अंकगणित-ज्यामितीय अनुक्रम: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
Line 1: Line 1:
{{Short description|Mathematical sequence satisfying a specific pattern}}
{{Short description|Mathematical sequence satisfying a specific pattern}}गणित में, '''अंकगणित-[[ज्यामितीय अनुक्रम]]''' एक [[अंकगणितीय प्रगति]] के संगत शब्दों के साथ एक ज्यामितीय प्रगति के शब्द-दर-अवधि गुणन का परिणाम है। इस प्रकार स्पष्ट रूप से कहें तो, अंकगणित-ज्यामितीय अनुक्रम का nवाँ पद अंकगणितीय अनुक्रम के nवें पद का गुणनफल है<ref>{{Cite web|title=Arithmetic-Geometric Progression {{!}} Brilliant Math & Science Wiki|url=https://brilliant.org/wiki/arithmetic-geometric-progression/|access-date=2021-04-21|website=brilliant.org|language=en-us}}</ref>
{{Calculus |शृंखला}}
 
गणित में, '''अंकगणित-[[ज्यामितीय अनुक्रम]]''' एक [[अंकगणितीय प्रगति]] के संगत शब्दों के साथ एक ज्यामितीय प्रगति के शब्द-दर-अवधि गुणन का परिणाम है। इस प्रकार स्पष्ट रूप से कहें तो, अंकगणित-ज्यामितीय अनुक्रम का nवाँ पद अंकगणितीय अनुक्रम के nवें पद का गुणनफल है<ref>{{Cite web|title=Arithmetic-Geometric Progression {{!}} Brilliant Math & Science Wiki|url=https://brilliant.org/wiki/arithmetic-geometric-progression/|access-date=2021-04-21|website=brilliant.org|language=en-us}}</ref>


अंकगणित-ज्यामितीय अनुक्रम विभिन्न अनुप्रयोगों में उत्पन्न होते हैं, इस प्रकार जैसे संभाव्यता सिद्धांत में [[अपेक्षित मूल्य|अपेक्षित मूल्यों]] की गणना। उदाहरण के लिए, अनुक्रम
अंकगणित-ज्यामितीय अनुक्रम विभिन्न अनुप्रयोगों में उत्पन्न होते हैं, इस प्रकार जैसे संभाव्यता सिद्धांत में [[अपेक्षित मूल्य|अपेक्षित मूल्यों]] की गणना। उदाहरण के लिए, अनुक्रम
Line 104: Line 101:


{{DEFAULTSORT:Arithmetico-geometric sequence}}
{{DEFAULTSORT:Arithmetico-geometric sequence}}
{{Calculus topics}}
[[Category:CS1 English-language sources (en)]]
[[Category:CS1 English-language sources (en)]]
[[Category:Collapse templates|Arithmetico-geometric sequence]]
[[Category:Collapse templates|Arithmetico-geometric sequence]]

Latest revision as of 16:50, 28 August 2023

गणित में, अंकगणित-ज्यामितीय अनुक्रम एक अंकगणितीय प्रगति के संगत शब्दों के साथ एक ज्यामितीय प्रगति के शब्द-दर-अवधि गुणन का परिणाम है। इस प्रकार स्पष्ट रूप से कहें तो, अंकगणित-ज्यामितीय अनुक्रम का nवाँ पद अंकगणितीय अनुक्रम के nवें पद का गुणनफल है[1]

अंकगणित-ज्यामितीय अनुक्रम विभिन्न अनुप्रयोगों में उत्पन्न होते हैं, इस प्रकार जैसे संभाव्यता सिद्धांत में अपेक्षित मूल्यों की गणना। उदाहरण के लिए, अनुक्रम

एक अंकगणित-ज्यामितीय अनुक्रम है। अंकगणितीय घटक अंश में (नीले रंग में) और ज्यामितीय घटक हर में (हरे रंग में) दिखाई देता है।

इस प्रकार इस अनंत अनुक्रम के योग को अंकगणित-ज्यामितीय श्रृंखला के रूप में जाना जाता है और इसके सबसे बुनियादी रूप को गेब्रियल की सीढ़ी कहा गया है:[2][3]

