बहुलता (गणित): Difference between revisions
No edit summary |
m (added Category:Vigyan Ready using HotCat) |
||
Line 67: | Line 67: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 14/11/2022]] | [[Category:Created On 14/11/2022]] | ||
[[Category:Vigyan Ready]] |
Revision as of 15:14, 21 November 2022
गणित में, मल्टीसेट के इकाई की बहुलता मल्टीसेट में दिखाई देने वाली संख्या है। उदाहरण के लिए, किसी दिए गए बिंदु पर किसी दिए गए बहुपद की मूल (फलन के) की संख्या उस मूल की बहुलता है।
अपवादों को निर्दिष्ट किए बिना सही ढंग से गणना करने में सक्षम होने के लिए बहुलता की धारणा महत्वपूर्ण है (उदाहरण के लिए, दो बार गिने जाने वाली दोहरी जड़ें )। इसलिए वाक्यांश, "बहुलता के साथ संचित।
यदि बहुलता की उपेक्षा की जाती है, तो अलग-अलग तत्वों की संख्या को "विशिष्ट अलग-अलग मूल की संख्या" के रूप में गिनकर इस पर जोर दिया जा सकता है। हालाँकि, जब भी एक सेट (मल्टीसेट के विपरीत) बनता है, तो "विशिष्ट" शब्द के उपयोग की आवश्यकता के बिना, बहुलता को स्वचालित रूप से अनदेखा कर दिया जाता है।
हालांकि, जब भी एक सेट (गणित) (मल्टीसेट के विपरीत) बनता है, तो विशिष्ट शब्द के उपयोग की आवश्यकता के बिना, बहुलता को स्वचालित रूप से अनदेखा कर दिया जाता है।
एक प्रमुख कारक की बहुलता
पूर्णांक गुणनखंड में, एक अभाज्य गुणनखंड की बहुलता उसका -adic मूल्यांकन है| उदाहरण के लिए, पूर्णांक का प्रधान गुणनखंड 60 है:
- 60 = 2 × 2 × 3 × 5,
अभाज्य गुणनखंड 2 की बहुलता 2 है, जबकि प्रत्येक अभाज्य गुणनखंड 3 और 5 की बहुलता 1 है। इस प्रकार, 60 में चार प्रमुख कारक हैं जो बहुलता के लिए अनुमति देते हैं, लेकिन केवल तीन अलग-अलग प्रमुख कारक हैं।
एक बहुपद के मूल की बहुलता
मान लीजिए कि एक आधार (फील्ड) है और एक चर में एक बहुपद है जिसके गुणांक में हैं।
एक तत्व
बहुलता का मूल है का यदि कोई बहुपद है ऐसा है कि तथा . यदि , तब a को सरल मूल कहा जाता है। यदि , फिर बहुमूल कहा जाता है।
उदाहरण के लिए, बहुपद 1 और -4 के मूल हैं और इन्हें इस रूप में लिखा जा सकता है . इसका अर्थ है कि 1 बहुलता का मूल है 2, और -4 एक साधारण जड़ है (बहुलता का 1). बीजगणित के मौलिक प्रमेय के माध्यम से, बहुपद के पूर्ण गुणनखंड में जड़ की बहुलता इस जड़ की घटनाओं की संख्या है।
यदि अनेकता का मूल है एक बहुपद का, तो यह बहुलता का मूल है उस बहुपद के व्युत्पन्न का, जब तक कि अंतर्निहित क्षेत्र की विशेषता k का भाजक न हो, जिस स्थिति में कम से कम बहुलता का मूल है व्युत्पन्न है।
बहुपद का विविक्तकर शून्य होता है यदि और केवल यदि बहुपद का एक बहुमूल हो।
बहुमूल के निकट बहुपद फलन का व्यवहार
बहुपद फलन f का आलेख बहुपद के वास्तविक मूलों पर x- अक्ष को स्पर्श करता है। ग्राफ़ f की कई जड़ों पर स्पर्शरेखा है और साधारण जड़ों पर स्पर्शरेखा नहीं है। ग्राफ़ x- अक्ष को विषम बहुलता के मूल से काटता है और सम बहुलता के मूल पर नहीं काटता है।
गैर-शून्य बहुपद समारोह हर जगह गैर ऋणात्मक होता है यदि और केवल अगर इसकी सभी जड़ों में बहुलता होती है और वहां एक मौजूद होता है ऐसा है कि .
