सीमा बिंदु सघन: Difference between revisions

From Vigyanwiki
Line 7: Line 7:
* समष्टिओं के कुछ उदाहरण जो सीमा बिंदु सघन नहीं हैं:(1)<math>\Reals</math> अपनी साधारण सांस्थिति के साथ सभी वास्तविक संख्याओं का समुच्चय है,चूंकि पूर्णांक एक अपरिमित समुच्चय है लेकिन <math>\Reals</math> में कोई सीमा बिंदु नहीं है;(2)विविक्त सांस्थिति के साथ एक अपरिमित समुच्चय;(3)एक अगणनीय समुच्चय पर [[गणनीय पूरक सांस्थिति]]।
* समष्टिओं के कुछ उदाहरण जो सीमा बिंदु सघन नहीं हैं:(1)<math>\Reals</math> अपनी साधारण सांस्थिति के साथ सभी वास्तविक संख्याओं का समुच्चय है,चूंकि पूर्णांक एक अपरिमित समुच्चय है लेकिन <math>\Reals</math> में कोई सीमा बिंदु नहीं है;(2)विविक्त सांस्थिति के साथ एक अपरिमित समुच्चय;(3)एक अगणनीय समुच्चय पर [[गणनीय पूरक सांस्थिति]]।
* प्रत्येक [[गणनीय रूप से सघन स्थान|गणनीय सघन]] [[टोपोलॉजिकल स्पेस|समष्टि]](और इसलिए प्रत्येक सघन समष्टि)सीमा बिंदु सघन है।
* प्रत्येक [[गणनीय रूप से सघन स्थान|गणनीय सघन]] [[टोपोलॉजिकल स्पेस|समष्टि]](और इसलिए प्रत्येक सघन समष्टि)सीमा बिंदु सघन है।
* [[T1 समष्टि]] के लिए,सीमा बिंदु सघनता गणनीय सघनता के तुल्य है।
* [[T1 समष्टि|T1 समष्टिओं]] के लिए,सीमा बिंदु सघनता गणनीय सघनता के तुल्य है।
* सीमा बिंदु सघन समष्टि का एक उदाहरण जो गणनीय सघन नहीं है,पूर्णांकों का द्विगुणन करके प्राप्त किया जाता है,अर्थात्, गुणनफल लेते हुए <math>X = \Z \times Y</math> जहां <math>\Z</math>,[[असतत टोपोलॉजी|विविक्त सांस्थिति]] के साथ सभी पूर्णांकों का समुच्चय है और <math>Y = \{0,1\}</math> में अविविक्त सांस्थिति है।समष्टि <math>X</math> [[सम-विषम टोपोलॉजी|विषम-सम सांस्थिति]] के समसंरेखीय है।<ref>Steen & Seebach, Example 6</ref> यह समष्टि T<sub>0</sub> समष्टि नहीं है।यह सीमा बिंदु सघन है क्योंकि प्रत्येक अरिक्त उपसमुच्चय का एक सीमा बिंदु होता है।
* सीमा बिंदु सघन समष्टि का एक उदाहरण जो गणनीय सघन नहीं है,पूर्णांकों का द्विगुणन करके प्राप्त किया जाता है,अर्थात्, गुणनफल लेते हुए <math>X = \Z \times Y</math> जहां <math>\Z</math>,[[असतत टोपोलॉजी|विविक्त सांस्थिति]] के साथ सभी पूर्णांकों का समुच्चय है और <math>Y = \{0,1\}</math> में [[अविविक्त सांस्थिति]] है।समष्टि <math>X</math> [[सम-विषम टोपोलॉजी|विषम-सम सांस्थिति]] के समसंरेखीय है।<ref>Steen & Seebach, Example 6</ref> यह समष्टि T<sub>0</sub> समष्टि नहीं है।यह सीमा बिंदु सघन है क्योंकि प्रत्येक अरिक्त उपसमुच्चय का एक सीमा बिंदु होता है।
* T<sub>0</sub> समष्टि का एक उदाहरण जो सीमा बिंदु सघन है और <math>X = \Reals</math> गणनीय सघन नहीं है,दाएं क्रम सांस्थिति के साथ सभी वास्तविक संख्याओं का समुच्चय,यानि,सांस्थिति सभी अंतरालों <math>(x, \infty)</math> द्वारा उत्पन्न हुई।<ref>Steen & Seebach, Example 50</ref>समष्टि सीमा बिंदु सघन है क्योंकि किसी भी बिंदु <math>a \in X</math>  के लिए,प्रत्येक <math>x<a</math>,<math>\{a\}</math> का एक सीमा बिंदु है।
* T<sub>0</sub> समष्टि का एक उदाहरण जो सीमा बिंदु सघन है और <math>X = \Reals</math> गणनीय सघन नहीं है,[[दाएं क्रम सांस्थिति]] के साथ सभी वास्तविक संख्याओं का समुच्चय,यानि,सांस्थिति सभी अंतरालों <math>(x, \infty)</math> द्वारा उत्पन्न हुई।<ref>Steen & Seebach, Example 50</ref>समष्टि सीमा बिंदु सघन है क्योंकि किसी भी बिंदु <math>a \in X</math>  के लिए,प्रत्येक <math>x<a</math>,<math>\{a\}</math> का एक सीमा बिंदु है।
* मापनीय समष्टि के लिए,सघनता,गणनीय सघनता,सीमा बिंदु सघनता और अनुक्रमिक सघनता सभी तुल्य हैं।
* मापनीय समष्टि के लिए,सघनता,गणनीय सघनता,सीमा बिंदु सघनता और [[अनुक्रमिक सघनता]] सभी तुल्य हैं।
* एक सीमा बिंदु सघन समष्टि के संवृत्त उपसमष्टि सीमा बिंदु सघन होते हैं।
* एक सीमा बिंदु सघन समष्टि के संवृत्त उपसमष्टियाँ सीमा बिंदु सघन होते हैं।
