह से उलट नहीं होगी और परिणामस्वरूप, सदस्य के पास एक स्थायी विक्षेपण होगा। सामग्री की अंतिम ताकत तनाव के अधिकतम मूल्य को संदर्भित करती है। फ्रैक्चर की ताकत फ्रैक्चर पर तनाव मूल्य है (अंतिम तनाव मूल्य दर्ज किया गया)।
मैटेरियल्स की स्ट्रेंथ इंजीनियरिंग स्ट्रेसेस-स्ट्रेसेस वक्र (उपज स्ट्रेसेस) पर उस बिंदु को संदर्भित करती है जिसके आगे मैटेरियल्स विकृतियों का अनुभव करती है, जो लोडिंग को हटाने पर पूरी तरह से उलट नहीं होगी और परिणामस्वरूप, मेम्बर का स्थायी विक्षेपण होगा, मैटेरियल्स की अंतिम स्ट्रेंथ स्ट्रेसेस के अधिकतम मूल्य तक पहुँचती है। फ्रैक्चर स्ट्रेंथ फ्रैक्चर पर स्ट्रेसेस मूल्य है (अंतिम स्ट्रेसेस मूल्य दर्ज किया गया है)।


=== लोडिंग के प्रकार ===
=== लोडिंग के प्रकार ===
*अनुप्रस्थ विमान लोडिंग - बलों ने एक सदस्य के अनुदैर्ध्य अक्ष पर लंबवत लागू किया।अनुप्रस्थ लोडिंग सदस्य की वक्रता में परिवर्तन के साथ आंतरिक तन्यता और संपीड़ित उपभेदों के साथ सदस्य को अपनी मूल स्थिति से झुकने और विक्षेपित करने का कारण बनता है।<ref>{{cite book
*अनुप्रस्थ लोडिंग - किसी सदस्य के अनुदैर्ध्य अक्ष पर लंबवत एप्लाइड बल, अनुप्रस्थ लोडिंग के कारण मेम्बर अपनी मूल स्थिति से झुक जाता है और विक्षेपित हो जाता है, आंतरिक तन्यता और संपीड़न स्ट्रेंथ के साथ सदस्य की वक्रता में परिवर्तन होता है।<ref>{{cite book
| title = Mechanics of Materials
| title = Mechanics of Materials
| author = Beer & Johnston
| author = Beer & Johnston
Line 22: Line 23:
| edition = 5th
| edition = 5th
| isbn = 978-0-07-352938-7
| isbn = 978-0-07-352938-7
| pages = 210}}</ref> अनुप्रस्थ लोडिंग भी कतरनी बलों को प्रेरित करती है जो सामग्री के कतरनी विरूपण का कारण बनती है और सदस्य के अनुप्रस्थ विक्षेपण को बढ़ाती है।
| pages = 210}}</ref> अनुप्रस्थ लोडिंग भी कतरनी बलों को प्रेरित करती है जो मैटेरियल्स के कतरनी विरूपण का कारण बनती है, और सदस्य के अनुप्रस्थ विक्षेपण को बढ़ाती है।
*अक्षीय लोडिंग - लागू बल सदस्य के अनुदैर्ध्य अक्ष के साथ collinear हैं।बल सदस्य को या तो खिंचाव या छोटा करने का कारण बनते हैं।<ref>{{cite book
*अक्षीय लोडिंग - एप्लाइड बल मेम्बर के अनुदैर्ध्य अक्ष के साथ संरेख होते हैं। बल के कारण मेम्बर या तो खिंच जाता है या छोटा हो जाता है।<ref>{{cite book
| title = Mechanics of Materials
| title = Mechanics of Materials
| author = Beer & Johnston
| author = Beer & Johnston
Line 31: Line 32:
| isbn = 978-0-07-352938-7
| isbn = 978-0-07-352938-7
| pages = 7}}</ref>
| pages = 7}}</ref>
*मरोड़ (यांत्रिकी) लोडिंग - समानांतर विमानों पर अभिनय करने वाले या एक बाहरी युगल द्वारा लागू किए गए एक बाहरी जोड़े द्वारा एक ही बाहरी जोड़े द्वारा लागू समान और विरोधी निर्देशित बल जोड़ों की एक जोड़ी के कारण ट्विस्टिंग एक्शन जो एक सदस्य पर लागू होता है, जो रोटेशन के खिलाफ एक छोर तय होता है।
*टॉर्सनल लोडिंग - एक्सटरनली रूप से एप्लाइड समान और विपरीत रूप से निर्देशित बल जोड़ों की एक जोड़ी के कारण होने वाली घुमाव क्रिया, जो समानांतर विमानों पर काम करती है या किसी मेम्बर पर एप्लाइड एक एक्सटरनली जोड़े द्वारा होती है, जिसका एक सिरा रोटेशन के खिलाफ तय होता है।


=== तनाव की शर्तें ===
=== स्ट्रेसेस की शर्तें ===
[[File: Compressive tensile shear loading.svg|thumb|एक सामग्री में लोड किया जा रहा है) संपीड़न, बी) तनाव, सी) कतरनी।]]
[[File: Compressive tensile shear loading.svg|thumb|एक मैटेरियल्स में लोड किया जा रहा है) संपीड़न, बी) स्ट्रेसेस, सी) कतरनी।]]
अनियंत्रित तनाव द्वारा व्यक्त किया जाता है
एकअक्षीय स्ट्रेसेस किसके द्वारा व्यक्त किया जाता है?
:<math>
:<math>
\sigma = \frac{F}{A}
\sigma = \frac{F}{A}


</math>
</math>
जहां f बल है [n] एक क्षेत्र A [m पर अभिनय कर रहा है<sup>2 </sup>]<ref>{{cite book
जहां F एक क्षेत्र A [m2] पर कार्य करने वाला बल [N] है।<ref>{{cite book
| title = Mechanics of Materials
| title = Mechanics of Materials
| author = Beer & Johnston
| author = Beer & Johnston
Line 47: Line 48:
| edition = 5th
| edition = 5th
| isbn = 978-0-07-352938-7
| isbn = 978-0-07-352938-7
| pages = 5}}</ref> यह क्षेत्र अविवादित क्षेत्र या विकृत क्षेत्र हो सकता है, यह इस बात पर निर्भर करता है कि क्या एक आयामी निकायों में इंजीनियरिंग तनाव#तनाव या सही तनाव रुचि का है।
| pages = 5}}</ref> यह क्षेत्र विकृत क्षेत्र या विकृत क्षेत्र हो सकता है, यह इस बात पर निर्भर करता है, कि इंजीनियरिंग स्ट्रेसेस या सच्चा स्ट्रेसेस रुचिकर है या नहीं है।


*संपीड़ित तनाव (या संपीड़न (भौतिकी)) एक लागू भार के कारण तनाव की स्थिति है जो लागू भार के अक्ष के साथ सामग्री (संपीड़न सदस्य) की लंबाई को कम करने के लिए कार्य करता है, यह दूसरे शब्दों में, एक तनाव स्थिति है यह सामग्री के निचोड़ का कारण बनता है। संपीड़न का एक साधारण मामला विपरीत, धक्का देने वाली ताकतों की कार्रवाई से प्रेरित अनियंत्रित संपीड़न है। सामग्री के लिए संपीड़ित शक्ति आम तौर पर उनकी तन्यता ताकत से अधिक है। हालांकि, संपीड़न में लोड की गई संरचनाएं अतिरिक्त विफलता मोड के अधीन हैं, जैसे कि बकलिंग, जो सदस्य की ज्यामिति पर निर्भर हैं।
*संपीड़न स्ट्रेसेस (या संपीड़न) एक एप्लाइड लोड के कारण होने वाली स्ट्रेसेस की स्थिति है, जो एप्लाइड लोड की धुरी के साथ मैटेरियल्स (संपीड़न मेम्बर) की लंबाई को कम करने का कार्य करता है, यह दूसरे शब्दों में, एक स्ट्रेसेस की स्थिति है, जो संपीड़न का कारण बनती है, मैटेरियल्स का संपीड़न का एक साधारण मामला विपरीत, धक्का देने वाली स्ट्रेंथों की कार्रवाई से प्रेरित एक अक्षीय संपीड़न है। मैटेरियल्स के लिए संपीड़न स्ट्रेंथ आम तौर पर उनकी तन्य स्ट्रेंथ से अधिक होती है। हालाँकि, संपीड़न में लोड की गई संरचनाएं अतिरिक्त विफलता मोड के अधीन होती हैं, जैसे कि बकलिंग, जो मेम्बर की ज्यामिति पर निर्भर होती हैं।
*तन्यता तनाव एक लागू भार के कारण तनाव की स्थिति है जो लागू लोड के अक्ष के साथ सामग्री को लम्बा करने के लिए जाता है, दूसरे शब्दों में, सामग्री को खींचने से होने वाला तनाव। तनाव में लोड किए गए समान क्रॉस-सेक्शनल क्षेत्र की संरचनाओं की ताकत क्रॉस-सेक्शन के आकार से स्वतंत्र है। तनाव में लोड की गई सामग्री तनाव सांद्रता के लिए अतिसंवेदनशील होती है जैसे कि भौतिक दोष या ज्यामिति में अचानक परिवर्तन। हालांकि, नमनीय व्यवहार (उदाहरण के लिए अधिकांश धातुएं) प्रदर्शित करने वाली सामग्री कुछ दोषों को सहन कर सकती है, जबकि भंगुर सामग्री (जैसे सिरेमिक) उनकी अंतिम सामग्री की ताकत से नीचे अच्छी तरह से विफल हो सकती है।
*तन्य स्ट्रेसेस एक एप्लाइड लोड के कारण होने वाली स्ट्रेसेस की स्थिति है, जो एप्लाइड लोड की धुरी के साथ मैटेरियल्स को लंबा कर देती है, दूसरे शब्दों में, मैटेरियल्स को खींचने के कारण होने वाला स्ट्रेसेस, स्ट्रेसेस में लोड किए गए समान क्रॉस-सेक्शनल क्षेत्र की संरचनाओं की स्ट्रेसेस क्रॉस-सेक्शन के आकार से स्वतंत्र होती है। स्ट्रेसेस में भरी हुई मैटेरियल्स स्ट्रेसेस सांद्रता जैसे मैटेरियल्स दोष या ज्यामिति में अचानक परिवर्तन के प्रति संवेदनशील होती है। हालाँकि, नमनीय व्यवहार प्रदर्शित करने वाली सामग्रियाँ (उदाहरण के लिए अधिकांश धातुएँ) कुछ दोषों को सहन कर सकती हैं, जबकि भंगुर सामग्रियाँ (जैसे सिरेमिक) अपनी अंतिम भौतिक स्ट्रेंथ से काफी नीचे विफल हो सकती हैं।
*कतरनी तनाव तनाव की स्थिति है, जो सामग्री के माध्यम से कार्रवाई की समानांतर रेखाओं के साथ काम करने वाले विरोधी बलों की एक जोड़ी की संयुक्त ऊर्जा के कारण होती है, दूसरे शब्दों में, एक दूसरे के सापेक्ष सामग्री के फिसलने वाली सामग्री के चेहरे के कारण तनाव होता है। एक उदाहरण कैंची के साथ कागज काट रहा है<ref>{{cite book
*कतरनी स्ट्रेसेस, मैटेरियल्स के माध्यम से कार्रवाई की समानांतर रेखाओं के साथ कार्य करने वाले विरोधी बलों की एक जोड़ी की संयुक्त ऊर्जा के कारण होने वाली स्ट्रेसेस स्थिति है, दूसरे शब्दों में, मैटेरियल्स के एक दूसरे के सापेक्ष फिसलने वाले चेहरों के कारण होने वाला स्ट्रेसेस, इसका एक उदाहरण कैंची से कागज काटना है<ref>{{cite book
| title = Mechanics of Materials
| title = Mechanics of Materials
| author = Beer & Johnston
| author = Beer & Johnston
Line 58: Line 59:
| edition = 5th
| edition = 5th
| isbn = 978-0-07-352938-7
| isbn = 978-0-07-352938-7
| pages = 9–10}}</ref> या टॉर्सनल लोडिंग के कारण तनाव।
| pages = 9–10}}</ref> या मरोड़ वाले लोडिंग के कारण स्ट्रेसेस होता है।


