स्पेस-फिलिंग कर्व: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
Line 1: Line 1:
{{Short description|Curve whose range contains the unit square}}
{{Short description|Curve whose range contains the unit square}}
[[Image:Peanocurve.svg|400px|thumb|पीनो वक्र निर्माण के तीन पुनरावृत्तियों, जिनकी सीमा एक स्थान-भरने वाला वक्र है।]][[ गणितीय विश्लेषण ]] में,  स्पेस-फिलिंग कर्व एक वक्र होता है जिसकी सीमा में संपूर्ण 2-आयामी [[ इकाई वर्ग |इकाई वर्ग]] (या अधिक सामान्यतः एक ''एन''-आयामी इकाई [[ अतिविम |अतिविम]]) होता है। चूंकि [[ ग्यूसेप पीनो |ग्यूसेप पीनो]] (1858-1932) ने सबसे पहले एक की खोज की थी, 2-आयामी समतल में स्पेस-फिलिंग कर्व को कभी-कभी पीनो वक्र कहा जाता है, लेकिन वह वाक्यांश पीनो वक्र को भी संदर्भित करता है, जो पीनो द्वारा पाए गए स्पेस-फिलिंग कर्व वक्र का विशिष्ट उदाहरण है।
[[Image:Peanocurve.svg|400px|thumb|पीनो वक्र निर्माण के तीन पुनरावृत्तियों, जिनकी सीमा एक स्थान-भरने वाला वक्र है।]][[ गणितीय विश्लेषण ]] में,  '''स्पेस-फिलिंग कर्व''' एक वक्र होता है जिसकी सीमा में संपूर्ण 2-आयामी [[ इकाई वर्ग |इकाई वर्ग]] (या अधिक सामान्यतः एक ''एन''-आयामी इकाई [[ अतिविम |अतिविम]]) होता है। चूंकि [[ ग्यूसेप पीनो |ग्यूसेप पीनो]] (1858-1932) ने सबसे पहले एक की खोज की थी, 2-आयामी समतल में स्पेस-फिलिंग कर्व को कभी-कभी पीनो वक्र कहा जाता है, लेकिन वह वाक्यांश पीनो वक्र को भी संदर्भित करता है, जो पीनो द्वारा पाए गए स्पेस-फिलिंग कर्व वक्र का विशिष्ट उदाहरण है।


== परिभाषा ==
== परिभाषा ==
Line 107: Line 107:
[[Category:CS1 Deutsch-language sources (de)]]
[[Category:CS1 Deutsch-language sources (de)]]
[[Category:CS1 français-language sources (fr)]]
[[Category:CS1 français-language sources (fr)]]
[[Category:Collapse templates]]
[[Category:Commons category link is locally defined]]
[[Category:Exclude in print]]
[[Category:Exclude in print]]
[[Category:Interwiki category linking templates]]
[[Category:Interwiki category linking templates]]
[[Category:Interwiki link templates]]
[[Category:Interwiki link templates]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Machine Translated Page]]
[[Category:Multi-column templates]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages using div col with small parameter]]
[[Category:Pages with script errors]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Short description with empty Wikidata description]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates generating microformats]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:Templates using TemplateData]]
[[Category:Templates using under-protected Lua modules]]
[[Category:Wikimedia Commons templates]]
[[Category:Wikimedia Commons templates]]
[[Category:Wikipedia fully protected templates|Div col]]
[[Category:Wikipedia metatemplates]]

Latest revision as of 16:35, 25 August 2023

पीनो वक्र निर्माण के तीन पुनरावृत्तियों, जिनकी सीमा एक स्थान-भरने वाला वक्र है।

गणितीय विश्लेषण में, स्पेस-फिलिंग कर्व एक वक्र होता है जिसकी सीमा में संपूर्ण 2-आयामी इकाई वर्ग (या अधिक सामान्यतः एक एन-आयामी इकाई अतिविम) होता है। चूंकि ग्यूसेप पीनो (1858-1932) ने सबसे पहले एक की खोज की थी, 2-आयामी समतल में स्पेस-फिलिंग कर्व को कभी-कभी पीनो वक्र कहा जाता है, लेकिन वह वाक्यांश पीनो वक्र को भी संदर्भित करता है, जो पीनो द्वारा पाए गए स्पेस-फिलिंग कर्व वक्र का विशिष्ट उदाहरण है।

परिभाषा

सहज रूप से, दो या तीन (या उच्चतर) आयामों में वक्र को निरंतर गतिमान बिंदु का पथ माना जा सकता है। इस धारणा की अंतर्निहित अस्पष्टता को खत्म करने के लिए, 1887 में केमिली जॉर्डन ने निम्नलिखित कठोर परिभाषा पेश की, जिसे तब से वक्र की धारणा के सटीक विवरण के रूप में अपनाया गया है:

वक्र (समापन बिंदुओं के साथ) एक सतत कार्य है जिसका प्रांत इकाई अंतराल [0, 1] है।.