अंकगणित और ज्यामितीय अनुक्रम दोनों की विशेषताओं को प्रस्तुत करने वाली विभिन्न वस्तुओं पर भी मूल्यवर्ग लागू किया जा सकता है; इस प्रकार उदाहरण के लिए अंकगणित-ज्यामितीय अनुक्रम की फ्रांसीसी धारणा रूप के अनुक्रमों को संदर्भित करती है , जो अंकगणित और ज्यामितीय अनुक्रम दोनों को सामान्यीकृत करता है। इस प्रकार ऐसे अनुक्रम रैखिक अंतर समीकरणों का एक विशेष स्थितिया हैं।

अनुक्रम की शर्तें

अंतर के साथ अंकगणितीय प्रगति (नीले रंग में) से बने अंकगणित-ज्यामितीय अनुक्रम के पहले कुछ पद और प्रारंभिक मूल्य के साथ और प्रारंभिक मूल्य के साथ एक ज्यामितीय प्रगति (हरे रंग में) हैं।

इस प्रकार और सामान्य अनुपात द्वारा दिए गए हैं:[4]

उदाहरण

उदाहरण के लिए, अनुक्रम

द्वारा परिभाषित किया गया है , , और .

शर्तों का योग

इस प्रकार अंकगणित-ज्यामितीय अनुक्रम के प्रथम का योग n पदों के योग का रूप होता है

कहाँ और हैं क्रमशः अंकगणित और ज्यामितीय अनुक्रम के वें पद हैं।

इस योग में बंद-रूप अभिव्यक्ति हैः

प्रमाण

गुणा करना,[4]:

r द्वारा‚ देता है

Sn में से rSn घटाकर, और टेलीस्कोपिंग श्रृंखला की तकनीक का उपयोग करके प्राप्त किया जाता है

इस प्रकार जहां अंतिम समानता ज्यामितीय श्रृंखला के योग के लिए अभिव्यक्ति का परिणाम है। अंततः 1 - r से विभाजित करने पर परिणाम प्राप्त होता है।

अनंत श्रृंखला

इस प्रकार यदि −1 < r < 1 है, तो अंकगणित-ज्यामितीय श्रृंखला का योग S, अर्थात, प्रगति के सभी अनंत पदों का योग, द्वारा दिया जाता है[4]

यदि r उपरोक्त सीमा से बाहर है, तो श्रृंखला या तो

  • अपसारी श्रृंखला (जब r > 1, या जब r = 1 जहां श्रृंखला अंकगणित है और a और d दोनों शून्य नहीं हैं; इस प्रकार यदि बाद के स्थितियोंमें a और d दोनों शून्य हैं, तो श्रृंखला के सभी पद शून्य हैं और श्रृंखला स्थिर है)
  • या वैकल्पिक श्रृंखला (जब r ≤ −1)।

उदाहरण: अपेक्षित मानों पर अनुप्रयोग

उदाहरण के लिए, योग

,

द्वारा परिभाषित अंकगणित-ज्यामितीय श्रृंखला का योग होना , , और , में जुट जाता है .

यह क्रम "टेल" प्राप्त करने से पहले सिक्का उछालने की अपेक्षित संख्या से मेल खाता है। इस प्रकार संभावना केथ टॉस में पहली बार टेल प्राप्त करने का क्रम इस प्रकार है:

.

इसलिए, टॉस की अपेक्षित संख्या दी गई है

.

संदर्भ

  1. "Arithmetic-Geometric Progression | Brilliant Math & Science Wiki". brilliant.org (in English). Retrieved 2021-04-21.
  2. Swain, Stuart G. (2018). "Proof Without Words: Gabriel's Staircase". Mathematics Magazine. 67 (3): 209–209. doi:10.1080/0025570X.1994.11996214. ISSN 0025-570X.
  3. Edgar, Tom (2018). "सीढ़ी श्रृंखला". Mathematics Magazine. 91 (2): 92–95. doi:10.1080/0025570X.2017.1415584. ISSN 0025-570X.
  4. 4.0 4.1 4.2 K. F. Riley; M. P. Hobson; S. J. Bence (2010). भौतिकी और इंजीनियरिंग के लिए गणितीय तरीके (3rd ed.). Cambridge University Press. p. 118. ISBN 978-0-521-86153-3.

अग्रिम पठन