=== प्रतिरोध के लिए तनाव पैरामीटर ===
=== प्रतिरोध के लिए स्ट्रेसेस पैरामीटर ===
सामग्री प्रतिरोध को कई यांत्रिक तनाव मापदंडों में व्यक्त किया जा सकता है।यांत्रिक तनाव मापदंडों का उल्लेख करते समय सामग्री की ताकत शब्द का उपयोग किया जाता है।ये प्रति यूनिट सतह पर दबाव और बल के लिए आयाम सजातीय के साथ भौतिक मात्रा हैं।शक्ति के लिए पारंपरिक माप इकाई इसलिए यूनिट्स की अंतर्राष्ट्रीय प्रणाली में मेगापास्कल है, और संयुक्त राज्य अमेरिका के प्रथागत इकाइयों के बीच प्रति वर्ग इंच पाउंड।
मैटेरियल्स प्रतिरोध को कई यांत्रिक स्ट्रेसेस मापदंडों में व्यक्त किया जा सकता है। मैकेनिकल शक्ति शब्द का प्रयोग मैकेनिकल स्ट्रेंथ मापदंडों के संदर्भ में किया जाता है। ये फिजिकल मात्राएँ हैं, जिनका आयाम प्रति इकाई सतह पर दबाव और बल के समान है। स्ट्रेंथ के लिए पारंपरिक माप इकाई इसलिए अंतर्राष्ट्रीय इकाइयों की प्रणाली में एमपीए और संयुक्त राज्य अमेरिका की प्रथागत इकाइयों के बीच पीएसआई है। शक्ति मापदंडों में शामिल हैं: उपज शक्ति, तन्य शक्ति, थकान शक्ति, दरार प्रतिरोध, और अन्य पैरामीटर होता है।।
शक्ति मापदंडों में शामिल हैं: उपज शक्ति, तन्य शक्ति, थकान शक्ति, दरार प्रतिरोध और अन्य मापदंडों।{{cn|date=September 2020}}
*उपज शक्ति सबसे कम स्ट्रेसेस है जो किसी मैटेरियल्स में स्थायी विरूपण उत्पादन करता है। कुछ मैटेरियल्स में, जैसे एल्यूमीनियम मिश्र धातु, उपज के बिंदु की पहचान करना मुश्किल है, इस प्रकार इसे आमतौर पर 0.2% प्लास्टिक स्ट्रेसेस पैदा करने के लिए आवश्यक स्ट्रेसेस के रूप में परिभाषित किया जाता है। इसे 0.2% प्रमाण स्ट्रेस कहा जाता है।<ref>{{cite book
*उपज (इंजीनियरिंग) सबसे कम तनाव है जो एक सामग्री में एक स्थायी विरूपण का उत्पादन करता है।कुछ सामग्रियों में, एल्यूमीनियम मिश्र धातुओं की तरह, उपज की बात को पहचानना मुश्किल है, इस प्रकार इसे आमतौर पर 0.2% प्लास्टिक तनाव के कारण आवश्यक तनाव के रूप में परिभाषित किया जाता है।इसे 0.2% प्रूफ स्ट्रेस कहा जाता है।<ref>{{cite book
| title = Mechanics of Materials
| title = Mechanics of Materials
| year =2009
| year =2009
Line 76: Line 76:
| first3 =John T
| first3 =John T
}}</ref>
}}</ref>
*संपीड़ित शक्ति संपीड़ित तनाव की एक सीमा है जो नमनीय विफलता (अनंत सैद्धांतिक उपज) या भंगुर विफलता के तरीके से एक सामग्री में विफलता की ओर ले जाती है (दरार प्रसार के परिणाम के रूप में टूटना, या एक कमजोर विमान के साथ फिसलना - कतरनी शक्ति देखें)
*संपीड़ित शक्ति संपीड़ित स्ट्रेसेस की एक सीमित स्थिति है, जो नमनीय विफलता (अनंत सैद्धांतिक उपज) या भंगुर विफलता (दरार प्रसार के परिणामस्वरूप टूटना, या कमजोर विमान के साथ फिसलना - कतरनी ताकत देखें) के तरीके में एक मैटेरियल्स में विफलता की ओर ले जाती है।
*तन्य शक्ति या अंतिम तन्यता ताकत तन्यता तनाव की एक सीमा की स्थिति है जो नमनीय विफलता के तरीके से तन्यता विफलता की ओर ले जाती है (उस विफलता के पहले चरण के रूप में उपज, दूसरे चरण में कुछ सख्त होना और एक संभावित गर्दन के गठन के बाद टूटना) या याभंगुर विफलता (कम तनाव की स्थिति में दो या दो से अधिक टुकड़ों में अचानक टूटना)।तन्यता ताकत को या तो सच्चे तनाव या इंजीनियरिंग तनाव के रूप में उद्धृत किया जा सकता है, लेकिन इंजीनियरिंग तनाव सबसे अधिक उपयोग किया जाता है।
*तन्यता स्ट्रेंथ या अंतिम तन्यता स्ट्रेंथ तन्यता स्ट्रेसेस की एक सीमित स्थिति है, जो नमनीय विफलता के तरीके में तन्यता विफलता की ओर ले जाती है (उस विफलता के पहले चरण के रूप में उपज, दूसरे चरण में कुछ कठोर होना और संभावित "गर्दन" गठन के बाद टूटना) या भंगुर विफलता (कम स्ट्रेसेस की स्थिति में दो या अधिक टुकड़ों में अचानक टूटना)। तन्यता शक्ति को या तो वास्तविक स्ट्रेसेस या इंजीनियरिंग स्ट्रेसेस के रूप में उद्धृत किया जा सकता है, लेकिन इंजीनियरिंग स्ट्रेसेस सबसे अधिक उपयोग किया जाता है।
*थकान (सामग्री) एक सामग्री की ताकत का एक अधिक जटिल उपाय है जो किसी वस्तु की सेवा अवधि में कई लोडिंग एपिसोड पर विचार करता है,<ref>{{cite book
*थकान स्ट्रेंथ किसी मैटेरियल्स की ताकत का एक अधिक जटिल माप है, जो किसी वस्तु की सेवा अवधि में कई लोडिंग एपिसोड पर विचार करता है,<ref>{{cite book
| title = Mechanics of Materials
| title = Mechanics of Materials
| author = Beer & Johnston
| author = Beer & Johnston
Line 85: Line 85:
| edition = 5th
| edition = 5th
| isbn = 978-0-07-352938-7
| isbn = 978-0-07-352938-7
| pages = 60}}</ref> और आमतौर पर स्थैतिक शक्ति उपायों की तुलना में अधिक कठिन है।थकान की ताकत को यहां एक साधारण रेंज (आँकड़े) के रूप में उद्धृत किया गया है (<math>\Delta\sigma= \sigma_\mathrm{max} - \sigma_\mathrm{min}</math>)।चक्रीय लोडिंग के मामले में इसे उचित रूप से एक आयाम के रूप में व्यक्त किया जा सकता है जो आमतौर पर शून्य माध्य तनाव पर होता है, साथ ही तनाव की उस स्थिति के तहत विफलता के लिए चक्रों की संख्या के साथ।
| pages = 60}}</ref> और आमतौर पर स्थैतिक स्ट्रेसेस उपायों की तुलना में इसका आकलन करना अधिक कठिन होता है। थकान की स्ट्रेंथ को यहां एक साधारण सीमा के रूप में उद्धृत किया गया है, (<math>\Delta\sigma= \sigma_\mathrm{max} - \sigma_\mathrm{min}</math>) चक्रीय लोडिंग के मामले में इसे आमतौर पर शून्य माध्य स्ट्रेसेस पर एक आयाम के रूप में व्यक्त किया जा सकता है, साथ ही स्ट्रेसेस की स्थिति के तहत विफलता के चक्रों की संख्या के रूप में व्यक्त किया जा सकता है।
 
*प्रभाव स्ट्रेंथ अचानक लागू लोड को झेलने की मैटेरियल्स की क्षमता है और इसे ऊर्जा के रूप में व्यक्त किया जाता है। अक्सर इज़ोड प्रभाव स्ट्रेंथ परीक्षण या चार्पी प्रभाव परीक्षण के साथ मापा जाता है, जो दोनों एक नमूने को फ्रैक्चर करने के लिए आवश्यक प्रभाव ऊर्जा को मापते हैं। आयतन, लोच का मापांक, बलों का वितरण और उपज स्ट्रेंथ किसी मैटेरियल्स की प्रभाव शक्ति को प्रभावित करते हैं। किसी मैटेरियल्स या वस्तु की प्रभाव स्ट्रेंथ अधिक होने के लिए, स्ट्रेसेस को संपूर्ण वस्तु में समान रूप से वितरित किया जाना चाहिए, इसमें लोच के कम मापांक और उच्च मैटेरियल्स उपज स्ट्रेंथ के साथ एक बड़ी मात्रा भी होनी चाहिए।<ref>{{cite book
*प्रभाव शक्ति सामग्री की क्षमता है जो अचानक लागू भार का सामना करने के लिए है और ऊर्जा के संदर्भ में व्यक्त की जाती है।अक्सर IZOD इम्पैक्ट स्ट्रेंथ टेस्ट या चार्पी इम्पैक्ट टेस्ट के साथ मापा जाता है, जो दोनों एक नमूने को फ्रैक्चर करने के लिए आवश्यक प्रभाव ऊर्जा को मापते हैं।मात्रा, लोच का मापांक (भौतिकी), बलों का वितरण, और उपज शक्ति एक सामग्री की प्रभाव शक्ति को प्रभावित करती है।एक सामग्री या वस्तु के लिए उच्च प्रभाव शक्ति के लिए, तनाव को पूरे ऑब्जेक्ट में समान रूप से वितरित किया जाना चाहिए।इसमें लोच के कम मापांक और एक उच्च सामग्री उपज ताकत के साथ एक बड़ी मात्रा भी होनी चाहिए।<ref>{{cite book
| title = Mechanics of Materials
| title = Mechanics of Materials
| author = Beer & Johnston
| author = Beer & Johnston
Line 95: Line 94:
| isbn = 978-0-07-352938-7
| isbn = 978-0-07-352938-7
| pages = 693–696}}</ref>
| pages = 693–696}}</ref>
 
