वॉल्श फलन: Difference between revisions
m (Deepak moved page वाल्श समारोह to वाल्श फंक्शन without leaving a redirect) |
No edit summary |
||
Line 1: | Line 1: | ||
[[File:Natural and sequency ordered Walsh 16.svg|thumb|480px|क्रम 16 का प्राकृतिक क्रमबद्ध और अनुक्रम क्रमबद्ध [[हैडामर्ड मैट्रिक्स]]।<br>विशेष रूप से पूर्व को आमतौर पर [[वॉल्श मैट्रिक्स]] कहा जाता है।<br>दोनों में पंक्तियों (और स्तंभों) के रूप में क्रम 16 के 16 वॉल्श फ़ंक्शन शामिल हैं।<br>सही मैट्रिक्स में, प्रति पंक्ति चिह्न परिवर्तन की संख्या लगातार है।]]गणित में, विशेष रूप से [[हार्मोनिक विश्लेषण]] में, वॉल्श फ़ंक्शंस | [[File:Natural and sequency ordered Walsh 16.svg|thumb|480px|क्रम 16 का प्राकृतिक क्रमबद्ध और अनुक्रम क्रमबद्ध [[हैडामर्ड मैट्रिक्स]]।<br>विशेष रूप से पूर्व को आमतौर पर [[वॉल्श मैट्रिक्स]] कहा जाता है।<br>दोनों में पंक्तियों (और स्तंभों) के रूप में क्रम 16 के 16 वॉल्श फ़ंक्शन शामिल हैं।<br>सही मैट्रिक्स में, प्रति पंक्ति चिह्न परिवर्तन की संख्या लगातार है।]]गणित में, विशेष रूप से [[हार्मोनिक विश्लेषण]] में, वॉल्श फ़ंक्शंस [[पूर्ण ऑर्थोगोनल प्रणाली]] बनाते हैं जिसका उपयोग किसी भी अलग फ़ंक्शन का प्रतिनिधित्व करने के लिए किया जा सकता है - जैसे त्रिकोणमितीय फ़ंक्शंस का उपयोग [[फूरियर विश्लेषण]] में किसी भी निरंतर फ़ंक्शन का प्रतिनिधित्व करने के लिए किया जा सकता है।<ref>{{harvnb|Walsh|1923}}.</ref> इस प्रकार उन्हें [[इकाई अंतराल]] पर त्रिकोणमितीय कार्यों की निरंतर, एनालॉग प्रणाली के अलग, डिजिटल समकक्ष के रूप में देखा जा सकता है। लेकिन साइन और कोसाइन फ़ंक्शंस के विपरीत, जो निरंतर फ़ंक्शन हैं, वॉल्श फ़ंक्शंस टुकड़े-टुकड़े स्थिर हैं। वे डायडिक परिमेय द्वारा परिभाषित उप-अंतराल पर केवल -1 और +1 मान लेते हैं। | ||
वॉल्श कार्यों की प्रणाली को वॉल्श प्रणाली के रूप में जाना जाता है। यह ऑर्थोगोनल फ़ंक्शंस की रेडेमाकर प्रणाली का विस्तार है।<ref>{{harvnb|Fine|1949}}.</ref> | वॉल्श कार्यों की प्रणाली को वॉल्श प्रणाली के रूप में जाना जाता है। यह ऑर्थोगोनल फ़ंक्शंस की रेडेमाकर प्रणाली का विस्तार है।<ref>{{harvnb|Fine|1949}}.</ref> | ||
Line 22: | Line 22: | ||
नोटिस जो <math> W_{2^m} </math> वास्तव में Rademacher प्रणाली r है<sub>m</sub>. | नोटिस जो <math> W_{2^m} </math> वास्तव में Rademacher प्रणाली r है<sub>m</sub>. | ||
इस प्रकार, रैडेमाकर प्रणाली वॉल्श प्रणाली का | इस प्रकार, रैडेमाकर प्रणाली वॉल्श प्रणाली का उपप्रणाली है। इसके अलावा, प्रत्येक वॉल्श फ़ंक्शन Rademacher फ़ंक्शन का उत्पाद है: | ||
:<math> W_k(x) = \prod_{j=0}^\infty r_j(x)^{k_j} </math> | :<math> W_k(x) = \prod_{j=0}^\infty r_j(x)^{k_j} </math> | ||
Line 29: | Line 29: | ||
==वॉल्श फ़ंक्शंस और त्रिकोणमितीय फ़ंक्शंस के बीच तुलना== | ==वॉल्श फ़ंक्शंस और त्रिकोणमितीय फ़ंक्शंस के बीच तुलना== | ||
वॉल्श फ़ंक्शंस और त्रिकोणमितीय फ़ंक्शंस दोनों प्रणालियाँ हैं जो फ़ंक्शंस का | वॉल्श फ़ंक्शंस और त्रिकोणमितीय फ़ंक्शंस दोनों प्रणालियाँ हैं जो फ़ंक्शंस का पूर्ण, [[लंबनात्मकता]] सेट, [[ हिल्बर्ट स्थान ]] में [[ऑर्थोनॉर्मल आधार]] बनाती हैं। <math> L^2[0,1] </math> इकाई अंतराल पर [[वर्ग-अभिन्न]] कार्यों का। [[ उसकी तरंगिका ]] या फ्रैंकलिन प्रणाली के विपरीत, दोनों बंधे हुए कार्यों की प्रणालियाँ हैं। | ||