प्रतिच्छेदन बहुलता
बीजगणितीय ज्यामिति में, एक बीजीय विविधता की दो उप-किस्मों का प्रतिच्छेदन अपरिमेय किस्म का एक परिमित संघ है। इस तरह के चौराहे के प्रत्येक घटक के लिए एक चौराहे की बहुलता जुड़ी हुई है। यह धारणा स्थानीय संपत्ति इस अर्थ में है कि इसे इस घटक के किसी भी सामान्य बिंदु के पड़ोस में क्या होता है, यह देखकर परिभाषित किया जा सकता है। यह इस प्रकार है कि व्यापकता के क्षति के बिना, हम प्रतिच्छेदन बहुलता को परिभाषित करने के लिए, दो एफ़िन किस्म (एफ़िन स्पेस की उप-किस्में) के प्रतिच्छेदन पर विचार कर सकते हैं।
इस प्रकार, दो एफ़िन विविधता V1 और V2 को देखते हुए, V1 और V2 के प्रतिच्छेदन के एक अलघुकरणीय घटक W पर विचार करें। मान लीजिए d, W का आयाम है, और P, W का कोई सामान्य बिंदु है। P के माध्यम से गुजरने वाली सामान्य स्थिति में d हाइपरप्लेन के साथ W के चौराहे में एक इर्रेड्यूबल घटक होता है जो एकल बिंदु P तक कम हो जाता है। इसलिए, चौराहे के समन्वय वृत्त (रिंग) के इस घटक पर स्थानीय वृत्त (रिंग) में केवल एक प्रमुख आदर्श है, और इसलिए यह एक आर्टिनियन रिंग है। इस प्रकार यह वलय जमीनी क्षेत्र के ऊपर एक परिमित आयामी सदिश स्थान है। इसका आयाम W पर V1 और V2 की प्रतिच्छेदन बहुलता है।
यह परिभाषा हमें बेज़ाउट के प्रमेय और इसके सामान्यीकरणों को सटीक रूप से बताने की अनुमति देती है।
यह परिभाषा निम्नलिखित तरीके से एक बहुपद की जड़ की बहुलता को सामान्यीकृत करती है। बहुपद f की जड़ें एफ़िन लाइन पर स्थित बिंदु हैं, जो बहुपद द्वारा परिभाषित बीजीय सेट के घटक हैं। इस एफाइन सेट का निर्देशांक वलय है जहाँ K एक बीजगणितीय रूप से बंद क्षेत्र है जिसमें f के गुणांक हैं। यदि f का गुणनखंडन है, तो अभाज्य आदर्श पर R का स्थानीय वलय है है यह K के ऊपर एक सदिश समष्टि है, जिसके मूल की बहुलता एक आयाम के रूप में है।
प्रतिच्छेदन बहुलता की यह परिभाषा, जो मूल रूप से जीन पियरे सेरे की अपनी पुस्तक स्थानीय बीजगणित के कारण है, केवल चौराहे के सेट सैद्धांतिक घटकों (जिन्हें पृथक घटक भी कहा जाता है) के लिए काम करती है, एम्बेडेड प्राइम के लिए नहीं हैं। एम्बेडेड प्राइम को संभालने के लिए सिद्धांत विकसित किए गए हैं (विवरण के लिए इंटरसेक्शन सिद्धांत देखें)।
जटिल विश्लेषण में
z0 होलोमॉर्फिक फ़ंक्शन f का मूल बनें, और n को कम से कम धनात्मक पूर्णांक होने दें, nth f का व्युत्पन्न z0पर मूल्यांकन किया गया शून्य से भिन्न है। फिर f के बारे मेंz0 की शक्ति श्रृंखला nth से प्रारम्भ होता है शब्द, और f को बहुलता (या "क्रम") n की मूल कहा जाता है।
हम मेरोमोर्फिक फ़ंक्शन के शून्य और ध्रुवों की बहुलता को भी परिभाषित कर सकते हैं। अगर हमारे पास मेरोमोर्फिक फ़ंक्शन है एक बिंदु z 0 के बारे में g और h के टेलर प्रसार लें, और प्रत्येक में पहला गैर-शून्य पद खोजें (क्रमशः m और n के क्रम को निरूपित करें) फिर यदि m = n, तो बिंदु का मान शून्य नहीं है। यदि तो बिंदु बहुलता का शून्य है यदि , तो बिंदु में बहुलता का ध्रुव है
संदर्भ
- Krantz, S. G. Handbook of Complex Variables. Boston, MA: Birkhäuser, 1999. ISBN 0-8176-4011-8.