=== प्रतिरोध के लिए स्ट्रेसेस पैरामीटर ===
 
*मैटेरियल्स  का विरूपण, स्ट्रेसेस लागू होने पर उत्पन्न ज्यामिति में परिवर्तन है (लागू बलों, गुरुत्वाकर्षण क्षेत्र, त्वरण, थर्मल विस्तार, आदि के परिणामस्वरूप)। विरूपण मैटेरियल्स के विस्थापन क्षेत्र द्वारा व्यक्त किया जाता है।<ref>{{cite book
=== प्रतिरोध के लिए तनाव पैरामीटर ===
*सामग्री का विरूपण (इंजीनियरिंग) ज्यामिति में परिवर्तन होता है जब तनाव लागू होता है (लागू बलों, गुरुत्वाकर्षण क्षेत्रों, त्वरण, थर्मल विस्तार, आदि के परिणामस्वरूप)।विकृति सामग्री के विस्थापन क्षेत्र द्वारा व्यक्त की जाती है।<ref>{{cite book
| title = Mechanics of Materials
| title = Mechanics of Materials
| author = Beer & Johnston
| author = Beer & Johnston
Line 106: Line 103:
| isbn = 978-0-07-352938-7
| isbn = 978-0-07-352938-7
| pages = 47}}</ref>
| pages = 47}}</ref>
*तनाव (सामग्री विज्ञान) या कम विरूपण एक गणितीय शब्द है जो भौतिक क्षेत्र के बीच विरूपण परिवर्तन की प्रवृत्ति को व्यक्त करता है।तनाव प्रति यूनिट लंबाई में विरूपण है।<ref>{{cite book
*स्ट्रेसेस या कम विरूपण एक गणितीय शब्द है, जो भौतिक क्षेत्र के बीच विरूपण परिवर्तन की प्रवृत्ति को व्यक्त करता है। स्ट्रेसेस प्रति इकाई लंबाई में होने वाली विकृति है।<ref>{{cite book
| title = Mechanics of Materials
| title = Mechanics of Materials
| author = Beer & Johnston
| author = Beer & Johnston
Line 113: Line 110:
| edition = 5th
| edition = 5th
| isbn = 978-0-07-352938-7
| isbn = 978-0-07-352938-7
| pages = 49}}</ref> अनियैक्सियल लोड करने के मामले में एक नमूना के विस्थापन (उदाहरण के लिए एक बार तत्व) विस्थापन के भागफल और नमूना की मूल लंबाई के रूप में व्यक्त तनाव की गणना की ओर जाता है।3 डी विस्थापन क्षेत्रों के लिए इसे दूसरे ऑर्डर टेंसर (6 स्वतंत्र तत्वों के साथ) के संदर्भ में विस्थापन कार्यों के डेरिवेटिव के रूप में व्यक्त किया जाता है।
| pages = 49}}</ref> एकअक्षीय लोडिंग के मामले में एक नमूने (उदाहरण के लिए एक बार तत्व) के विस्थापन से विस्थापन के भागफल और नमूने की मूल लंबाई के रूप में व्यक्त स्ट्रेसेस की गणना होती है। 3डी विस्थापन क्षेत्रों के लिए इसे दूसरे क्रम के टेंसर (6 स्वतंत्र तत्वों के साथ) के संदर्भ में विस्थापन कार्यों के व्युत्पन्न के रूप में व्यक्त किया जाता है।
*डिफ्लेक्शन (इंजीनियरिंग) उस परिमाण का वर्णन करने के लिए एक शब्द है जिसके लिए एक संरचनात्मक तत्व को लागू किया जाता है जब एक लागू भार के अधीन होता है।<ref>{{cite book
*विक्षेपण उस परिमाण का वर्णन करने वाला एक शब्द है, जिस तक किसी संरचनात्मक तत्व को एप्लाइड लोड के अधीन विस्थापित किया जाता है।<ref>{{cite book
| title = Structural Analysis
| title = Structural Analysis
| author = R. C. Hibbeler
| author = R. C. Hibbeler
Line 122: Line 119:
| isbn = 978-0-13-602060-8
| isbn = 978-0-13-602060-8
| pages = 305}}</ref>
| pages = 305}}</ref>
 
=== स्ट्रेसेस -स्ट्रेसेस संबंध ===
 
=== तनाव -तनाव संबंध ===
{{main|Stress–strain curve}}
{{main|Stress–strain curve}}


[[File:Tension test.svg|thumb|300px|तनाव के तहत एक नमूने की बुनियादी स्थिर प्रतिक्रिया]]
[[File:Tension test.svg|thumb|300px|स्ट्रेसेस के तहत एक नमूने की बुनियादी स्थिर प्रतिक्रिया]]
*लोच (भौतिकी) तनाव जारी होने के बाद अपने पिछले आकार में लौटने की सामग्री की क्षमता है।कई सामग्रियों में, लागू तनाव के बीच का संबंध सीधे परिणामी तनाव (एक निश्चित सीमा तक) के लिए आनुपातिक है, और उन दो मात्राओं का प्रतिनिधित्व करने वाला एक ग्राफ एक सीधी रेखा है।
*लोच किसी मैटेरियल्स की स्ट्रेसेस मुक्त होने के बाद अपने पिछले आकार में लौटने की क्षमता है। कई मैटेरियल्स में, एप्लाइड स्ट्रेसेस के बीच का संबंध परिणामी स्ट्रेसेस (एक निश्चित सीमा तक) के सीधे आनुपातिक होता है, और उन दो मात्राओं का प्रतिनिधित्व करने वाला ग्राफ एक सीधी रेखा होता है।
इस लाइन के ढलान को यंग के मापांक, या लोच के मापांक के रूप में जाना जाता है।लोच के मापांक का उपयोग तनाव-तनाव वक्र के रैखिक-लोचदार हिस्से में तनाव-तनाव संबंध को निर्धारित करने के लिए किया जा सकता है।रैखिक-लोचदार क्षेत्र या तो उपज बिंदु से नीचे है, या यदि किसी उपज बिंदु को तनाव-तनाव की साजिश पर आसानी से पहचाना नहीं जाता है, तो इसे 0 और 0.2% तनाव के बीच परिभाषित किया गया है, और इसे तनाव के क्षेत्र के रूप में परिभाषित किया गया है जिसमें नहींउपज (स्थायी विरूपण) होता है।<ref>{{cite book
इस रेखा के ढलान को यंग मापांक, या "लोच का मापांक" के रूप में जाना जाता है। लोच के मापांक का उपयोग स्ट्रेसेस-खिंचाव वक्र के रैखिक-लोचदार भाग में स्ट्रेसेस-खिंचाव संबंध को निर्धारित करने के लिए किया जा सकता है। रैखिक-एलास्टिक क्षेत्र या तो उपज बिंदु से नीचे है, या यदि स्ट्रेसेस-स्ट्रेसेस प्लॉट पर उपज बिंदु आसानी से पहचाना नहीं जाता है, तो इसे 0 और 0.2% स्ट्रेसेस के बीच परिभाषित किया जाता है, और इसे स्ट्रेसेस के क्षेत्र के रूप में परिभाषित किया जाता है जिसमें कोई स्ट्रेसेस नहीं होता है, उपज (स्थायी विकृति) होती है।<ref>{{cite book
| title = Mechanics of Materials
| title = Mechanics of Materials
| author = Beer & Johnston
| author = Beer & Johnston
Line 137: Line 132:
| isbn = 978-0-07-352938-7
| isbn = 978-0-07-352938-7
| pages = 53–56}}</ref>
| pages = 53–56}}</ref>
*प्लास्टिसिटी (भौतिकी) या प्लास्टिक विरूपण लोचदार विरूपण के विपरीत है और इसे अप्राप्य तनाव के रूप में परिभाषित किया गया है।लागू तनाव की रिहाई के बाद प्लास्टिक विरूपण को बरकरार रखा जाता है।रैखिक-लोचदार श्रेणी में अधिकांश सामग्री आमतौर पर प्लास्टिक विरूपण के लिए सक्षम होती है।सिरेमिक की तरह भंगुर सामग्री, किसी भी प्लास्टिक विरूपण का अनुभव नहीं करती है और अपेक्षाकृत कम तनाव के तहत फ्रैक्चर होगी, जबकि धातु विज्ञान, सीसा या पॉलिमर जैसी नमनीय सामग्री फ्रैक्चर दीक्षा से पहले बहुत अधिक विकृत हो जाएगी।
*प्लास्टिसिटी या प्लास्टिक विरूपण एलास्टिक विरूपण के विपरीत है और इसे अप्राप्य स्ट्रेसेस के रूप में परिभाषित किया गया है। लागू स्ट्रेसेस के मुक्त होने के बाद भी प्लास्टिक विरूपण बरकरार रहता है। रैखिक-एलास्टिक श्रेणी की अधिकांश सामग्रियां आमतौर पर प्लास्टिक विरूपण में सक्षम होती हैं। सिरेमिक जैसी भंगुर मैटेरियल्स, किसी भी प्लास्टिक विरूपण का अनुभव नहीं करती है और अपेक्षाकृत कम स्ट्रेसेस के तहत फ्रैक्चर हो जाएगी, जबकि धातु, सीसा, या पॉलिमर जैसी नमनीय मैटेरियल्स फ्रैक्चर शुरू होने से पहले बहुत अधिक विकृत हो जाता है।


एक गाजर और चबाने वाले बबल गम के बीच के अंतर पर विचार करें।गाजर टूटने से पहले बहुत कम खिंचाव करेगा।दूसरी ओर, चबाया हुआ बबल गम, अंत में टूटने से पहले बहुत विकृत हो जाएगा।
केरत और चबाने वाली बबल गम के बीच अंतर पर विचार करें, केरत टूटने से पहले बहुत कम खिंचेगी। दूसरी ओर, चबाया गया बबल गम अंततः टूटने से पहले अत्यधिक रूप से विकृत हो जाता है।


== डिजाइन शर्तें ==
== डिजाइन शर्तें ==
अंतिम शक्ति एक सामग्री से संबंधित एक विशेषता है, बजाय सामग्री से बने एक विशिष्ट नमूना के बजाय, और इस तरह यह क्रॉस सेक्शन क्षेत्र की प्रति इकाई बल के रूप में उद्धृत किया गया है (एन/एम/एम)<sup>2 </sup>)।अंतिम ताकत अधिकतम तनाव है जो एक सामग्री टूटने या कमजोर होने से पहले झेल सकती है।<ref>{{cite book
अंतिम स्ट्रेंथ किसी मैटेरियल्स से संबंधित एक विशेषता है, न कि केवल मैटेरियल्स से बना एक विशिष्ट नमूना, और इस तरह इसे क्रॉस सेक्शन क्षेत्र (एन / एम 2) की प्रति इकाई बल के रूप में उद्धृत किया जाता है। अंतिम स्ट्रेंथ वह अधिकतम स्ट्रेसेस है, जिसे कोई मैटेरियल्स टूटने या कमजोर होने से पहले झेल सकती है।<ref>{{cite book
| title = Mechanics of Materials
| title = Mechanics of Materials
| author = Beer & Johnston
| author = Beer & Johnston
Line 149: Line 144:
| edition = 5thv
| edition = 5thv
| isbn = 978-0-07-352938-7
| isbn = 978-0-07-352938-7
| pages = 27–28}}</ref> उदाहरण के लिए, AISI 1018 स्टील की अंतिम तन्यता ताकत (UTS) 440 Magapascal है।इंपीरियल इकाइयों में, तनाव की इकाई को प्रति वर्ग इंच के प्रति lbf/in in या पाउंड-फोर्स के रूप में दिया जाता है।इस इकाई को अक्सर साई के रूप में संक्षिप्त किया जाता है।एक हजार साई संक्षिप्त है।
| pages = 27–28}}</ref> उदाहरण के लिए, एआईएसआई 1018 स्टील की अंतिम तन्यता स्ट्रेंथ (युटीएस) 440 एमपीए है। इंपीरियल इकाइयों में, स्ट्रेसेस की इकाई lbf/in² या पाउंड-फोर्स प्रति वर्ग इंच के रूप में दी जाती है। इस इकाई को अक्सर पीएसआई के रूप में संक्षिप्त किया जाता है। एक हजार पीएसआई का संक्षिप्त रूप केएसआई है।