त्रिकोणमिति और वॉल्श दोनों प्रणालियाँ इकाई अंतराल से वास्तविक रेखा तक आवधिकता द्वारा प्राकृतिक विस्तार को स्वीकार करती हैं <math>\mathbb R </math>. इसके अलावा, इकाई अंतराल (फूरियर श्रृंखला) और वास्तविक रेखा ([[फूरियर रूपांतरण]]) पर दोनों फूरियर विश्लेषण में उनके डिजिटल समकक्षों को वॉल्श प्रणाली के माध्यम से परिभाषित किया गया है, वॉल्श श्रृंखला फूरियर श्रृंखला के अनुरूप है, और हेडमार्ड फूरियर ट्रांसफॉर्म के अनुरूप है। | त्रिकोणमिति और वॉल्श दोनों प्रणालियाँ इकाई अंतराल से वास्तविक रेखा तक आवधिकता द्वारा प्राकृतिक विस्तार को स्वीकार करती हैं <math>\mathbb R </math>. इसके अलावा, इकाई अंतराल (फूरियर श्रृंखला) और वास्तविक रेखा ([[फूरियर रूपांतरण]]) पर दोनों फूरियर विश्लेषण में उनके डिजिटल समकक्षों को वॉल्श प्रणाली के माध्यम से परिभाषित किया गया है, वॉल्श श्रृंखला फूरियर श्रृंखला के अनुरूप है, और हेडमार्ड फूरियर ट्रांसफॉर्म के अनुरूप है। | ||
Line 35: | Line 35: | ||
==गुण== | ==गुण== | ||
वॉल्श प्रणाली <math> \{W_k\}, k \in \mathbb N_0 </math> | वॉल्श प्रणाली <math> \{W_k\}, k \in \mathbb N_0 </math> क्रमविनिमेय गुणात्मक असतत समूह समरूपी है <math> \coprod_{n=0}^\infty \mathbb Z / 2\mathbb Z </math>, [[कैंटर क्यूब]] का [[पोंट्रीगिन द्वंद्व]] <math> \prod_{n=0}^\infty \mathbb Z / 2\mathbb Z </math>. इसकी पहचान है <math> W_0 </math>, और प्रत्येक तत्व क्रम दो का है (अर्थात् स्व-प्रतिलोम)। | ||
वॉल्श प्रणाली हिल्बर्ट अंतरिक्ष का | वॉल्श प्रणाली हिल्बर्ट अंतरिक्ष का ऑर्थोनोर्मलिटी आधार है <math> L^2[0,1] </math>. रूढ़िवादिता का अर्थ है | ||
:<math> \int_0^1 W_k(x)W_l(x)dx = \delta_{kl} </math>, | :<math> \int_0^1 W_k(x)W_l(x)dx = \delta_{kl} </math>, | ||
Line 46: | Line 46: | ||
यह पता चला है कि हर किसी के लिए <math> f \in L^2[0,1] </math>, श्रृंखला <math> \sum_{k=0}^\infty f_k W_k(x) </math> में जुटना <math> f(x) </math> लगभग हर के लिए <math> x \in [0,1] </math>. | यह पता चला है कि हर किसी के लिए <math> f \in L^2[0,1] </math>, श्रृंखला <math> \sum_{k=0}^\infty f_k W_k(x) </math> में जुटना <math> f(x) </math> लगभग हर के लिए <math> x \in [0,1] </math>. | ||
वॉल्श प्रणाली (वॉल्श-पेली अंकन में) | वॉल्श प्रणाली (वॉल्श-पेली अंकन में) शॉडर आधार बनाती है <math> L^p[0,1] </math>, <math> 1< p < \infty </math>. ध्यान दें कि, हार वेवलेट के विपरीत, और त्रिकोणमितीय प्रणाली की तरह, यह आधार शॉडर आधार नहीं है, न ही सिस्टम शॉडर आधार है <math> L^1[0,1] </math>. | ||
==सामान्यीकरण== | ==सामान्यीकरण== | ||
Line 52: | Line 52: | ||
===वॉल्श-वर्लेगर सिस्टम=== | ===वॉल्श-वर्लेगर सिस्टम=== | ||