सबसे सामान्य रूप में, इस तरह के फलन की सीमा एक मनमाना सांस्थितिक समष्टि में हो सकती है, लेकिन सबसे अधिक अध्ययन किए गए मामलों में, सीमा यूक्लिडियन समष्टि में होगी जैसे कि 2-आयामी समतल (एक तलीय वक्र) या 3-आयामी समष्टि (समष्टि वक्र)।

कभी-कभी, वक्र को फलन के बजाय फलन की छवि (फलन के सभी संभावित मानों का समुच्चय) से पहचाना जाता है। वास्तविक रेखा (या खुले इकाई अंतराल (0, 1) पर) पर एक सतत कार्य होने के लिए समापन बिंदुओं के बिना वक्रों को परिभाषित करना भी संभव है।

इतिहास

1890 में, पीनो ने एक सतत वक्र की खोज की, जिसे अब पीनो वक्र कहा जाता है, जो इकाई वर्ग के प्रत्येक बिंदु से होकर गुजरता है।[1] उनका उद्देश्य इकाई अंतराल से इकाई वर्ग पर संतत प्रतिचित्रण का निर्माण करना था। पीनो को जॉर्ज कैंटोर के पहले के प्रति-सहज परिणाम से प्रेरित किया गया था कि एक इकाई अंतराल में अंकों की अनंत संख्या समान गणनांक है, जैसे कि किसी भी परिमित-आयामी बहुआयामी में अनंत संख्या में अंक, जैसे कि इकाई वर्ग। पीनो की समस्या का समाधान यह था कि क्या ऐसा प्रतिचित्रण निरंतर हो सकता है, यानी, एक वक्र जो एक स्थान को भरता है। पीनो का समाधान इकाई अंतराल और इकाई वर्ग के बीच निरंतर एक-से-एक पत्राचार स्थापित नहीं करता है, और वास्तव में ऐसा कोई पत्राचार मौजूद नहीं है (नीचे § गुण देखें)।

विरलता और 1-आयामीता की अस्पष्ट धारणाओं को वक्रों से जोड़ना आम बात थी, सभी सामान्य रूप से सामने आने वाले वक्र टुकड़े-टुकड़े अलग-अलग होते थे (अर्थात, टुकड़े-टुकड़े निरंतर व्युत्पन्न होते हैं), और ऐसे वक्र पूरे इकाई वर्ग को नहीं भर सकते। इसलिए, पीनो का स्पेस-फिलिंग कर्व अत्यधिक उल्टा पाया गया।

पीनो के उदाहरण से, निरंतर वक्रों को निकालना आसान था, जिनकी श्रेणियों में n-आयामी अतिविम (किसी भी घनात्मक पूर्णांक n के लिए) होता है। पीनो के उदाहरण को बिना अंतबिंदु के निरंतर घटता तक विस्तारित करना भी आसान था, जिसने पूरे n-आयामी यूक्लिडियन समष्टि को भर दिया (जहां n 2, 3, या कोई अन्य घनात्मक पूर्णांक है)।

सबसे प्रसिद्ध स्पेस-फिलिंग कर्व का निर्माण क्रमिक रूप से टुकड़े-टुकड़े रैखिक निरंतर घटता के अनुक्रम की सीमा के रूप में किया जाता है, प्रत्येक एक समष्टि-भरने की सीमा का अधिक बारीकी से अनुमान लगाता है।

पीनो के महत्वपूर्ण लेख में उनके निर्माण का कोई चित्रण नहीं था, जिसे टर्नरी विस्तार और प्रतिबिंबात्मक परिचालक के संदर्भ में परिभाषित किया गया है। लेकिन चित्रमय निर्माण उनके लिए बिल्कुल स्पष्ट था - उन्होंने ट्यूरिन में अपने घर में वक्र की एक तस्वीर दिखाते हुए एक सजावटी टाइलिंग बनाई। पीनो का लेख यह देखकर भी समाप्त होता है कि तकनीक को स्पष्ट रूप से आधार 3 के अलावा अन्य विषम आधारों तक बढ़ाया जा सकता है। आलेखीय प्रत्यक्षण के लिए किसी भी अपील से बचने के लिए उनकी पसंद चित्रों के बिना पूरी तरह से कठोर सबूत की इच्छा से प्रेरित थी। उस समय (सामान्य सांस्थिति की नींव की शुरुआत), आलेखीय तर्क अभी भी सबूतों में शामिल थे, फिर भी अक्सर प्रतिकूल परिणामों को समझने में बाधा बन रहे थे।