सुरक्षा का एक कारक एक डिजाइन मानदंड है जिसे एक इंजीनियर घटक या संरचना को प्राप्त करना चाहिए। <math>FS = UTS/R</math>, जहां एफएस: सुरक्षा का कारक, आर: लागू तनाव, और यूटीएस: अंतिम तनाव (पीएसआई या एन/एम।<sup>2 </sup>)<ref>{{cite book
सुरक्षा का एक कारक एक डिज़ाइन मानदंड है, जिसे एक इंजीनियर घटक या संरचना को हासिल करना होगा, <math>FS = UTS/R</math>, जहां एफएस: सुरक्षा का कारक, आर: एप्लाइड स्ट्रेसेस, और यूटीएस: अंतिम स्ट्रेसेस (पीएसआई या एन/एम।<sup>2 </sup>)<ref>{{cite book
| title = Mechanics of Materials
| title = Mechanics of Materials
| author = Beer & Johnston
| author = Beer & Johnston
Line 159: Line 154:
| isbn = 978-0-07-352938-7
| isbn = 978-0-07-352938-7
| pages = 28}}</ref>
| pages = 28}}</ref>
सुरक्षा के मार्जिन का उपयोग कभी -कभी डिजाइन मानदंड के रूप में किया जाता है।इसे परिभाषित किया गया है MS = विफलता लोड/(सुरक्षा का कारक और समय; भविष्यवाणी की गई लोड) और माइनस;1।


उदाहरण के लिए, 4 की सुरक्षा के एक कारक को प्राप्त करने के लिए, AISI 1018 स्टील घटक में स्वीकार्य तनाव की गणना की जा सकती है <math>R = UTS/FS</math> = 440/4 = 110 एमपीए, या <math>R</math> = 110 × 10<sup>6 </sup> n/m<sup>2 </sup>। इस तरह के स्वीकार्य तनावों को डिजाइन तनाव या काम करने वाले तनाव के रूप में भी जाना जाता है।
सुरक्षा के मार्जिन का उपयोग कभी-कभी डिज़ाइन मानदंड के रूप में भी किया जाता है। इसे परिभाषित किया गया है एमएस = विफलता लोड/(सुरक्षा का कारक × अनुमानित लोड) - 1।
 
उदाहरण के लिए, 4 की सुरक्षा का कारक प्राप्त करने के लिए, एआईएसआई 1018 स्टील घटक में स्वीकार्य स्ट्रेसेस की गणना की जा सकती है <math>R = UTS/FS</math> = 440/4 = 110 एमपीए, या <math>R</math> = 110 × 10<sup>6</sup> n/m<sup>2 </sup>। ऐसे स्वीकार्य स्ट्रेसेसों को "डिज़ाइन स्ट्रेसेस" या "कार्य स्ट्रेसेस" के रूप में भी जाना जाता है।


डिजाइन तनाव जो सामग्री के अंतिम या उपज बिंदु मूल्यों से निर्धारित किए गए हैं, केवल स्थैतिक लोडिंग के मामले के लिए सुरक्षित और विश्वसनीय परिणाम देते हैं। कई मशीन के हिस्से विफल हो जाते हैं जब एक गैर-स्थिर और लगातार अलग-अलग भार के अधीन होते हैं, भले ही विकसित तनाव उपज बिंदु से नीचे होते हैं। इस तरह की विफलताओं को थकान विफलता कहा जाता है। विफलता एक फ्रैक्चर द्वारा होती है जो उपज के बहुत कम या कोई दृश्यमान सबूत के साथ भंगुर प्रतीत होती है। हालांकि, जब तनाव को थकान तनाव या धीरज सीमा के तनाव से नीचे रखा जाता है, तो भाग अनिश्चित काल तक सहन करेगा। एक विशुद्ध रूप से उलट या चक्रीय तनाव वह है जो ऑपरेशन के प्रत्येक चक्र के दौरान समान सकारात्मक और नकारात्मक शिखर तनावों के बीच वैकल्पिक होता है। विशुद्ध रूप से चक्रीय तनाव में, औसत तनाव शून्य है। जब एक भाग को एक चक्रीय तनाव के अधीन किया जाता है, जिसे स्ट्रेस रेंज (एसआर) के रूप में भी जाना जाता है, तो यह देखा गया है कि भाग की विफलता कई तनाव उलटफेर (एन) के बाद होती है, भले ही तनाव सीमा का परिमाण नीचे हो सामग्री की उपज की ताकत। आम तौर पर, रेंज तनाव अधिक होता है, विफलता के लिए आवश्यक उलटफेर की संख्या कम होती है।
मैटेरियल्स के अंतिम या उपज बिंदु मूल्यों से निर्धारित किए गए डिज़ाइन स्ट्रेसेस केवल स्थैतिक लोडिंग के मामले में सुरक्षित और विश्वसनीय परिणाम देते हैं। गैर-स्थिर और लगातार बदलते लोड के अधीन होने पर कई मशीन के हिस्से विफल हो जाते हैं, भले ही विकसित स्ट्रेसेस उपज बिंदु से नीचे हो, ऐसी विफलताओं को थकान विफलता कहा जाता है। विफलता एक ऐसे फ्रैक्चर के कारण होती है, जो भंगुर प्रतीत होता है और उपज का बहुत कम या कोई दृश्य प्रमाण नहीं होता है। हालाँकि, जब स्ट्रेसेस को "थकान स्ट्रेसेस" या "धीरज सीमा स्ट्रेसेस" से नीचे रखा जाता है, तो यह हिस्सा अनिश्चित काल तक बना रहेगा, विशुद्ध रूप से उलटा या चक्रीय स्ट्रेसेस वह है, जो ऑपरेशन के प्रत्येक चक्र के दौरान समान सकारात्मक और नकारात्मक चरम स्ट्रेसेसों के बीच बदलता रहता है। विशुद्ध रूप से चक्रीय स्ट्रेसेस में, औसत स्ट्रेसेस शून्य होता है। जब कोई भाग चक्रीय स्ट्रेसेस के अधीन होता है, जिसे स्ट्रेसेस सीमा (एसआर) के रूप में भी जाना जाता है, तो यह देखा गया है, कि भाग की विफलता कई स्ट्रेसेस उत्क्रमणों (एन) के बाद होती है, भले ही स्ट्रेसेस सीमा का परिमाण नीचे हो मैटेरियल्स की उपज स्ट्रेंथ आम तौर पर, रेंज स्ट्रेसेस जितना अधिक होगा, विफलता के लिए आवश्यक रिवर्सल की संख्या उतनी ही कम होगी।


=== विफलता सिद्धांत ===
=== विफलता सिद्धांत ===
{{main|Material failure theory}}
{{main|Material failure theory}}
चार विफलता सिद्धांत हैं: अधिकतम कतरनी तनाव सिद्धांत, अधिकतम सामान्य तनाव सिद्धांत, अधिकतम तनाव ऊर्जा सिद्धांत और अधिकतम विरूपण ऊर्जा सिद्धांत। विफलता के इन चार सिद्धांतों में से, अधिकतम सामान्य तनाव सिद्धांत केवल भंगुर सामग्री के लिए लागू होता है, और शेष तीन सिद्धांत नम्य सामग्री के लिए लागू होते हैं।
चार विफलता सिद्धांत हैं: अधिकतम कतरनी स्ट्रेसेस सिद्धांत, अधिकतम सामान्य स्ट्रेसेस सिद्धांत, अधिकतम स्ट्रेसेस ऊर्जा सिद्धांत और अधिकतम विरूपण ऊर्जा सिद्धांत। विफलता के इन चार सिद्धांतों में से, अधिकतम सामान्य स्ट्रेसेस सिद्धांत केवल भंगुर मैटेरियल्स के लिए एप्लाइड होता है, और शेष तीन सिद्धांत नम्य मैटेरियल्स के लिए एप्लाइड होते हैं।
बाद के तीन में से, विरूपण ऊर्जा सिद्धांत तनाव की स्थिति के बहुमत में सबसे सटीक परिणाम प्रदान करता है। तनाव ऊर्जा सिद्धांत को पोइसन के भाग सामग्री के अनुपात के मूल्य की आवश्यकता होती है, जो अक्सर आसानी से उपलब्ध नहीं होता है। अधिकतम कतरनी तनाव सिद्धांत रूढ़िवादी है। सरल यूनिडायरेक्शनल सामान्य तनावों के लिए सभी सिद्धांत समतुल्य हैं, जिसका अर्थ है कि सभी सिद्धांत एक ही परिणाम देंगे।
बाद के तीन में से, विरूपण ऊर्जा सिद्धांत स्ट्रेसेस की स्थिति के बहुमत में सबसे सटीक परिणाम प्रदान करता है। स्ट्रेसेस ऊर्जा सिद्धांत को पोइसन के भाग मैटेरियल्स के अनुपात के मूल्य की आवश्यकता होती है, जो अक्सर आसानी से उपलब्ध नहीं होता है। अधिकतम कतरनी स्ट्रेसेस सिद्धांत रूढ़िवादी है। सरल यूनिडायरेक्शनल सामान्य स्ट्रेसेसों के लिए सभी सिद्धांत समतुल्य हैं, जिसका अर्थ है कि सभी सिद्धांत एक ही परिणाम देंगे।