देर <math> \mathbb D = \prod_{n=1}^\infty \mathbb Z / 2\mathbb Z </math> हार माप और लेट से संपन्न कॉम्पैक्ट कैंटर क्यूब बनें <math> \hat {\mathbb D} = \coprod_{n=1}^\infty \mathbb Z / 2\mathbb Z </math> [[चरित्र (गणित)]] का इसका असतत समूह बनें। घटक <math> \hat {\mathbb D} </math> वॉल्श फ़ंक्शंस के साथ आसानी से पहचाने जाते हैं। बेशक, पात्रों को परिभाषित किया गया है <math> \mathbb D </math> जबकि वॉल्श फ़ंक्शंस को इकाई अंतराल पर परिभाषित किया गया है, लेकिन चूंकि इन माप स्थानों के बीच | देर <math> \mathbb D = \prod_{n=1}^\infty \mathbb Z / 2\mathbb Z </math> हार माप और लेट से संपन्न कॉम्पैक्ट कैंटर क्यूब बनें <math> \hat {\mathbb D} = \coprod_{n=1}^\infty \mathbb Z / 2\mathbb Z </math> [[चरित्र (गणित)]] का इसका असतत समूह बनें। घटक <math> \hat {\mathbb D} </math> वॉल्श फ़ंक्शंस के साथ आसानी से पहचाने जाते हैं। बेशक, पात्रों को परिभाषित किया गया है <math> \mathbb D </math> जबकि वॉल्श फ़ंक्शंस को इकाई अंतराल पर परिभाषित किया गया है, लेकिन चूंकि इन माप स्थानों के बीच [[मानक संभाव्यता स्थान]] मौजूद है, इसलिए उन पर मापने योग्य कार्यों को [[आइसोमेट्री]] के माध्यम से पहचाना जाता है। | ||
फिर बुनियादी [[प्रतिनिधित्व सिद्धांत]] वॉल्श प्रणाली की अवधारणा के निम्नलिखित व्यापक सामान्यीकरण का सुझाव देता है। | फिर बुनियादी [[प्रतिनिधित्व सिद्धांत]] वॉल्श प्रणाली की अवधारणा के निम्नलिखित व्यापक सामान्यीकरण का सुझाव देता है। | ||
मनमाना [[बनच स्थान]] के लिए <math> (X,||\cdot||) </math> होने देना <math> \{ R_t \}_{t \in \mathbb D} \subset Aut(X) </math> [[मजबूत ऑपरेटर टोपोलॉजी]], समान रूप से बाध्य वफादार कार्रवाई हो <math> \mathbb D </math> एक्स पर। प्रत्येक के लिए <math> \gamma \in \hat {\mathbb D} </math>, इसके [[eigenspace]] पर विचार करें <math> X_\gamma = \{x\in X : R_t x = \gamma(t)x \} </math>. तब X आइजेनस्पेस का बंद [[रैखिक विस्तार]] है: <math> X = \overline{\operatorname{Span}}(X_\gamma, \gamma \in \hat {\mathbb D}) </math>. मान लें कि प्रत्येक ईजेनस्पेस एक-आयामी है और तत्व चुनें <math> w_\gamma \in X_\gamma </math> ऐसा है कि <math> ||w_\gamma||=1 </math>. फिर सिस्टम <math> \{w_\gamma\}_{\gamma \in \hat {\mathbb D}} </math>, या वर्णों के वॉल्श-पेली अंकन में समान प्रणाली <math> \{w_k\}_{k \in {\mathbb N}_0} </math> क्रिया से सम्बंधित सामान्यीकृत वॉल्श प्रणाली कहलाती है <math> \{ R_t \}_{t \in \mathbb D} </math>. शास्त्रीय वॉल्श प्रणाली विशेष मामला बन जाती है, अर्थात्, के लिए | |||
:<math> R_t: x=\sum_{j=1}^\infty x_j2^{-j} \mapsto \sum_{j=1}^\infty (x_j \oplus t_j)2^{-j} </math> | :<math> R_t: x=\sum_{j=1}^\infty x_j2^{-j} \mapsto \sum_{j=1}^\infty (x_j \oplus t_j)2^{-j} </math> | ||
कहाँ <math> \oplus </math> अतिरिक्त मॉड्यूलो 2 है। | कहाँ <math> \oplus </math> अतिरिक्त मॉड्यूलो 2 है। | ||
1990 के दशक की शुरुआत में, सर्ज फर्लेगर और फ्योडोर सुकोचेव ने दिखाया कि बानाच स्पेस (तथाकथित यूएमडी स्पेस) की | 1990 के दशक की शुरुआत में, सर्ज फर्लेगर और फ्योडोर सुकोचेव ने दिखाया कि बानाच स्पेस (तथाकथित यूएमडी स्पेस) की विस्तृत श्रेणी में <ref>{{harvnb|Pisier|2011}}.</ref>) सामान्यीकृत वॉल्श प्रणालियों में शास्त्रीय प्रणाली के समान कई गुण होते हैं: वे शॉडर आधार बनाते हैं <ref>{{harvnb|Sukochev|Ferleger|1995}}.</ref> और समान परिमित आयामी अपघटन <ref>{{harvnb|Ferleger|Sukochev|1996}}.</ref> अंतरिक्ष में, यादृच्छिक बिना शर्त अभिसरण की संपत्ति है।<ref>{{harvnb|Ferleger|1998}}.</ref> | ||