एक साल बाद, डेविड हिल्बर्ट ने उसी पत्रिका में पीनो के निर्माण का एक रूपांतर प्रकाशित किया।[2] हिल्बर्ट का लेख निर्माण तकनीक की कल्पना करने में मदद करने वाला चित्र शामिल करने वाला पहला था, अनिवार्य रूप से यहां सचित्र जैसा ही था। हालांकि, हिल्बर्ट वक्र का विश्लेषणात्मक रूप पीनो की तुलना में अधिक जटिल है।

हिल्बर्ट वक्र निर्माण के छह पुनरावृत्तियों, जिसका सीमित स्थान-भरने वाला वक्र गणितज्ञ डेविड हिल्बर्ट द्वारा तैयार किया गया था।

समष्टि भरने वाले वक्र के निर्माण की रूपरेखा

बता दें कि कैंटर स्पेस को निरूपित करें .

हम एक सतत कार्य के साथ शुरू करते हैं कैंटर समष्टि से संपूर्ण इकाई अंतराल पर . (कैंटर फलन का कैंटर समुच्चय पर प्रतिबंध ऐसे फलन का एक उदाहरण है।) इससे हमें एक सतत फलन मिलता है सांस्थिति उत्पाद से पूरे इकाई वर्ग पर व्यवस्थित करके

चूंकि कैंटर समुच्चय उत्पाद के लिए होमोमोर्फिक है , एक निरंतर आपत्ति है कैंटर से समुच्चय पर . रचना का तथा संपूर्ण इकाई वर्ग पर कैंटर समुच्चय को मैप करने वाला एक सतत कार्य है। (वैकल्पिक रूप से, हम इस प्रमेय का उपयोग कर सकते हैं कि प्रत्येक संहतसमष्‍टि मीट्रिक स्थान फलन प्राप्त करने के लिए कैंटर समुच्चय की एक सतत छवि है ।)

अंत में, कोई बढ़ा सकता है सतत फलन के लिए जिसका प्रांत संपूर्ण इकाई अंतराल है . यह या तो के प्रत्येक घटक पर टिट्ज़ एक्सटेंशन प्रमेय का उपयोग करके किया जा सकता है , या बस विस्तार करके रैखिक रूप से (अर्थात हटाए गए प्रत्येक खुले अंतराल पर कैंटर समुच्चय के निर्माण में, हम के विस्तार भाग को परिभाषित करते हैं पर मानों को मिलाने वाले इकाई वर्ग के भीतर रेखा खंड होना तथा ).

गुण

Z-क्रम वक्र और हिल्बर्ट वक्र स्तर 6 (4 .) के वक्र5=1024 सेल इन द रिकर्सन (कंप्यूटर साइंस)) आरजीबी रंग मॉडल में प्रत्येक पते को अलग-अलग रंग के रूप में प्लॉट करते हैं, और जियोहाशो लेबल का उपयोग करते हैं। पड़ोस में समान रंग होते हैं, लेकिन प्रत्येक वक्र छोटे पैमानों में समान समूह बनाने के विभिन्न पैटर्न प्रदान करता है।

यदि कोई वक्र अंतःक्षेपक नहीं है, तो वक्र के दो अन्तर्विभाजक उप-वक्रों को पाया जा सकता है, प्रत्येक वक्र के प्रांत (इकाई रेखा खंड) से दो अलग-अलग खंडों की छवियों पर विचार करके प्राप्त किया जाता है। यदि दो छवियों का प्रतिच्छेदन गैर-रिक्त है, तो दो उप वक्र प्रतिच्छेद करते हैं। किसी को यह सोचने के लिए लुभाया जा सकता है कि वक्रों को प्रतिच्छेद करने का अर्थ यह है कि वे आवश्यक रूप से एक दूसरे को पार करते हैं, जैसे दो गैर-समानांतर रेखाओं का प्रतिच्छेदन बिंदु, एक तरफ से दूसरी तरफ। हालांकि, दो वक्र (या एक वक्र के दो उप-वक्र) बिना क्रॉसिंग के एक दूसरे से संपर्क कर सकते हैं, उदाहरण के लिए, एक वृत्त की स्पर्शरेखा रेखा करती है।

गैर-स्व-प्रतिच्छेदित निरंतर वक्र इकाई वर्ग को नहीं भर सकता है क्योंकि यह वक्र को इकाई अंतराल से इकाई वर्ग पर एक होमियोमोर्फिज्म बना देगा (एक संहतसमष्‍टि से हॉसडॉर्फ समष्टि पर कोई भी निरंतर विभाजन एक होमियोमोर्फिज्म है)। लेकिन एक इकाई वर्ग में कोई कट-बिंदु नहीं होता है, और इसलिए इकाई अंतराल के लिए होमोमोर्फिक नहीं हो सकता है, जिसमें अंत बिंदुओं को छोड़कर सभी बिंदु कट-बिंदु होते हैं। गैर-शून्य क्षेत्र के गैर-स्व-अंतर्विभाजक वक्र मौजूद हैं, ऑसगूड वक्र, लेकिन नेट्टो के प्रमेय के अनुसार वे स्पेस-फिलिंग कर्व नहीं हैं।[2]