*अधिकतम कतरनी तनाव सिद्धांत - यह सिद्धांत यह बताता है कि विफलता होगी यदि भाग में अधिकतम कतरनी तनाव का परिमाण uniaxial परीक्षण से निर्धारित सामग्री की कतरनी शक्ति से अधिक हो।
*अधिकतम कतरनी स्ट्रेसेस सिद्धांत - यह सिद्धांत यह बताता है कि विफलता होगी यदि भाग में अधिकतम कतरनी स्ट्रेसेस का परिमाण uniaxial परीक्षण से निर्धारित मैटेरियल्स की कतरनी शक्ति से अधिक हो।
*अधिकतम सामान्य तनाव सिद्धांत - यह सिद्धांत यह बताता है कि विफलता होगी यदि भाग में अधिकतम सामान्य तनाव सामग्री के अंतिम तन्यता तनाव से अधिक हो जाता है जैसा कि uniaxial परीक्षण से निर्धारित किया जाता है। यह सिद्धांत केवल भंगुर सामग्री से संबंधित है। अधिकतम तन्यता तनाव सुरक्षा के कारक द्वारा विभाजित अंतिम तन्यता तनाव से कम या बराबर होना चाहिए। अधिकतम संपीड़ित तनाव का परिमाण सुरक्षा के कारक द्वारा विभाजित अंतिम संपीड़ित तनाव से कम होना चाहिए।
*अधिकतम सामान्य स्ट्रेसेस सिद्धांत - यह सिद्धांत यह बताता है कि विफलता होगी यदि भाग में अधिकतम सामान्य स्ट्रेसेस मैटेरियल्स के अंतिम तन्यता स्ट्रेसेस से अधिक हो जाता है जैसा कि uniaxial परीक्षण से निर्धारित किया जाता है। यह सिद्धांत केवल भंगुर मैटेरियल्स से संबंधित है। अधिकतम तन्यता स्ट्रेसेस सुरक्षा के कारक द्वारा विभाजित अंतिम तन्यता स्ट्रेसेस से कम या बराबर होना चाहिए। अधिकतम संपीड़ित स्ट्रेसेस का परिमाण सुरक्षा के कारक द्वारा विभाजित अंतिम संपीड़ित स्ट्रेसेस से कम होना चाहिए।
*अधिकतम तनाव ऊर्जा सिद्धांत - यह सिद्धांत यह बताता है कि विफलता तब होगी जब एक भाग में लागू तनावों के कारण प्रति यूनिट मात्रा में तनाव ऊर्जा प्रति यूनिट वॉल्यूम के बराबर होती है, जो कि उपज बिंदु पर प्रति यूनिट वॉल्यूम को असमान परीक्षण में उपज बिंदु पर होती है।
*अधिकतम स्ट्रेसेस ऊर्जा सिद्धांत - यह सिद्धांत यह बताता है कि विफलता तब होगी जब एक भाग में एप्लाइड स्ट्रेसेसों के कारण प्रति यूनिट मात्रा में स्ट्रेसेस ऊर्जा प्रति यूनिट वॉल्यूम के बराबर होती है, जो कि उपज बिंदु पर प्रति यूनिट वॉल्यूम को असमान परीक्षण में उपज बिंदु पर होती है।
*अधिकतम विरूपण ऊर्जा सिद्धांत-इस सिद्धांत को शीयर एनर्जी थ्योरी या वॉन मिसेस उपज मानदंड के रूप में भी जाना जाता है। वॉन मिसेस-हेंकी सिद्धांत। यह सिद्धांत यह बताता है कि विफलता तब होगी जब एक भाग में लागू तनावों के कारण प्रति यूनिट मात्रा में विरूपण ऊर्जा प्रति यूनिट वॉल्यूम के बराबर है, जो कि उपज बिंदु पर उपज बिंदु पर प्रति यूनिट मात्रा के बराबर होती है। तनाव के कारण कुल लोचदार ऊर्जा को दो भागों में विभाजित किया जा सकता है: एक भाग मात्रा में परिवर्तन का कारण बनता है, और दूसरा भाग आकार में परिवर्तन का कारण बनता है। विरूपण ऊर्जा ऊर्जा की मात्रा है जो आकार को बदलने के लिए आवश्यक है।
*अधिकतम विरूपण ऊर्जा सिद्धांत-इस सिद्धांत को शीयर एनर्जी थ्योरी या वॉन मिसेस उपज मानदंड के रूप में भी जाना जाता है। वॉन मिसेस-हेंकी सिद्धांत। यह सिद्धांत यह बताता है कि विफलता तब होगी जब एक भाग में एप्लाइड स्ट्रेसेसों के कारण प्रति यूनिट मात्रा में विरूपण ऊर्जा प्रति यूनिट वॉल्यूम के बराबर है, जो कि उपज बिंदु पर उपज बिंदु पर प्रति यूनिट मात्रा के बराबर होती है। स्ट्रेसेस के कारण कुल एलास्टिक ऊर्जा को दो भागों में विभाजित किया जा सकता है: एक भाग मात्रा में परिवर्तन का कारण बनता है, और दूसरा भाग आकार में परिवर्तन का कारण बनता है। विरूपण ऊर्जा ऊर्जा की मात्रा है जो आकार को बदलने के लिए आवश्यक है।
*फ्रैक्चर मैकेनिक्स की स्थापना एलन अर्नोल्ड ग्रिफिथ और जॉर्ज रैंकिन इरविन द्वारा की गई थी। इस महत्वपूर्ण सिद्धांत को दरार अस्तित्व के मामले में सामग्री की क्रूरता के संख्यात्मक रूपांतरण के रूप में भी जाना जाता है।
*फ्रैक्चर मैकेनिक्स की स्थापना एलन अर्नोल्ड ग्रिफिथ और जॉर्ज रैंकिन इरविन द्वारा की गई थी। इस महत्वपूर्ण सिद्धांत को दरार अस्तित्व के मामले में मैटेरियल्स की क्रूरता के संख्यात्मक रूपांतरण के रूप में भी जाना जाता है।


एक सामग्री की ताकत इसके माइक्रोस्ट्रक्चर पर निर्भर है। इंजीनियरिंग की प्रक्रिया जिसके लिए एक सामग्री के अधीन है, इस माइक्रोस्ट्रक्चर को बदल सकता है। सामग्री की ताकत को बदलने वाली सामग्रियों के मजबूत तंत्रों की विविधता में काम सख्त, ठोस समाधान मजबूत करना, वर्षा सख्त होना, और अनाज की सीमा को मजबूत करना शामिल है और मात्रात्मक और गुणात्मक रूप से समझाया जा सकता है। मजबूत तंत्रों को कैवेट के साथ किया जाता है कि सामग्री के कुछ अन्य यांत्रिक गुण सामग्री को मजबूत बनाने के प्रयास में पतित हो सकते हैं। उदाहरण के लिए, अनाज की सीमा को मजबूत करने में, हालांकि उपज की ताकत को कम होने वाले अनाज के आकार के साथ अधिकतम किया जाता है, अंततः, बहुत छोटे अनाज के आकार सामग्री को भंगुर बनाते हैं। सामान्य तौर पर, एक सामग्री की उपज ताकत सामग्री की यांत्रिक शक्ति का एक पर्याप्त संकेतक है। इस तथ्य के साथ मिलकर माना जाता है कि उपज की ताकत वह पैरामीटर है जो सामग्री में प्लास्टिक विरूपण की भविष्यवाणी करता है, एक व्यक्ति के बारे में सूचित निर्णय ले सकता है कि इसके माइक्रोस्ट्रक्चरल गुणों और वांछित अंत प्रभाव के आधार पर किसी सामग्री की ताकत को कैसे बढ़ाया जाए। ताकत संपीड़ित तनाव, तन्य तनाव, और कतरनी तनाव के सीमित मूल्यों के संदर्भ में व्यक्त की जाती है जो विफलता का कारण बनेगी। गतिशील लोडिंग के प्रभाव संभवतः सामग्री की ताकत का सबसे महत्वपूर्ण व्यावहारिक विचार हैं, विशेष रूप से एफए की समस्याबाघ (सामग्री)।बार -बार लोडिंग अक्सर भंगुर दरारें शुरू करती है, जो विफलता होने तक बढ़ती है।दरारें हमेशा तनाव सांद्रता पर शुरू होती हैं, विशेष रूप से उत्पाद के क्रॉस-सेक्शन में परिवर्तन, छेद और कोनों के पास नाममात्र तनाव के स्तर पर सामग्री की ताकत के लिए उद्धृत की तुलना में कम।
एक मैटेरियल्स की स्ट्रेंथ इसके माइक्रोस्ट्रक्चर पर निर्भर है। इंजीनियरिंग की प्रक्रिया जिसके लिए एक मैटेरियल्स के अधीन है, इस माइक्रोस्ट्रक्चर को बदल सकता है। मैटेरियल्स की स्ट्रेंथ को बदलने वाली मैटेरियल्स के मजबूत तंत्रों की विविधता में काम सख्त, ठोस समाधान मजबूत करना, वर्षा सख्त होना, और अनाज की सीमा को मजबूत करना शामिल है और मात्रात्मक और गुणात्मक रूप से समझाया जा सकता है। मजबूत तंत्रों को कैवेट के साथ किया जाता है कि मैटेरियल्स के कुछ अन्य यांत्रिक गुण मैटेरियल्स को मजबूत बनाने के प्रयास में पतित हो सकते हैं। उदाहरण के लिए, अनाज की सीमा को मजबूत करने में, हालांकि उपज की स्ट्रेंथ को कम होने वाले अनाज के आकार के साथ अधिकतम किया जाता है, अंततः, बहुत छोटे अनाज के आकार मैटेरियल्स को भंगुर बनाते हैं। सामान्य तौर पर, एक मैटेरियल्स की उपज स्ट्रेंथ मैटेरियल्स की यांत्रिक शक्ति का एक पर्याप्त संकेतक है। इस तथ्य के साथ मिलकर माना जाता है कि उपज की स्ट्रेंथ वह पैरामीटर है जो मैटेरियल्स में प्लास्टिक विरूपण की भविष्यवाणी करता है, एक व्यक्ति के बारे में सूचित निर्णय ले सकता है कि इसके माइक्रोस्ट्रक्चरल गुणों और वांछित अंत प्रभाव के आधार पर किसी मैटेरियल्स की स्ट्रेंथ को कैसे बढ़ाया जाए। स्ट्रेंथ संपीड़ित स्ट्रेसेस, तन्य स्ट्रेसेस, और कतरनी स्ट्रेसेस के सीमित मूल्यों के संदर्भ में व्यक्त की जाती है जो विफलता का कारण बनेगी। गतिशील लोडिंग के प्रभाव संभवतः मैटेरियल्स की स्ट्रेंथ का सबसे महत्वपूर्ण व्यावहारिक विचार हैं, विशेष रूप से एफए की समस्याबाघ (मैटेरियल्स)।बार -बार लोडिंग अक्सर भंगुर दरारें शुरू करती है, जो विफलता होने तक बढ़ती है।दरारें हमेशा स्ट्रेसेस सांद्रता पर शुरू होती हैं, विशेष रूप से उत्पाद के क्रॉस-सेक्शन में परिवर्तन, छेद और कोनों के पास नाममात्र स्ट्रेसेस के स्तर पर मैटेरियल्स की स्ट्रेंथ के लिए उद्धृत की तुलना में कम।


== यह भी देखें ==
== यह भी देखें ==
Line 232: Line 228:
==इस पृष्ठ में गुम आंतरिक लिंक की सूची==
==इस पृष्ठ में गुम आंतरिक लिंक की सूची==


==बाहरी संबंध==
==एक्सटरनली संबंध==
*[http://www.mech.uwa.edu.au/DANotes/SSS/failure/theories.html Failure theories]
*[http://www.mech.uwa.edu.au/DANotes/SSS/failure/theories.html Failure theories]
*[http://materials.open.ac.uk/mem/index.htm Case studies in structural failure]
*[http://materials.open.ac.uk/mem/index.htm Case studies in structural failure]

Revision as of 22:03, 9 August 2023

मैटेरियल्स की स्ट्रेंथ का क्षेत्र (जिसे मैटेरियल्स की मैकेनिकल भी कहा जाता है) आमतौर पर बीम, कॉलम और शाफ्ट जैसे संरचनात्मक मेम्बरों में स्ट्रेसेस और स्ट्रेसेस की गणना करने के विभिन्न तरीकों को संदर्भित करता है। लोडिंग के तहत किसी संरचना की प्रतिक्रिया और विभिन्न विफलता मोड के प्रति इसकी संवेदनशीलता की भविष्यवाणी करने के लिए नियोजित तरीकों में इसकी उपज शक्ति, अंतिम शक्ति, यंग के मापांक और पॉइसन के अनुपात जैसे मैटेरियल्स के गुणों को ध्यान में रखा जाता है। इसके अलावा, यांत्रिक तत्व के स्थूल गुण (ज्यामितीय गुण) जैसे इसकी लंबाई, चौड़ाई, मोटाई, सीमा बाधाएं और ज्यामिति में अचानक परिवर्तन जैसे छेद पर विचार किया जाता है।

सिद्धांत संरचनाओं के एक और दो आयामी मेम्बरों के व्यवहार पर विचार करने के साथ शुरू हुआ, जिनके स्ट्रेसेस की स्थिति को दो आयामी के रूप में अनुमानित किया जा सकता है, और फिर मैटेरियल्स के एलास्टिक और प्लास्टिक व्यवहार का अधिक संपूर्ण सिद्धांत विकसित करने के लिए इसे तीन आयामों में सामान्यीकृत किया गया। मैटेरियल्स के मैकेनिकल में एक महत्वपूर्ण संस्थापक अग्रणी स्टीफन टिमोचेंको थे।

परिभाषा

मैटेरियल्स के मैकेनिकल में, किसी मैटेरियल्स की स्ट्रेंथ विफलता या प्लास्टिक विरूपण के बिना एप्लाइड लोड का सामना करने की क्षमता है। मैटेरियल्स की स्ट्रेंथ का क्षेत्र उन बलों और विकृतियों से संबंधित है, जो किसी मैटेरियल्स पर उनके कार्य के परिणामस्वरूप होते हैं। एक यांत्रिक मेम्बर पर लगाया गया लोड मेम्बर के के साथ आंतरिक बलों को प्रेरित करेगा जिन्हें स्ट्रेसेस कहा जाता है जब उन बलों को इकाई के आधार पर व्यक्त किया जाता है। मैटेरियल्स पर कार्य करने वाले स्ट्रेसेस मैटेरियल्स को पूरी तरह से तोड़ने सहित विभिन्न तरीकों से विरूपण का कारण बनते हैं। मैटेरियल्स के विरूपण को विकृति कहा जाता है, जब उन विकृतियों को भी इकाई के आधार पर रखा जाता है।

किसी यांत्रिक मेम्बर के के साथ विकसित होने वाले स्ट्रेसेस और स्ट्रेसेस की गणना उस मेम्बर की लोड क्षमता का आकलन करने के लिए की जानी चाहिए। इसके लिए मेम्बर की ज्यामिति, उसकी बाधाओं, मेम्बर पर एप्लाइड लोड और उस मैटेरियल्स के गुणों का पूरा विवरण आवश्यक है, जिससे मेम्बर बना है। एप्लाइड लोड अक्षीय (तन्यता या संपीड़न), या घूर्णी (शक्ति कतरनी) हो सकता है। लोडिंग और मेम्बर की ज्यामिति के पूर्ण विवरण के साथ, मेम्बर के के साथ किसी भी बिंदु पर स्ट्रेसेस की स्थिति और स्ट्रेसेस की स्थिति की गणना की जा सकती है। एक बार जब मेम्बर के के साथ स्ट्रेसेस और स्ट्रेसेस की स्थिति ज्ञात हो जाती है, तो उस मेम्बर की स्ट्रेंथ (लोड वहन करने की क्षमता), उसकी विकृति (कठोरता गुण), और उसकी स्थिरता (उसके मूल विन्यास को बनाए रखने की क्षमता) की गणना की जा सकती है।

गणना किए गए स्ट्रेसेसों की तुलना मेम्बर की स्ट्रेंथ के कुछ माप से की जा सकती है, जैसे कि इसकी भौतिक उपज या अंतिम स्ट्रेंथ। मेम्बर के परिकलित विक्षेपण की तुलना विक्षेपण मानदंडों से की जा सकती है, जो मेम्बर के उपयोग पर आधारित होते हैं। सदस्य के परिकलित बकलिंग लोड की तुलना एप्लाइड लोड से की जा सकती है। सदस्य की गणना की गई कठोरता और बड़े पैमाने पर वितरण का उपयोग मेम्बर की गतिशील प्रतिक्रिया की गणना करने के लिए किया जा सकता है और फिर उस ध्वनिक वातावरण की तुलना की जा सकती है जिसमें इसका उपयोग किया गया है।

मैटेरियल्स की स्ट्रेंथ इंजीनियरिंग स्ट्रेसेस-स्ट्रेसेस वक्र (उपज स्ट्रेसेस) पर उस बिंदु को संदर्भित करती है जिसके आगे मैटेरियल्स विकृतियों का अनुभव करती है, जो लोडिंग को हटाने पर पूरी तरह से उलट नहीं होगी और परिणामस्वरूप, मेम्बर का स्थायी विक्षेपण होगा, मैटेरियल्स की अंतिम स्ट्रेंथ स्ट्रेसेस के अधिकतम मूल्य तक पहुँचती है। फ्रैक्चर स्ट्रेंथ फ्रैक्चर पर स्ट्रेसेस मूल्य है (अंतिम स्ट्रेसेस मूल्य दर्ज किया गया है)।

लोडिंग के प्रकार

  • अनुप्रस्थ लोडिंग - किसी सदस्य के अनुदैर्ध्य अक्ष पर लंबवत एप्लाइड बल, अनुप्रस्थ लोडिंग के कारण मेम्बर अपनी मूल स्थिति से झुक जाता है और विक्षेपित हो जाता है, आंतरिक तन्यता और संपीड़न स्ट्रेंथ के साथ सदस्य की वक्रता में परिवर्तन होता है।[1] अनुप्रस्थ लोडिंग भी कतरनी बलों को प्रेरित करती है जो मैटेरियल्स के कतरनी विरूपण का कारण बनती है, और सदस्य के अनुप्रस्थ विक्षेपण को बढ़ाती है।
  • अक्षीय लोडिंग - एप्लाइड बल मेम्बर के अनुदैर्ध्य अक्ष के साथ संरेख होते हैं। बल के कारण मेम्बर या तो खिंच जाता है या छोटा हो जाता है।[2]
  • टॉर्सनल लोडिंग - एक्सटरनली रूप से एप्लाइड समान और विपरीत रूप से निर्देशित बल जोड़ों की एक जोड़ी के कारण होने वाली घुमाव क्रिया, जो समानांतर विमानों पर काम करती है या किसी मेम्बर पर एप्लाइड एक एक्सटरनली जोड़े द्वारा होती है, जिसका एक सिरा रोटेशन के खिलाफ तय होता है।

स्ट्रेसेस की शर्तें

एक मैटेरियल्स में लोड किया जा रहा है) संपीड़न, बी) स्ट्रेसेस, सी) कतरनी।

एकअक्षीय स्ट्रेसेस किसके द्वारा व्यक्त किया जाता है?

जहां F एक क्षेत्र A [m2] पर कार्य करने वाला बल [N] है।[3] यह क्षेत्र विकृत क्षेत्र या विकृत क्षेत्र हो सकता है, यह इस बात पर निर्भर करता है, कि इंजीनियरिंग स्ट्रेसेस या सच्चा स्ट्रेसेस रुचिकर है या नहीं है।

  • संपीड़न स्ट्रेसेस (या संपीड़न) एक एप्लाइड लोड के कारण होने वाली स्ट्रेसेस की स्थिति है, जो एप्लाइड लोड की धुरी के साथ मैटेरियल्स (संपीड़न मेम्बर) की लंबाई को कम करने का कार्य करता है, यह दूसरे शब्दों में, एक स्ट्रेसेस की स्थिति है, जो संपीड़न का कारण बनती है, मैटेरियल्स का संपीड़न का एक साधारण मामला विपरीत, धक्का देने वाली स्ट्रेंथों की कार्रवाई से प्रेरित एक अक्षीय संपीड़न है। मैटेरियल्स के लिए संपीड़न स्ट्रेंथ आम तौर पर उनकी तन्य स्ट्रेंथ से अधिक होती है। हालाँकि, संपीड़न में लोड की गई संरचनाएं अतिरिक्त विफलता मोड के अधीन होती हैं, जैसे कि बकलिंग, जो मेम्बर की ज्यामिति पर निर्भर होती हैं।
  • तन्य स्ट्रेसेस एक एप्लाइड लोड के कारण होने वाली स्ट्रेसेस की स्थिति है, जो एप्लाइड लोड की धुरी के साथ मैटेरियल्स को लंबा कर देती है, दूसरे शब्दों में, मैटेरियल्स को खींचने के कारण होने वाला स्ट्रेसेस, स्ट्रेसेस में लोड किए गए समान क्रॉस-सेक्शनल क्षेत्र की संरचनाओं की स्ट्रेसेस क्रॉस-सेक्शन के आकार से स्वतंत्र होती है। स्ट्रेसेस में भरी हुई मैटेरियल्स स्ट्रेसेस सांद्रता जैसे मैटेरियल्स दोष या ज्यामिति में अचानक परिवर्तन के प्रति संवेदनशील होती है। हालाँकि, नमनीय व्यवहार प्रदर्शित करने वाली सामग्रियाँ (उदाहरण के लिए अधिकांश धातुएँ) कुछ दोषों को सहन कर सकती हैं, जबकि भंगुर सामग्रियाँ (जैसे सिरेमिक) अपनी अंतिम भौतिक स्ट्रेंथ से काफी नीचे विफल हो सकती हैं।
  • कतरनी स्ट्रेसेस, मैटेरियल्स के माध्यम से कार्रवाई की समानांतर रेखाओं के साथ कार्य करने वाले विरोधी बलों की एक जोड़ी की संयुक्त ऊर्जा के कारण होने वाली स्ट्रेसेस स्थिति है, दूसरे शब्दों में, मैटेरियल्स के एक दूसरे के सापेक्ष फिसलने वाले चेहरों के कारण होने वाला स्ट्रेसेस, इसका एक उदाहरण कैंची से कागज काटना है[4] या मरोड़ वाले लोडिंग के कारण स्ट्रेसेस होता है।

प्रतिरोध के लिए स्ट्रेसेस पैरामीटर

मैटेरियल्स प्रतिरोध को कई यांत्रिक स्ट्रेसेस मापदंडों में व्यक्त किया जा सकता है। मैकेनिकल शक्ति शब्द का प्रयोग मैकेनिकल स्ट्रेंथ मापदंडों के संदर्भ में किया जाता है। ये फिजिकल मात्राएँ हैं, जिनका आयाम प्रति इकाई सतह पर दबाव और बल के समान है। स्ट्रेंथ के लिए पारंपरिक माप इकाई इसलिए अंतर्राष्ट्रीय इकाइयों की प्रणाली में एमपीए और संयुक्त राज्य अमेरिका की प्रथागत इकाइयों के बीच पीएसआई है। शक्ति मापदंडों में शामिल हैं: उपज शक्ति, तन्य शक्ति, थकान शक्ति, दरार प्रतिरोध, और अन्य पैरामीटर होता है।।

  • उपज शक्ति सबसे कम स्ट्रेसेस है जो किसी मैटेरियल्स में स्थायी विरूपण उत्पादन करता है। कुछ मैटेरियल्स में, जैसे एल्यूमीनियम मिश्र धातु, उपज के बिंदु की पहचान करना मुश्किल है, इस प्रकार इसे आमतौर पर 0.2% प्लास्टिक स्ट्रेसेस पैदा करने के लिए आवश्यक स्ट्रेसेस के रूप में परिभाषित किया जाता है। इसे 0.2% प्रमाण स्ट्रेस कहा जाता है।[5]
  • संपीड़ित शक्ति संपीड़ित स्ट्रेसेस की एक सीमित स्थिति है, जो नमनीय विफलता (अनंत सैद्धांतिक उपज) या भंगुर विफलता (दरार प्रसार के परिणामस्वरूप टूटना, या कमजोर विमान के साथ फिसलना - कतरनी ताकत देखें) के तरीके में एक मैटेरियल्स में विफलता की ओर ले जाती है।
  • तन्यता स्ट्रेंथ या अंतिम तन्यता स्ट्रेंथ तन्यता स्ट्रेसेस की एक सीमित स्थिति है, जो नमनीय विफलता के तरीके में तन्यता विफलता की ओर ले जाती है (उस विफलता के पहले चरण के रूप में उपज, दूसरे चरण में कुछ कठोर होना और संभावित "गर्दन" गठन के बाद टूटना) या भंगुर विफलता (कम स्ट्रेसेस की स्थिति में दो या अधिक टुकड़ों में अचानक टूटना)। तन्यता शक्ति को या तो वास्तविक स्ट्रेसेस या इंजीनियरिंग स्ट्रेसेस के रूप में उद्धृत किया जा सकता है, लेकिन इंजीनियरिंग स्ट्रेसेस सबसे अधिक उपयोग किया जाता है।
  • थकान स्ट्रेंथ किसी मैटेरियल्स की ताकत का एक अधिक जटिल माप है, जो किसी वस्तु की सेवा अवधि में कई लोडिंग एपिसोड पर विचार करता है,[6] और आमतौर पर स्थैतिक स्ट्रेसेस उपायों की तुलना में इसका आकलन करना अधिक कठिन होता है। थकान की स्ट्रेंथ को यहां एक साधारण सीमा के रूप में उद्धृत किया गया है, () चक्रीय लोडिंग के मामले में इसे आमतौर पर शून्य माध्य स्ट्रेसेस पर एक आयाम के रूप में व्यक्त किया जा सकता है, साथ ही स्ट्रेसेस की स्थिति के तहत विफलता के चक्रों की संख्या के रूप में व्यक्त किया जा सकता है।
  • प्रभाव स्ट्रेंथ अचानक लागू लोड को झेलने की मैटेरियल्स की क्षमता है और इसे ऊर्जा के रूप में व्यक्त किया जाता है। अक्सर इज़ोड प्रभाव स्ट्रेंथ परीक्षण या चार्पी प्रभाव परीक्षण के साथ मापा जाता है, जो दोनों एक नमूने को फ्रैक्चर करने के लिए आवश्यक प्रभाव ऊर्जा को मापते हैं। आयतन, लोच का मापांक, बलों का वितरण और उपज स्ट्रेंथ किसी मैटेरियल्स की प्रभाव शक्ति को प्रभावित करते हैं। किसी मैटेरियल्स या वस्तु की प्रभाव स्ट्रेंथ अधिक होने के लिए, स्ट्रेसेस को संपूर्ण वस्तु में समान रूप से वितरित किया जाना चाहिए, इसमें लोच के कम मापांक और उच्च मैटेरियल्स उपज स्ट्रेंथ के साथ एक बड़ी मात्रा भी होनी चाहिए।[7]