सामान्यीकृत वॉल्श प्रणाली का | सामान्यीकृत वॉल्श प्रणाली का महत्वपूर्ण उदाहरण गैर-कम्यूटेटिव एल में फर्मियन वॉल्श प्रणाली है<sup>पी</sup>हाइपरफ़िनिट प्रकार II कारक से जुड़े स्थान। | ||
===फर्मियन वॉल्श प्रणाली=== | ===फर्मियन वॉल्श प्रणाली=== | ||
फ़र्मियन वॉल्श प्रणाली शास्त्रीय वॉल्श प्रणाली का | फ़र्मियन वॉल्श प्रणाली शास्त्रीय वॉल्श प्रणाली का गैर-कम्यूटेटिव या क्वांटम एनालॉग है। बाद वाले के विपरीत, इसमें ऑपरेटर होते हैं, फ़ंक्शंस नहीं। फिर भी, दोनों प्रणालियाँ कई महत्वपूर्ण गुण साझा करती हैं, उदाहरण के लिए, दोनों संबंधित हिल्बर्ट स्थान में ऑर्थोनॉर्मल आधार बनाते हैं, या संबंधित सममित स्थानों में शॉडर आधार बनाते हैं। फ़र्मियन वॉल्श प्रणाली के तत्वों को ''वॉल्श ऑपरेटर'' कहा जाता है। | ||
सिस्टम के नाम में ''[[फर्मिअन]]'' शब्द को इस तथ्य से समझाया गया है कि आवरण ऑपरेटर स्थान, तथाकथित हाइपरफ़िनिट प्रकार II कारक <math> \mathcal R</math>, विशिष्ट [[स्पिन (भौतिकी)]] की अनगिनत अनंत संख्या की प्रणाली के अवलोकन योग्य स्थान के रूप में देखा जा सकता है <math> \frac{1}{2} </math> फर्मियन्स. प्रत्येक रैडेमाकर फ़ंक्शन ऑपरेटर केवल | सिस्टम के नाम में ''[[फर्मिअन]]'' शब्द को इस तथ्य से समझाया गया है कि आवरण ऑपरेटर स्थान, तथाकथित हाइपरफ़िनिट प्रकार II कारक <math> \mathcal R</math>, विशिष्ट [[स्पिन (भौतिकी)]] की अनगिनत अनंत संख्या की प्रणाली के अवलोकन योग्य स्थान के रूप में देखा जा सकता है <math> \frac{1}{2} </math> फर्मियन्स. प्रत्येक रैडेमाकर फ़ंक्शन ऑपरेटर केवल विशेष फ़र्मियन समन्वय पर कार्य करता है, और वहां यह [[पॉल के मैट्रिक्स]] है। इसकी पहचान किसी अक्ष के साथ उस फ़र्मिअन के अवलोकनीय मापने वाले स्पिन घटक से की जा सकती है <math> \{x,y,z\}</math> स्पिन स्पेस में. इस प्रकार, वॉल्श ऑपरेटर फ़र्मियन के उपसमूह के स्पिन को मापता है, प्रत्येक अपनी धुरी पर। | ||
===विलेंकिन प्रणाली=== | ===विलेंकिन प्रणाली=== | ||
क्रम ठीक करें <math>\alpha = (\alpha_1,\alpha_2,...)</math> पूर्णांकों के साथ <math>\alpha_k \geq 2, k=1,2,\dots</math> और जाने <math> \mathbb G = \mathbb G_\alpha = \prod_{n=1}^\infty \mathbb Z / \alpha_k\mathbb Z </math> [[उत्पाद टोपोलॉजी]] और सामान्यीकृत हार माप से संपन्न। परिभाषित करना <math> A_0 = 1 </math> और <math> A_k = \alpha_1 \alpha_2 \dots \alpha_{k-1} </math>. प्रत्येक <math> x \in \mathbb G </math> वास्तविक संख्या से जोड़ा जा सकता है | |||
:<math> \left|x\right| = \sum_{k=1}^{\infty} \frac{x_k}{A_{k}} \in \left[0,1\right].</math> | :<math> \left|x\right| = \sum_{k=1}^{\infty} \frac{x_k}{A_{k}} \in \left[0,1\right].</math> | ||
यह पत्राचार बीच में | यह पत्राचार बीच में मॉड्यूल शून्य समरूपता है <math> \mathbb G </math> और इकाई अंतराल. यह मानदंड को भी परिभाषित करता है जो टोपोलॉजी उत्पन्न करता है <math> \mathbb G </math>. के लिए <math>k=1,2,\dots</math>, होने देना <math>\rho_k: \mathbb G \to \mathbb C</math> कहाँ | ||
:<math> \rho_k(x) = \exp(i\frac{2 \pi x_k}{\alpha_k}) = \cos(\frac{2 \pi x_k}{\alpha_k}) + i \sin(\frac{2 \pi x_k}{\alpha_k}).</math> | :<math> \rho_k(x) = \exp(i\frac{2 \pi x_k}{\alpha_k}) = \cos(\frac{2 \pi x_k}{\alpha_k}) + i \sin(\frac{2 \pi x_k}{\alpha_k}).</math> | ||
सेट <math>\{\rho_k\}</math> सामान्यीकृत रेडमेकर प्रणाली कहलाती है। विलेनकिन प्रणाली समूह है <math> \hat {\mathbb G} = \coprod_{n=1}^\infty \mathbb Z / \alpha_k \mathbb Z </math> (जटिल-मूल्यवान) वर्णों का <math>\mathbb G</math>, जो सभी परिमित उत्पाद हैं <math>\{\rho_k\}</math>. प्रत्येक गैर-नकारात्मक पूर्णांक के लिए <math>n</math> | सेट <math>\{\rho_k\}</math> सामान्यीकृत रेडमेकर प्रणाली कहलाती है। विलेनकिन प्रणाली समूह है <math> \hat {\mathbb G} = \coprod_{n=1}^\infty \mathbb Z / \alpha_k \mathbb Z </math> (जटिल-मूल्यवान) वर्णों का <math>\mathbb G</math>, जो सभी परिमित उत्पाद हैं <math>\{\rho_k\}</math>. प्रत्येक गैर-नकारात्मक पूर्णांक के लिए <math>n</math> अनोखा क्रम है <math> n_0, n_1, \dots </math> ऐसा है कि <math> 0 \leq n_k < \alpha_{k+1}, k=0,1,2,\dots</math> और | ||
:<math> n = \sum_{k=0}^{\infty} n_k A_k. </math> | :<math> n = \sum_{k=0}^{\infty} n_k A_k. </math> | ||
Line 86: | Line 86: | ||
विशेषकर, यदि <math>\alpha_k = 2, k=1,2...</math>, तब <math> \mathbb G </math> कैंटर समूह है और <math> \hat {\mathbb G} = \left\{\chi_n | n=0,1,\dots\right\} </math> (वास्तविक-मूल्यवान) वॉल्श-पेली प्रणाली है। | विशेषकर, यदि <math>\alpha_k = 2, k=1,2...</math>, तब <math> \mathbb G </math> कैंटर समूह है और <math> \hat {\mathbb G} = \left\{\chi_n | n=0,1,\dots\right\} </math> (वास्तविक-मूल्यवान) वॉल्श-पेली प्रणाली है। | ||
विलेनकिन प्रणाली | विलेनकिन प्रणाली पूर्ण ऑर्थोनॉर्मल प्रणाली है <math> \mathbb G </math> और कंपकंपी आधार बनाता है <math> L^p(\mathbb G, \mathbb C) </math>, <math> 1 < p < \infty </math>.<ref>{{harvnb|Young|1976}}</ref> | ||
===बाइनरी सतह=== | ===बाइनरी सतह=== | ||
रोमनुके ने दिखाया कि वॉल्श फ़ंक्शंस को दो चर के फ़ंक्शन के | रोमनुके ने दिखाया कि वॉल्श फ़ंक्शंस को दो चर के फ़ंक्शन के विशेष मामले में बाइनरी सतहों पर सामान्यीकृत किया जा सकता है।<ref>{{harvnb|Romanuke|2010a}}.</ref> ऑर्थोनॉर्मल बाइनरी फ़ंक्शंस के आठ वॉल्श-जैसे आधार भी मौजूद हैं,<ref>{{harvnb|Romanuke|2010b}}.</ref> जिसकी संरचना अनियमित है (वॉल्श कार्यों की संरचना के विपरीत)। इन आठ आधारों को सतहों पर भी सामान्यीकृत किया जाता है (दो चर के कार्य के मामले में)। यह सिद्ध हो गया है कि जब उचित गुणांकों के साथ भारित किया जाता है, तो टुकड़े-टुकड़े-निरंतर कार्यों को नौ आधारों (वाल्श कार्यों के आधार सहित) में से प्रत्येक के भीतर बाइनरी कार्यों के सीमित योग के रूप में दर्शाया जा सकता है।<ref>{{harvnb|Romanuke|2010c}}.</ref> | ||
Revision as of 18:20, 9 July 2023
गणित में, विशेष रूप से हार्मोनिक विश्लेषण में, वॉल्श फ़ंक्शंस पूर्ण ऑर्थोगोनल प्रणाली बनाते हैं जिसका उपयोग किसी भी अलग फ़ंक्शन का प्रतिनिधित्व करने के लिए किया जा सकता है - जैसे त्रिकोणमितीय फ़ंक्शंस का उपयोग फूरियर विश्लेषण में किसी भी निरंतर फ़ंक्शन का प्रतिनिधित्व करने के लिए किया जा सकता है।[1] इस प्रकार उन्हें इकाई अंतराल पर त्रिकोणमितीय कार्यों की निरंतर, एनालॉग प्रणाली के अलग, डिजिटल समकक्ष के रूप में देखा जा सकता है। लेकिन साइन और कोसाइन फ़ंक्शंस के विपरीत, जो निरंतर फ़ंक्शन हैं, वॉल्श फ़ंक्शंस टुकड़े-टुकड़े स्थिर हैं। वे डायडिक परिमेय द्वारा परिभाषित उप-अंतराल पर केवल -1 और +1 मान लेते हैं।
वॉल्श कार्यों की प्रणाली को वॉल्श प्रणाली के रूप में जाना जाता है। यह ऑर्थोगोनल फ़ंक्शंस की रेडेमाकर प्रणाली का विस्तार है।[2] वॉल्श फ़ंक्शंस, वॉल्श प्रणाली, वॉल्श श्रृंखला,[3] और तेज़ वॉल्श-हैडमार्ड परिवर्तन का नाम अमेरिकी गणितज्ञ जोसेफ एल. वॉल्श के नाम पर रखा गया है। वे अंकीय संकेत प्रक्रिया के दौरान भौतिकी और इंजीनियरिंग में विभिन्न अनुप्रयोग पाते हैं।
ऐतिहासिक रूप से, वॉल्श फ़ंक्शंस के विभिन्न अंकों का उपयोग किया गया है; उनमें से कोई भी दूसरे से विशेष रूप से श्रेष्ठ नहीं है। यह लेख वॉल्श-पेली अंकन का उपयोग करता है।
परिभाषा
हम वॉल्श फ़ंक्शंस के अनुक्रम को परिभाषित करते हैं , निम्नलिखित नुसार।
किसी भी प्राकृत संख्या k और वास्तविक संख्या के लिए , होने देना
- के बाइनरी प्रतिनिधित्व में जेवें बिट बनें, से शुरू करें सबसे कम महत्वपूर्ण बिट के रूप में, और
- के भिन्नात्मक बाइनरी प्रतिनिधित्व में jth बिट हो , प्रारंभ स्थल सबसे महत्वपूर्ण भिन्नात्मक बिट के रूप में।
फिर, परिभाषा के अनुसार
विशेष रूप से, अंतराल पर हर जगह, चूँकि k के सभी बिट शून्य हैं।
नोटिस जो वास्तव में Rademacher प्रणाली r हैm. इस प्रकार, रैडेमाकर प्रणाली वॉल्श प्रणाली का उपप्रणाली है। इसके अलावा, प्रत्येक वॉल्श फ़ंक्शन Rademacher फ़ंक्शन का उत्पाद है:
वॉल्श फ़ंक्शंस और त्रिकोणमितीय फ़ंक्शंस के बीच तुलना
वॉल्श फ़ंक्शंस और त्रिकोणमितीय फ़ंक्शंस दोनों प्रणालियाँ हैं जो फ़ंक्शंस का पूर्ण, लंबनात्मकता सेट, हिल्बर्ट स्थान में ऑर्थोनॉर्मल आधार बनाती हैं। इकाई अंतराल पर वर्ग-अभिन्न कार्यों का। उसकी तरंगिका या फ्रैंकलिन प्रणाली के विपरीत, दोनों बंधे हुए कार्यों की प्रणालियाँ हैं।
त्रिकोणमिति और वॉल्श दोनों प्रणालियाँ इकाई अंतराल से वास्तविक रेखा तक आवधिकता द्वारा प्राकृतिक विस्तार को स्वीकार करती हैं . इसके अलावा, इकाई अंतराल (फूरियर श्रृंखला) और वास्तविक रेखा (फूरियर रूपांतरण) पर दोनों फूरियर विश्लेषण में उनके डिजिटल समकक्षों को वॉल्श प्रणाली के माध्यम से परिभाषित किया गया है, वॉल्श श्रृंखला फूरियर श्रृंखला के अनुरूप है, और हेडमार्ड फूरियर ट्रांसफॉर्म के अनुरूप है।
गुण
वॉल्श प्रणाली क्रमविनिमेय गुणात्मक असतत समूह समरूपी है , कैंटर क्यूब का पोंट्रीगिन द्वंद्व . इसकी पहचान है , और प्रत्येक तत्व क्रम दो का है (अर्थात् स्व-प्रतिलोम)।
वॉल्श प्रणाली हिल्बर्ट अंतरिक्ष का ऑर्थोनोर्मलिटी आधार है . रूढ़िवादिता का अर्थ है
- ,
और आधार होने का अर्थ है कि यदि, प्रत्येक के लिए , हमलोग तैयार हैं तब
यह पता चला है कि हर किसी के लिए , श्रृंखला में जुटना लगभग हर के लिए .
वॉल्श प्रणाली (वॉल्श-पेली अंकन में) शॉडर आधार बनाती है , . ध्यान दें कि, हार वेवलेट के विपरीत, और त्रिकोणमितीय प्रणाली की तरह, यह आधार शॉडर आधार नहीं है, न ही सिस्टम शॉडर आधार है .
सामान्यीकरण
वॉल्श-वर्लेगर सिस्टम
देर हार माप और लेट से संपन्न कॉम्पैक्ट कैंटर क्यूब बनें चरित्र (गणित) का इसका असतत समूह बनें। घटक वॉल्श फ़ंक्शंस के साथ आसानी से पहचाने जाते हैं। बेशक, पात्रों को परिभाषित किया गया है जबकि वॉल्श फ़ंक्शंस को इकाई अंतराल पर परिभाषित किया गया है, लेकिन चूंकि इन माप स्थानों के बीच मानक संभाव्यता स्थान मौजूद है, इसलिए उन पर मापने योग्य कार्यों को आइसोमेट्री के माध्यम से पहचाना जाता है।
फिर बुनियादी प्रतिनिधित्व सिद्धांत वॉल्श प्रणाली की अवधारणा के निम्नलिखित व्यापक सामान्यीकरण का सुझाव देता है।
मनमाना बनच स्थान के लिए होने देना मजबूत ऑपरेटर टोपोलॉजी, समान रूप से बाध्य वफादार कार्रवाई हो एक्स पर। प्रत्येक के लिए , इसके eigenspace पर विचार करें . तब X आइजेनस्पेस का बंद रैखिक विस्तार है: . मान लें कि प्रत्येक ईजेनस्पेस एक-आयामी है और तत्व चुनें ऐसा है कि . फिर सिस्टम , या वर्णों के वॉल्श-पेली अंकन में समान प्रणाली क्रिया से सम्बंधित सामान्यीकृत वॉल्श प्रणाली कहलाती है . शास्त्रीय वॉल्श प्रणाली विशेष मामला बन जाती है, अर्थात्, के लिए
कहाँ अतिरिक्त मॉड्यूलो 2 है।
1990 के दशक की शुरुआत में, सर्ज फर्लेगर और फ्योडोर सुकोचेव ने दिखाया कि बानाच स्पेस (तथाकथित यूएमडी स्पेस) की विस्तृत श्रेणी में [4]) सामान्यीकृत वॉल्श प्रणालियों में शास्त्रीय प्रणाली के समान कई गुण होते हैं: वे शॉडर आधार बनाते हैं [5] और समान परिमित आयामी अपघटन [6] अंतरिक्ष में, यादृच्छिक बिना शर्त अभिसरण की संपत्ति है।[7] सामान्यीकृत वॉल्श प्रणाली का महत्वपूर्ण उदाहरण गैर-कम्यूटेटिव एल में फर्मियन वॉल्श प्रणाली हैपीहाइपरफ़िनिट प्रकार II कारक से जुड़े स्थान।
फर्मियन वॉल्श प्रणाली
फ़र्मियन वॉल्श प्रणाली शास्त्रीय वॉल्श प्रणाली का गैर-कम्यूटेटिव या क्वांटम एनालॉग है। बाद वाले के विपरीत, इसमें ऑपरेटर होते हैं, फ़ंक्शंस नहीं। फिर भी, दोनों प्रणालियाँ कई महत्वपूर्ण गुण साझा करती हैं, उदाहरण के लिए, दोनों संबंधित हिल्बर्ट स्थान में ऑर्थोनॉर्मल आधार बनाते हैं, या संबंधित सममित स्थानों में शॉडर आधार बनाते हैं। फ़र्मियन वॉल्श प्रणाली के तत्वों को वॉल्श ऑपरेटर कहा जाता है।
सिस्टम के नाम में फर्मिअन शब्द को इस तथ्य से समझाया गया है कि आवरण ऑपरेटर स्थान, तथाकथित हाइपरफ़िनिट प्रकार II कारक , विशिष्ट स्पिन (भौतिकी) की अनगिनत अनंत संख्या की प्रणाली के अवलोकन योग्य स्थान के रूप में देखा जा सकता है फर्मियन्स. प्रत्येक रैडेमाकर फ़ंक्शन ऑपरेटर केवल विशेष फ़र्मियन समन्वय पर कार्य करता है, और वहां यह पॉल के मैट्रिक्स है। इसकी पहचान किसी अक्ष के साथ उस फ़र्मिअन के अवलोकनीय मापने वाले स्पिन घटक से की जा सकती है स्पिन स्पेस में. इस प्रकार, वॉल्श ऑपरेटर फ़र्मियन के उपसमूह के स्पिन को मापता है, प्रत्येक अपनी धुरी पर।
विलेंकिन प्रणाली
क्रम ठीक करें पूर्णांकों के साथ और जाने उत्पाद टोपोलॉजी और सामान्यीकृत हार माप से संपन्न। परिभाषित करना और . प्रत्येक वास्तविक संख्या से जोड़ा जा सकता है
यह पत्राचार बीच में मॉड्यूल शून्य समरूपता है और इकाई अंतराल. यह मानदंड को भी परिभाषित करता है जो टोपोलॉजी उत्पन्न करता है . के लिए , होने देना कहाँ
सेट सामान्यीकृत रेडमेकर प्रणाली कहलाती है। विलेनकिन प्रणाली समूह है (जटिल-मूल्यवान) वर्णों का , जो सभी परिमित उत्पाद हैं . प्रत्येक गैर-नकारात्मक पूर्णांक के लिए अनोखा क्रम है ऐसा है कि और
तब कहाँ
विशेषकर, यदि , तब कैंटर समूह है और (वास्तविक-मूल्यवान) वॉल्श-पेली प्रणाली है।
विलेनकिन प्रणाली पूर्ण ऑर्थोनॉर्मल प्रणाली है और कंपकंपी आधार बनाता है , .[8]
बाइनरी सतह
रोमनुके ने दिखाया कि वॉल्श फ़ंक्शंस को दो चर के फ़ंक्शन के विशेष मामले में बाइनरी सतहों पर सामान्यीकृत किया जा सकता है।[9] ऑर्थोनॉर्मल बाइनरी फ़ंक्शंस के आठ वॉल्श-जैसे आधार भी मौजूद हैं,[10] जिसकी संरचना अनियमित है (वॉल्श कार्यों की संरचना के विपरीत)। इन आठ आधारों को सतहों पर भी सामान्यीकृत किया जाता है (दो चर के कार्य के मामले में)। यह सिद्ध हो गया है कि जब उचित गुणांकों के साथ भारित किया जाता है, तो टुकड़े-टुकड़े-निरंतर कार्यों को नौ आधारों (वाल्श कार्यों के आधार सहित) में से प्रत्येक के भीतर बाइनरी कार्यों के सीमित योग के रूप में दर्शाया जा सकता है।[11]
अरेखीय चरण विस्तार
असतत वॉल्श-हैडामर्ड परिवर्तन के गैर-रेखीय चरण विस्तार विकसित किए गए। यह दिखाया गया कि बेहतर क्रॉस-सहसंबंध गुणों के साथ नॉनलाइनियर चरण आधार कार्य कोड डिवीजन मल्टीपल एक्सेस (सीडीएमए) संचार में पारंपरिक वॉल्श कोड से काफी बेहतर प्रदर्शन करते हैं।[12]
अनुप्रयोग
वॉल्श फ़ंक्शंस के अनुप्रयोग वहां पाए जा सकते हैं जहां डिजिटल प्रतिनिधित्व का उपयोग किया जाता है, जिसमें वाक् पहचान, चिकित्सा और जैविक छवि प्रसंस्करण और डिजिटल होलोग्राफी शामिल हैं।
उदाहरण के लिए, डिजिटल अर्ध-मोंटे कार्लो विधियों के विश्लेषण में तेज़ वॉल्श-हैडमार्ड ट्रांसफॉर्म (एफडब्ल्यूएचटी) का उपयोग किया जा सकता है। रेडियो खगोल विज्ञान में, वॉल्श फ़ंक्शंस एंटीना संकेतों के बीच विद्युत क्रॉसस्टॉक के प्रभाव को कम करने में मदद कर सकते हैं। इन्हें निष्क्रिय एलसीडी पैनलों में एक्स और वाई बाइनरी ड्राइविंग वेवफॉर्म के रूप में भी उपयोग किया जाता है जहां एक्स और वाई के बीच ऑटोसहसंबंध को बंद पिक्सेल के लिए न्यूनतम बनाया जा सकता है।
यह भी देखें
- असतत फूरियर रूपांतरण
- फास्ट फूरियर ट्रांसफॉर्म
- हार्मोनिक विश्लेषण
- ऑर्थोगोनल कार्य
- वॉल्श मैट्रिक्स
- समता कार्य
टिप्पणियाँ
- ↑ Walsh 1923.
- ↑ Fine 1949.
- ↑ Schipp, Wade & Simon 1990.
- ↑ Pisier 2011.
- ↑ Sukochev & Ferleger 1995.
- ↑ Ferleger & Sukochev 1996.
- ↑ Ferleger 1998.
- ↑ Young 1976
- ↑ Romanuke 2010a.
- ↑ Romanuke 2010b.
- ↑ Romanuke 2010c.
- ↑ A.N. Akansu and R. Poluri, "Walsh-Like Nonlinear Phase Orthogonal Codes for Direct Sequence CDMA Communications," IEEE Trans. Signal Process., vol. 55, no. 7, pp. 3800–3806, July 2007.
संदर्भ
- Ferleger, Sergei V. (March 1998). RUC-Systems In Non-Commutative Symmetric Spaces (Technical report). MP-ARC-98-188.
- Ferleger, Sergei V.; Sukochev, Fyodor A. (March 1996). "On the contractibility to a point of the linear groups of reflexive non-commutative Lp-spaces". Mathematical Proceedings of the Cambridge Philosophical Society. 119 (3): 545–560. Bibcode:1996MPCPS.119..545F. doi:10.1017/s0305004100074405.
- Fine, N.J. (1949). "On the Walsh functions". Trans. Amer. Math. Soc. 65 (3): 372–414. doi:10.1090/s0002-9947-1949-0032833-2.
- Pisier, Gilles (2011). Martingales in Banach Spaces (in connection with Type and Cotype). Course IHP (PDF).
- Romanuke, V. V. (2010a). "On the Point of Generalizing the Walsh Functions to Surfaces".
- Romanuke, V. V. (2010b). "Generalization of the Eight Known Orthonormal Bases of Binary Functions to Surfaces".
- Romanuke, V. V. (2010c). "Equidistantly Discrete on the Argument Axis Functions and their Representation in the Orthonormal Bases Series".
- Schipp, Ferenc; Wade, W.R.; Simon, P. (1990). Walsh series. An introduction to dyadic harmonic analysis. Akadémiai Kiadó.
- Sukochev, Fyodor A.; Ferleger, Sergei V. (December 1995). "Harmonic analysis in (UMD)-spaces: Applications to the theory of bases". Mathematical Notes. 58 (6): 1315–1326. doi:10.1007/bf02304891. S2CID 121256402.
- Walsh, J.L. (1923). "A closed set of normal orthogonal functions". Amer. J. Math. 45 (1): 5–24. doi:10.2307/2387224. JSTOR 2387224. S2CID 6131655.
- Young, W.-S. (1976). "Mean convergence of generalized Walsh-Fourier series". Trans. Amer. Math. Soc. 218: 311–320. doi:10.1090/s0002-9947-1976-0394022-8. JSTOR 1997441.
बाहरी संबंध
- "Walsh functions". MathWorld.
- "Walsh functions". Encyclopedia of Mathematics.
- "Walsh system". Encyclopedia of Mathematics.
- "Walsh functions". Stanford Exploration Project.