* किसी सीमा बिंदु सघन स्थान की सतत छवि को सीमा बिंदु सघन होने की आवश्यकता नहीं है। उदाहरण के लिए, यदि <math>X = \Z \times Y</math> साथ <math>\Z</math> असतत और <math>Y</math> उपरोक्त उदाहरण की तरह अविवेकी, मानचित्र <math>f = \pi_{\Z}</math> पहले निर्देशांक पर प्रक्षेपण द्वारा दिया गया निरंतर है, लेकिन <math>f(X) = \Z</math> सीमा बिंदु सघन नहीं है.
* एक सीमा बिंदु सघन समष्टि के सतत प्रतिबिम्ब को सीमा बिंदु सघन होने की आवश्यकता नहीं है।उदाहरण के लिए,यदि <math>X = \Z \times Y</math> के साथ <math>\Z</math> विविक्त और <math>Y</math>अविविक्त हैं,जैसा कि ऊपर उदाहरण में है,प्रक्षेपण द्वारा दिए गए मानचित्र <math>f = \pi_{\Z}</math> पर प्रथम निर्देशांक सतत है,लेकिन <math>f(X) = \Z</math> सीमा बिंदु सघन नहीं है।
* एक सीमा बिंदु कॉम्पैक्ट स्पेस को [[छद्मकॉम्पैक्ट]] होने की आवश्यकता नहीं है। इसी का एक उदाहरण दिया गया है <math>X = \Z \times Y</math> साथ <math>Y</math> अविवेकी दो-बिंदु स्थान और मानचित्र <math>f = \pi_{\Z},</math> जिसकी छवि सीमाबद्ध नहीं है <math>\Reals.</math>
* एक सीमा बिंदु सघन समष्टि को [[छद्मकॉम्पैक्ट|अवास्तविक-सघन]] होने की आवश्यकता नहीं है।वैसा ही एक उदाहरण दिया गया है <math>X = \Z \times Y</math> के साथ <math>Y</math>अविविक्त द्वि-बिंदु समष्टि और मानचित्र <math>f = \pi_{\Z}</math> हैं जिसका प्रतिबिम्ब <math>\Reals</math> में परिबद्ध नहीं है।
* एक स्यूडोकॉम्पैक्ट स्पेस को सीमा बिंदु कॉम्पैक्ट होने की आवश्यकता नहीं है। [[सहगणनीय टोपोलॉजी]] के साथ एक बेशुमार सेट द्वारा एक उदाहरण दिया गया है।
* एक अवास्तविक-सघन समष्टि को सीमा बिंदु सघन होने की आवश्यकता नहीं है।एक उदाहरण [[सहगणनीय टोपोलॉजी|सहगणनीय सांस्थिति]] के साथ एक अगणनीय समुच्चय द्वारा दिया गया है।
* प्रत्येक सामान्य स्यूडोकॉम्पैक्ट स्पेस सीमा बिंदु कॉम्पैक्ट है।<ref>Steen & Seebach, p. 20.  What they call "normal" is T<sub>4</sub> in wikipedia's terminology, but it's essentially the same proof as here.</ref><br>प्रमाण: मान लीजिए <math>X</math> एक सामान्य स्थान है जो सीमा बिंदु सघन नहीं है। वहाँ एक अनगिनत अनंत बंद असतत उपसमुच्चय मौजूद है <math>A = \{x_1, x_2, x_3, \ldots\}</math> का <math>X.</math> [[टिट्ज़ विस्तार प्रमेय]] द्वारा निरंतर कार्य <math>f</math> पर <math>A</math> द्वारा परिभाषित <math>f(x_n) = n</math> सभी पर एक (अनबाउंड) वास्तविक-मूल्यवान निरंतर फ़ंक्शन तक बढ़ाया जा सकता है <math>X.</math> इसलिए <math>X</math> छद्मसंक्षिप्त नहीं है.
* प्रत्येक अभिलंब अवास्तविक-सघन समष्टि सीमा बिंदु सघन है।<ref>Steen & Seebach, p. 20.  What they call "normal" is T<sub>4</sub> in wikipedia's terminology, but it's essentially the same proof as here.</ref><br>प्रमाण: मान लीजिए <math>X</math> एक अभिलंब समष्टि है जो सीमा बिंदु सघन नहीं है।वहाँ <math>X</math> का एक गणनीय अपरिमित संवृत्त विविक्त उपसमुच्चय <math>A = \{x_1, x_2, x_3, \ldots\}</math> सम्बद्ध है।[[टिट्ज़ विस्तार सिद्धांत]] के अनुसार <math>A</math> पर सतत फलन <math>f</math> जिसे <math>f(x_n) = n</math> द्वारा परिभाषित किया गया है,सभी <math>X</math> पर एक(अपरिबद्ध)वास्तविक मान वाले सतत फलन तक बढ़ाया जा सकता है इसलिए <math>X</math> अवास्तविक-सघन नहीं है।
* सीमा बिंदु कॉम्पैक्ट रिक्त स्थान में गणनीय कार्डिनल फ़ंक्शन #टोपोलॉजी में कार्डिनल फ़ंक्शन होते हैं।
* सीमा बिंदु सघन समष्टि में गणनीय [[परिधि]] होती है।
* अगर <math>(X, \tau)</math> और <math>(X, \sigma)</math> के साथ टोपोलॉजिकल स्पेस हैं <math>\sigma</math> से भी बेहतर <math>\tau</math> और <math>(X, \sigma)</math>सीमा बिंदु सघन है, तो ऐसा है <math>(X, \tau).</math>
* यदि <math>(X, \tau)</math> और <math>(X, \sigma)</math> सांस्थितिक समष्टि हैं के साथ <math>\sigma</math>,<math>\tau</math> से अधिक विस्तारित है,और <math>(X, \sigma)</math> सीमा बिंदु सघन है,तो <math>(X, \tau)</math> भी सीमा बिंदु सघन है।
 
 
==यह भी देखें==
==यह भी देखें==



Revision as of 13:37, 16 July 2023

गणित में,एक सांस्थितिक समष्टि को सीमा बिंदु सघन [1][2] या कम गणनीय सघन कहा जाता है[3]यदि के प्रत्येक अनंत उपसमुच्चय की में एक सीमा बिंदु हो।यह गुण सघन समष्टिओं के गुण को सामान्य बनाता है।एक मीटरी समष्टि में,सीमा बिंदु सघनता, सघनता,औरअनुक्रमिक सघनता सभी तुल्यमान हैं।हालाँकि,सामान्य सांस्थितिक समष्टिओं के लिए,सघनता की ये तीन धारणाएँ तुल्य नहीं हैं।

गुण और उदाहरण

  • सांस्थितिक समष्टि में,सीमा बिंदु के बिना उपसमुच्चय बिल्कुल वही होते हैं जो उपसमष्टि सांस्थिति में संवृत्त और विविक्त होते हैं।तो एक समष्टि सीमा बिंदु सघन है यदि और केवल यदि इसके सभी संवृत्त विविक्त उपसमुच्चय परिमित हों।
  • एक समष्टि सीमा बिंदु सघन नही है यदि और केवल यदि इसमें एक अनंत संवृत्त विविक्त उपसमष्टि हों।चूँकि के एक संवृत्त विविक्त उपसमुच्चय का कोई उपसमुच्चय स्वयं में संवृत्त और विविक्त है,यह आवश्यक है कि के पास एक गणनीय अपरिमित संवृत्त विविक्त उपसमष्टि हों के तुल्यमान हैं।
  • समष्टिओं के कुछ उदाहरण जो सीमा बिंदु सघन नहीं हैं:(1) अपनी साधारण सांस्थिति के साथ सभी वास्तविक संख्याओं का समुच्चय है,चूंकि पूर्णांक एक अपरिमित समुच्चय है लेकिन में कोई सीमा बिंदु नहीं है;(2)विविक्त सांस्थिति के साथ एक अपरिमित समुच्चय;(3)एक अगणनीय समुच्चय पर गणनीय पूरक सांस्थिति
  • प्रत्येक गणनीय सघन समष्टि(और इसलिए प्रत्येक सघन समष्टि)सीमा बिंदु सघन है।
  • T1 समष्टिओं के लिए,सीमा बिंदु सघनता गणनीय सघनता के तुल्य है।
  • सीमा बिंदु सघन समष्टि का एक उदाहरण जो गणनीय सघन नहीं है,पूर्णांकों का द्विगुणन करके प्राप्त किया जाता है,अर्थात्, गुणनफल लेते हुए जहां ,विविक्त सांस्थिति के साथ सभी पूर्णांकों का समुच्चय है और में अविविक्त सांस्थिति है।समष्टि विषम-सम सांस्थिति के समसंरेखीय है।[4] यह समष्टि T0 समष्टि नहीं है।यह सीमा बिंदु सघन है क्योंकि प्रत्येक अरिक्त उपसमुच्चय का एक सीमा बिंदु होता है।
  • T0 समष्टि का एक उदाहरण जो सीमा बिंदु सघन है और गणनीय सघन नहीं है,दाएं क्रम सांस्थिति के साथ सभी वास्तविक संख्याओं का समुच्चय,यानि,सांस्थिति सभी अंतरालों द्वारा उत्पन्न हुई।[5]समष्टि सीमा बिंदु सघन है क्योंकि किसी भी बिंदु के लिए,प्रत्येक , का एक सीमा बिंदु है।
  • मापनीय समष्टि के लिए,सघनता,गणनीय सघनता,सीमा बिंदु सघनता और अनुक्रमिक सघनता सभी तुल्य हैं।
  • एक सीमा बिंदु सघन समष्टि के संवृत्त उपसमष्टियाँ सीमा बिंदु सघन होते हैं।
  • एक सीमा बिंदु सघन समष्टि के सतत प्रतिबिम्ब को सीमा बिंदु सघन होने की आवश्यकता नहीं है।उदाहरण के लिए,यदि के साथ विविक्त और अविविक्त हैं,जैसा कि ऊपर उदाहरण में है,प्रक्षेपण द्वारा दिए गए मानचित्र पर प्रथम निर्देशांक सतत है,लेकिन सीमा बिंदु सघन नहीं है।
  • एक सीमा बिंदु सघन समष्टि को अवास्तविक-सघन होने की आवश्यकता नहीं है।वैसा ही एक उदाहरण दिया गया है के साथ अविविक्त द्वि-बिंदु समष्टि और मानचित्र हैं जिसका प्रतिबिम्ब में परिबद्ध नहीं है।
  • एक अवास्तविक-सघन समष्टि को सीमा बिंदु सघन होने की आवश्यकता नहीं है।एक उदाहरण सहगणनीय सांस्थिति के साथ एक अगणनीय समुच्चय द्वारा दिया गया है।
  • प्रत्येक अभिलंब अवास्तविक-सघन समष्टि सीमा बिंदु सघन है।[6]
    प्रमाण: मान लीजिए एक अभिलंब समष्टि है जो सीमा बिंदु सघन नहीं है।वहाँ का एक गणनीय अपरिमित संवृत्त विविक्त उपसमुच्चय सम्बद्ध है।टिट्ज़ विस्तार सिद्धांत के अनुसार पर सतत फलन जिसे द्वारा परिभाषित किया गया है,सभी पर एक(अपरिबद्ध)वास्तविक मान वाले सतत फलन तक बढ़ाया जा सकता है इसलिए अवास्तविक-सघन नहीं है।
  • सीमा बिंदु सघन समष्टि में गणनीय परिधि होती है।
  • यदि और सांस्थितिक समष्टि हैं के साथ , से अधिक विस्तारित है,और सीमा बिंदु सघन है,तो भी सीमा बिंदु सघन है।

यह भी देखें

टिप्पणियाँ

  1. The terminology "limit point compact" appears in a topology textbook by James Munkres where he says that historically such spaces had been called just "compact" and what we now call compact spaces were called "bicompact". There was then a shift in terminology with bicompact spaces being called just "compact" and no generally accepted name for the first concept, some calling it "Fréchet compactness", others the "Bolzano-Weierstrass property". He says he invented the term "limit point compact" to have something at least descriptive of the property. Munkres, p. 178-179.
  2. Steen & Seebach, p. 19
  3. Steen & Seebach, p. 19
  4. Steen & Seebach, Example 6
  5. Steen & Seebach, Example 50
  6. Steen & Seebach, p. 20. What they call "normal" is T4 in wikipedia's terminology, but it's essentially the same proof as here.


संदर्भ

  • Munkres, James R. (2000). Topology (Second ed.). Upper Saddle River, NJ: Prentice Hall, Inc. ISBN 978-0-13-181629-9. OCLC 42683260.
  • Steen, Lynn Arthur; Seebach, J. Arthur (1995) [First published 1978 by Springer-Verlag, New York]. Counterexamples in topology. New York: Dover Publications. ISBN 0-486-68735-X. OCLC 32311847.
  • This article incorporates material from Weakly countably compact on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.