प्रतिरोध के लिए स्ट्रेसेस पैरामीटर

  • मैटेरियल्स का विरूपण, स्ट्रेसेस लागू होने पर उत्पन्न ज्यामिति में परिवर्तन है (लागू बलों, गुरुत्वाकर्षण क्षेत्र, त्वरण, थर्मल विस्तार, आदि के परिणामस्वरूप)। विरूपण मैटेरियल्स के विस्थापन क्षेत्र द्वारा व्यक्त किया जाता है।[8]
  • स्ट्रेसेस या कम विरूपण एक गणितीय शब्द है, जो भौतिक क्षेत्र के बीच विरूपण परिवर्तन की प्रवृत्ति को व्यक्त करता है। स्ट्रेसेस प्रति इकाई लंबाई में होने वाली विकृति है।[9] एकअक्षीय लोडिंग के मामले में एक नमूने (उदाहरण के लिए एक बार तत्व) के विस्थापन से विस्थापन के भागफल और नमूने की मूल लंबाई के रूप में व्यक्त स्ट्रेसेस की गणना होती है। 3डी विस्थापन क्षेत्रों के लिए इसे दूसरे क्रम के टेंसर (6 स्वतंत्र तत्वों के साथ) के संदर्भ में विस्थापन कार्यों के व्युत्पन्न के रूप में व्यक्त किया जाता है।
  • विक्षेपण उस परिमाण का वर्णन करने वाला एक शब्द है, जिस तक किसी संरचनात्मक तत्व को एप्लाइड लोड के अधीन विस्थापित किया जाता है।[10]

स्ट्रेसेस -स्ट्रेसेस संबंध

स्ट्रेसेस के तहत एक नमूने की बुनियादी स्थिर प्रतिक्रिया
  • लोच किसी मैटेरियल्स की स्ट्रेसेस मुक्त होने के बाद अपने पिछले आकार में लौटने की क्षमता है। कई मैटेरियल्स में, एप्लाइड स्ट्रेसेस के बीच का संबंध परिणामी स्ट्रेसेस (एक निश्चित सीमा तक) के सीधे आनुपातिक होता है, और उन दो मात्राओं का प्रतिनिधित्व करने वाला ग्राफ एक सीधी रेखा होता है।

इस रेखा के ढलान को यंग मापांक, या "लोच का मापांक" के रूप में जाना जाता है। लोच के मापांक का उपयोग स्ट्रेसेस-खिंचाव वक्र के रैखिक-लोचदार भाग में स्ट्रेसेस-खिंचाव संबंध को निर्धारित करने के लिए किया जा सकता है। रैखिक-एलास्टिक क्षेत्र या तो उपज बिंदु से नीचे है, या यदि स्ट्रेसेस-स्ट्रेसेस प्लॉट पर उपज बिंदु आसानी से पहचाना नहीं जाता है, तो इसे 0 और 0.2% स्ट्रेसेस के बीच परिभाषित किया जाता है, और इसे स्ट्रेसेस के क्षेत्र के रूप में परिभाषित किया जाता है जिसमें कोई स्ट्रेसेस नहीं होता है, उपज (स्थायी विकृति) होती है।[11]

  • प्लास्टिसिटी या प्लास्टिक विरूपण एलास्टिक विरूपण के विपरीत है और इसे अप्राप्य स्ट्रेसेस के रूप में परिभाषित किया गया है। लागू स्ट्रेसेस के मुक्त होने के बाद भी प्लास्टिक विरूपण बरकरार रहता है। रैखिक-एलास्टिक श्रेणी की अधिकांश सामग्रियां आमतौर पर प्लास्टिक विरूपण में सक्षम होती हैं। सिरेमिक जैसी भंगुर मैटेरियल्स, किसी भी प्लास्टिक विरूपण का अनुभव नहीं करती है और अपेक्षाकृत कम स्ट्रेसेस के तहत फ्रैक्चर हो जाएगी, जबकि धातु, सीसा, या पॉलिमर जैसी नमनीय मैटेरियल्स फ्रैक्चर शुरू होने से पहले बहुत अधिक विकृत हो जाता है।

केरत और चबाने वाली बबल गम के बीच अंतर पर विचार करें, केरत टूटने से पहले बहुत कम खिंचेगी। दूसरी ओर, चबाया गया बबल गम अंततः टूटने से पहले अत्यधिक रूप से विकृत हो जाता है।

डिजाइन शर्तें

अंतिम स्ट्रेंथ किसी मैटेरियल्स से संबंधित एक विशेषता है, न कि केवल मैटेरियल्स से बना एक विशिष्ट नमूना, और इस तरह इसे क्रॉस सेक्शन क्षेत्र (एन / एम 2) की प्रति इकाई बल के रूप में उद्धृत किया जाता है। अंतिम स्ट्रेंथ वह अधिकतम स्ट्रेसेस है, जिसे कोई मैटेरियल्स टूटने या कमजोर होने से पहले झेल सकती है।[12] उदाहरण के लिए, एआईएसआई 1018 स्टील की अंतिम तन्यता स्ट्रेंथ (युटीएस) 440 एमपीए है। इंपीरियल इकाइयों में, स्ट्रेसेस की इकाई lbf/in² या पाउंड-फोर्स प्रति वर्ग इंच के रूप में दी जाती है। इस इकाई को अक्सर पीएसआई के रूप में संक्षिप्त किया जाता है। एक हजार पीएसआई का संक्षिप्त रूप केएसआई है।

सुरक्षा का एक कारक एक डिज़ाइन मानदंड है, जिसे एक इंजीनियर घटक या संरचना को हासिल करना होगा, , जहां एफएस: सुरक्षा का कारक, आर: एप्लाइड स्ट्रेसेस, और यूटीएस: अंतिम स्ट्रेसेस (पीएसआई या एन/एम।2 )[13]

सुरक्षा के मार्जिन का उपयोग कभी-कभी डिज़ाइन मानदंड के रूप में भी किया जाता है। इसे परिभाषित किया गया है एमएस = विफलता लोड/(सुरक्षा का कारक × अनुमानित लोड) - 1।

उदाहरण के लिए, 4 की सुरक्षा का कारक प्राप्त करने के लिए, एआईएसआई 1018 स्टील घटक में स्वीकार्य स्ट्रेसेस की गणना की जा सकती है = 440/4 = 110 एमपीए, या = 110 × 106 n/m2 । ऐसे स्वीकार्य स्ट्रेसेसों को "डिज़ाइन स्ट्रेसेस" या "कार्य स्ट्रेसेस" के रूप में भी जाना जाता है।

मैटेरियल्स के अंतिम या उपज बिंदु मूल्यों से निर्धारित किए गए डिज़ाइन स्ट्रेसेस केवल स्थैतिक लोडिंग के मामले में सुरक्षित और विश्वसनीय परिणाम देते हैं। गैर-स्थिर और लगातार बदलते लोड के अधीन होने पर कई मशीन के हिस्से विफल हो जाते हैं, भले ही विकसित स्ट्रेसेस उपज बिंदु से नीचे हो, ऐसी विफलताओं को थकान विफलता कहा जाता है। विफलता एक ऐसे फ्रैक्चर के कारण होती है, जो भंगुर प्रतीत होता है और उपज का बहुत कम या कोई दृश्य प्रमाण नहीं होता है। हालाँकि, जब स्ट्रेसेस को "थकान स्ट्रेसेस" या "धीरज सीमा स्ट्रेसेस" से नीचे रखा जाता है, तो यह हिस्सा अनिश्चित काल तक बना रहेगा, विशुद्ध रूप से उलटा या चक्रीय स्ट्रेसेस वह है, जो ऑपरेशन के प्रत्येक चक्र के दौरान समान सकारात्मक और नकारात्मक चरम स्ट्रेसेसों के बीच बदलता रहता है। विशुद्ध रूप से चक्रीय स्ट्रेसेस में, औसत स्ट्रेसेस शून्य होता है। जब कोई भाग चक्रीय स्ट्रेसेस के अधीन होता है, जिसे स्ट्रेसेस सीमा (एसआर) के रूप में भी जाना जाता है, तो यह देखा गया है, कि भाग की विफलता कई स्ट्रेसेस उत्क्रमणों (एन) के बाद होती है, भले ही स्ट्रेसेस सीमा का परिमाण नीचे हो मैटेरियल्स की उपज स्ट्रेंथ आम तौर पर, रेंज स्ट्रेसेस जितना अधिक होगा, विफलता के लिए आवश्यक रिवर्सल की संख्या उतनी ही कम होगी।

विफलता सिद्धांत

चार विफलता सिद्धांत हैं: अधिकतम कतरनी स्ट्रेसेस सिद्धांत, अधिकतम सामान्य स्ट्रेसेस सिद्धांत, अधिकतम स्ट्रेसेस ऊर्जा सिद्धांत और अधिकतम विरूपण ऊर्जा सिद्धांत। विफलता के इन चार सिद्धांतों में से, अधिकतम सामान्य स्ट्रेसेस सिद्धांत केवल भंगुर मैटेरियल्स के लिए एप्लाइड होता है, और शेष तीन सिद्धांत नम्य मैटेरियल्स के लिए एप्लाइड होते हैं। बाद के तीन में से, विरूपण ऊर्जा सिद्धांत स्ट्रेसेस की स्थिति के बहुमत में सबसे सटीक परिणाम प्रदान करता है। स्ट्रेसेस ऊर्जा सिद्धांत को पोइसन के भाग मैटेरियल्स के अनुपात के मूल्य की आवश्यकता होती है, जो अक्सर आसानी से उपलब्ध नहीं होता है। अधिकतम कतरनी स्ट्रेसेस सिद्धांत रूढ़िवादी है। सरल यूनिडायरेक्शनल सामान्य स्ट्रेसेसों के लिए सभी सिद्धांत समतुल्य हैं, जिसका अर्थ है कि सभी सिद्धांत एक ही परिणाम देंगे।

  • अधिकतम कतरनी स्ट्रेसेस सिद्धांत - यह सिद्धांत यह बताता है कि विफलता होगी यदि भाग में अधिकतम कतरनी स्ट्रेसेस का परिमाण uniaxial परीक्षण से निर्धारित मैटेरियल्स की कतरनी शक्ति से अधिक हो।
  • अधिकतम सामान्य स्ट्रेसेस सिद्धांत - यह सिद्धांत यह बताता है कि विफलता होगी यदि भाग में अधिकतम सामान्य स्ट्रेसेस मैटेरियल्स के अंतिम तन्यता स्ट्रेसेस से अधिक हो जाता है जैसा कि uniaxial परीक्षण से निर्धारित किया जाता है। यह सिद्धांत केवल भंगुर मैटेरियल्स से संबंधित है। अधिकतम तन्यता स्ट्रेसेस सुरक्षा के कारक द्वारा विभाजित अंतिम तन्यता स्ट्रेसेस से कम या बराबर होना चाहिए। अधिकतम संपीड़ित स्ट्रेसेस का परिमाण सुरक्षा के कारक द्वारा विभाजित अंतिम संपीड़ित स्ट्रेसेस से कम होना चाहिए।
  • अधिकतम स्ट्रेसेस ऊर्जा सिद्धांत - यह सिद्धांत यह बताता है कि विफलता तब होगी जब एक भाग में एप्लाइड स्ट्रेसेसों के कारण प्रति यूनिट मात्रा में स्ट्रेसेस ऊर्जा प्रति यूनिट वॉल्यूम के बराबर होती है, जो कि उपज बिंदु पर प्रति यूनिट वॉल्यूम को असमान परीक्षण में उपज बिंदु पर होती है।
  • अधिकतम विरूपण ऊर्जा सिद्धांत-इस सिद्धांत को शीयर एनर्जी थ्योरी या वॉन मिसेस उपज मानदंड के रूप में भी जाना जाता है। वॉन मिसेस-हेंकी सिद्धांत। यह सिद्धांत यह बताता है कि विफलता तब होगी जब एक भाग में एप्लाइड स्ट्रेसेसों के कारण प्रति यूनिट मात्रा में विरूपण ऊर्जा प्रति यूनिट वॉल्यूम के बराबर है, जो कि उपज बिंदु पर उपज बिंदु पर प्रति यूनिट मात्रा के बराबर होती है। स्ट्रेसेस के कारण कुल एलास्टिक ऊर्जा को दो भागों में विभाजित किया जा सकता है: एक भाग मात्रा में परिवर्तन का कारण बनता है, और दूसरा भाग आकार में परिवर्तन का कारण बनता है। विरूपण ऊर्जा ऊर्जा की मात्रा है जो आकार को बदलने के लिए आवश्यक है।
  • फ्रैक्चर मैकेनिक्स की स्थापना एलन अर्नोल्ड ग्रिफिथ और जॉर्ज रैंकिन इरविन द्वारा की गई थी। इस महत्वपूर्ण सिद्धांत को दरार अस्तित्व के मामले में मैटेरियल्स की क्रूरता के संख्यात्मक रूपांतरण के रूप में भी जाना जाता है।

एक मैटेरियल्स की स्ट्रेंथ इसके माइक्रोस्ट्रक्चर पर निर्भर है। इंजीनियरिंग की प्रक्रिया जिसके लिए एक मैटेरियल्स के अधीन है, इस माइक्रोस्ट्रक्चर को बदल सकता है। मैटेरियल्स की स्ट्रेंथ को बदलने वाली मैटेरियल्स के मजबूत तंत्रों की विविधता में काम सख्त, ठोस समाधान मजबूत करना, वर्षा सख्त होना, और अनाज की सीमा को मजबूत करना शामिल है और मात्रात्मक और गुणात्मक रूप से समझाया जा सकता है। मजबूत तंत्रों को कैवेट के साथ किया जाता है कि मैटेरियल्स के कुछ अन्य यांत्रिक गुण मैटेरियल्स को मजबूत बनाने के प्रयास में पतित हो सकते हैं। उदाहरण के लिए, अनाज की सीमा को मजबूत करने में, हालांकि उपज की स्ट्रेंथ को कम होने वाले अनाज के आकार के साथ अधिकतम किया जाता है, अंततः, बहुत छोटे अनाज के आकार मैटेरियल्स को भंगुर बनाते हैं। सामान्य तौर पर, एक मैटेरियल्स की उपज स्ट्रेंथ मैटेरियल्स की यांत्रिक शक्ति का एक पर्याप्त संकेतक है। इस तथ्य के साथ मिलकर माना जाता है कि उपज की स्ट्रेंथ वह पैरामीटर है जो मैटेरियल्स में प्लास्टिक विरूपण की भविष्यवाणी करता है, एक व्यक्ति के बारे में सूचित निर्णय ले सकता है कि इसके माइक्रोस्ट्रक्चरल गुणों और वांछित अंत प्रभाव के आधार पर किसी मैटेरियल्स की स्ट्रेंथ को कैसे बढ़ाया जाए। स्ट्रेंथ संपीड़ित स्ट्रेसेस, तन्य स्ट्रेसेस, और कतरनी स्ट्रेसेस के सीमित मूल्यों के संदर्भ में व्यक्त की जाती है जो विफलता का कारण बनेगी। गतिशील लोडिंग के प्रभाव संभवतः मैटेरियल्स की स्ट्रेंथ का सबसे महत्वपूर्ण व्यावहारिक विचार हैं, विशेष रूप से एफए की समस्याबाघ (मैटेरियल्स)।बार -बार लोडिंग अक्सर भंगुर दरारें शुरू करती है, जो विफलता होने तक बढ़ती है।दरारें हमेशा स्ट्रेसेस सांद्रता पर शुरू होती हैं, विशेष रूप से उत्पाद के क्रॉस-सेक्शन में परिवर्तन, छेद और कोनों के पास नाममात्र स्ट्रेसेस के स्तर पर मैटेरियल्स की स्ट्रेंथ के लिए उद्धृत की तुलना में कम।

यह भी देखें


संदर्भ

  1. Beer & Johnston (2006). Mechanics of Materials (5th ed.). McGraw Hill. p. 210. ISBN 978-0-07-352938-7.
  2. Beer & Johnston (2006). Mechanics of Materials (5th ed.). McGraw Hill. p. 7. ISBN 978-0-07-352938-7.
  3. Beer & Johnston (2006). Mechanics of Materials (5th ed.). McGraw Hill. p. 5. ISBN 978-0-07-352938-7.
  4. Beer & Johnston (2006). Mechanics of Materials (5th ed.). McGraw Hill. pp. 9–10. ISBN 978-0-07-352938-7.
  5. Beer, Ferdinand Pierre; Johnston, Elwood Russell; Dewolf, John T (2009). Mechanics of Materials (5th ed.). p. 52. ISBN 978-0-07-352938-7.
  6. Beer & Johnston (2006). Mechanics of Materials (5th ed.). McGraw Hill. p. 60. ISBN 978-0-07-352938-7.
  7. Beer & Johnston (2006). Mechanics of Materials (5th ed.). McGraw Hill. pp. 693–696. ISBN 978-0-07-352938-7.
  8. Beer & Johnston (2006). Mechanics of Materials (5th ed.). McGraw Hill. p. 47. ISBN 978-0-07-352938-7.
  9. Beer & Johnston (2006). Mechanics of Materials (5th ed.). McGraw Hill. p. 49. ISBN 978-0-07-352938-7.
  10. R. C. Hibbeler (2009). Structural Analysis (7 ed.). Pearson Prentice Hall. p. 305. ISBN 978-0-13-602060-8.
  11. Beer & Johnston (2006). Mechanics of Materials (5th ed.). McGraw Hill. pp. 53–56. ISBN 978-0-07-352938-7.
  12. Beer & Johnston (2006). Mechanics of Materials (5thv ed.). McGraw Hill. pp. 27–28. ISBN 978-0-07-352938-7.
  13. Beer & Johnston (2006). Mechanics of Materials (5th ed.). McGraw Hill. p. 28. ISBN 978-0-07-352938-7.


अग्रिम पठन

  • Fa-Hwa Cheng, Initials. (1997). Strength of material. Ohio: McGraw-Hill
  • Mechanics of Materials, E.J. Hearn
  • Alfirević, Ivo. Strength of Materials I. Tehnička knjiga, 1995. ISBN 953-172-010-X.
  • Alfirević, Ivo. Strength of Materials II. Tehnička knjiga, 1999. ISBN 953-6168-85-5.
  • Ashby, M.F. Materials Selection in Design. Pergamon, 1992.
  • Beer, F.P., E.R. Johnston, et al. Mechanics of Materials, 3rd edition. McGraw-Hill, 2001. ISBN 0-07-248673-2
  • Cottrell, A.H. Mechanical Properties of Matter. Wiley, New York, 1964.
  • Den Hartog, Jacob P. Strength of Materials. Dover Publications, Inc., 1961, ISBN 0-486-60755-0.
  • Drucker, D.C. Introduction to Mechanics of Deformable Solids. McGraw-Hill, 1967.
  • Gordon, J.E. The New Science of Strong Materials. Princeton, 1984.
  • Groover, Mikell P. Fundamentals of Modern Manufacturing, 2nd edition. John Wiley & Sons,Inc., 2002. ISBN 0-471-40051-3.
  • Hashemi, Javad and William F. Smith. Foundations of Materials Science and Engineering, 4th edition. McGraw-Hill, 2006. ISBN 0-07-125690-3.
  • Hibbeler, R.C. Statics and Mechanics of Materials, SI Edition. Prentice-Hall, 2004. ISBN 0-13-129011-8.
  • Lebedev, Leonid P. and Michael J. Cloud. Approximating Perfection: A Mathematician's Journey into the World of Mechanics. Princeton University Press, 2004. ISBN 0-691-11726-8.
  • Chapter 10 – Strength of Elastomers, A.N. Gent, W.V. Mars, In: James E. Mark, Burak Erman and Mike Roland, Editor(s), The Science and Technology of Rubber (Fourth Edition), Academic Press, Boston, 2013, Pages 473–516, ISBN 9780123945846, 10.1016/B978-0-12-394584-6.00010-8
  • Mott, Robert L. Applied Strength of Materials, 4th edition. Prentice-Hall, 2002. ISBN 0-13-088578-9.
  • Popov, Egor P. Engineering Mechanics of Solids. Prentice Hall, Englewood Cliffs, N. J., 1990. ISBN 0-13-279258-3.
  • Ramamrutham, S. Strength of Materials.
  • Shames, I.H. and F.A. Cozzarelli. Elastic and inelastic stress analysis. Prentice-Hall, 1991. ISBN 1-56032-686-7.
  • Timoshenko S. Strength of Materials, 3rd edition. Krieger Publishing Company, 1976, ISBN 0-88275-420-3.
  • Timoshenko, S.P. and D.H. Young. Elements of Strength of Materials, 5th edition. (MKS System)
  • Davidge, R.W., Mechanical Behavior of Ceramics, Cambridge Solid State Science Series, (1979)
  • Lawn, B.R., Fracture of Brittle Solids, Cambridge Solid State Science Series, 2nd Edn. (1993)
  • Green, D., An Introduction to the Mechanical Properties of Ceramics, Cambridge Solid State Science Series, Eds. Clarke, D.R., Suresh, S., Ward, I.M.Babu Tom.K (1998)


इस पृष्ठ में गुम आंतरिक लिंक की सूची

एक्सटरनली संबंध