उत्कृष्ट पीनो और हिल्बर्ट स्पेस-फिलिंग कर्व्स के लिए, जहां दो सबक्र्स प्रतिच्छेद (तकनीकी अर्थ में) होते हैं, वहां सेल्फ-क्रॉसिंग के बिना सेल्फ-कॉन्टैक्ट होता है। एक स्पेस-फिलिंग कर्व (हर जगह) सेल्फ-क्रॉसिंग हो सकता है यदि इसके सन्निकटन वक्र सेल्फ-क्रॉसिंग हैं। जैसा कि ऊपर दिए गए आंकड़े बताते हैं, एक स्पेस-फिलिंग कर्व वक्र का अनुमान स्वयं से बचने वाला हो सकता है। 3 आयामों में, स्वयं से बचने वाले सन्निकटन वक्र में गांठें भी हो सकती हैं। सन्निकटन वक्र n-विमीय समष्टि के एक सीमित भाग के भीतर रहते हैं, लेकिन उनकी लंबाई बिना किसी बाध्यता के बढ़ जाती है।

स्पेस-फिलिंग कर्व्स भग्न वक्र के विशेष मामले हैं। कोई अलग स्थान भरने वाला वक्र मौजूद नहीं हो सकता है। मोटे तौर पर, भिन्नता इस बात को बाध्य करती है कि वक्र कितनी तेजी से मुड़ सकता है। माइकेल मोरेने ने साबित किया कि सातत्य परिकल्पना एक पीनो वक्र के अस्तित्व के बराबर है, जैसे कि वास्तविक रेखा के प्रत्येक बिंदु पर इसके घटकों में से कम से कम एक अवकलनीय है।[3]

हैन-मजुर्कीविक्ज़ प्रमेय

हन-मजुर्कीविक्ज़ प्रमेय रिक्त स्थान का निम्नलिखित लक्षण वर्णन है जो घटता की निरंतर छवि है:

गैर-खाली हॉसडॉर्फ सांस्थितिक समष्टि ईकाई अंतराल की एक निरंतर छवि है यदि और केवल अगर यह एक संहत, आनुषंगिक, स्थानीय रूप से जुड़ा, दूसरा-गणनीयस्थान है।

रिक्त स्थान जो एक इकाई अंतराल की निरंतर छवि हैं, कभी-कभी पीनो रिक्त स्थान कहलाते हैं।

हन-मजुर्किविज़ प्रमेय के कई निरूपण में, दूसरे-गणनीय को मेट्रिज़ेबल द्वारा प्रतिस्थापित किया जाता है। ये दोनों सूत्र समतुल्य हैं। एक दिशा में संहत हॉसडॉर्फ समष्टिसामान्य स्थान है और, पावेल समुइलोविच उरीसोहन मेट्रिज़ेशन प्रमेय द्वारा, दूसरा-गणनीय तो मेट्रिज़ेबल का अर्थ है। इसके विपरीत, संहत मीट्रिक स्थान दूसरी-गणनीय है।

क्लेनियन समूह

दोगुने पतित क्लेनियन समूहों के सिद्धांत में समष्टि-भराव, या बल्कि गोलाकार-भरने के कई प्राकृतिक उदाहरण हैं। उदाहरण के लिए, कैनन, एंड थर्स्टन & (2007) ने दिखाया कि छद्म-एनोसोव मानचित्र प्रतिचित्रण टोरस के फाइबर के सार्वभौमिक कवर के अनंत पर सर्कल एक गोलाकार-भरने वाला वक्र है। (यहाँ गोला अतिपरवलयिक 3-समष्टि के अनंत पर गोला है।)

एकीकरण

नॉर्बर्ट वीनर ने द फूरियर इंटीग्रल और इसके कुछ अनुप्रयोगों में बताया कि स्पेस-फिलिंग कर्व का उपयोग एक आयाम में लेबेसेग एकीकरण के लिए उच्च आयामों मेंलेबेस्ग एकीकरण को कम करने के लिए किया जा सकता है।

यह भी देखें


टिप्पणियाँ

  1. Peano 1890.
  2. Sagan 1994, p. 131.
  3. Morayne, Michał (1987). "पीनो प्रकार के कार्यों की भिन्नता पर". Colloquium Mathematicum. 53 (1): 129–132. doi:10.4064/cm-53-1-129-132. ISSN 0010-1354.


संदर्भ


बाहरी संबंध

Java applets: