सीगल मॉड्यूलर रूप: Difference between revisions
(Created page with "{{short description|Major type of automorphic form in mathematics}} गणित में, सीगल मॉड्यूलर फॉर्म एक प्रमुख प...") |
No edit summary |
||
Line 1: | Line 1: | ||
{{short description|Major type of automorphic form in mathematics}} | {{short description|Major type of automorphic form in mathematics}} | ||
गणित में, सीगल मॉड्यूलर | गणित में, सीगल मॉड्यूलर रूप एक प्रमुख प्रकार का [[ स्वचालित रूप | ऑटोमोर्फिक रूप]] है। ये पारंपरिक दीर्घवृत्तीय [[मॉड्यूलर रूप]] को सामान्यीकृत करते हैं जो [[अण्डाकार वक्र|दीर्घवृत्तीय वक्र]] से निकटता से संबंधित हैं। सीगल मॉड्यूलर रूपों के सिद्धांत में निर्मित समष्टि मैनिफोल्ड्स [[सीगल मॉड्यूलर किस्म|सीगल मॉड्यूलर]] विविध हैं, जो कि एबेलियन विविधो (कुछ अतिरिक्त स्तर की संरचना के साथ) के लिए मॉड्यूलि स्पेस के लिए मूलभूत मॉडल हैं और अलग-अलग समूहों द्वारा ऊपरी आधे समतल के अतिरिक्त सीगल ऊपरी आधे-स्थान के भागफल के रूप में निर्मित किए जाते हैं। | ||
सीगल मॉड्यूलर | सीगल मॉड्यूलर रूप सकारात्मक निश्चित काल्पनिक भाग के साथ [[सममित मैट्रिक्स|सममित आव्यूह]] ''n'' × ''n'' आव्यूह के समुच्चय पर [[होलोमोर्फिक फ़ंक्शन|होलोमोर्फिक फलन]] हैं; प्रपत्रों को ऑटोमोर्फि नियम को पूरा करना होगा। सीगल मॉड्यूलर रूपों को बहुपरिवर्तनीय मॉड्यूलर रूपों के रूप में माना जा सकता है, अथार्त [[कई जटिल चर|कई समष्टि वेरिएबल]] के विशेष कार्यों के रूप में माना जाता है। | ||
सीगल मॉड्यूलर | विश्लेषणात्मक रूप से द्विघात रूपों का अध्ययन करने के उद्देश्य से सीगल मॉड्यूलर रूपों की जांच सबसे पहले कार्ल लुडविग सीगल (1939) द्वारा की गई थी। ये मुख्य रूप से संख्या सिद्धांत की विभिन्न शाखाओं जैसे अंकगणितीय ज्यामिति और दीर्घवृत्तीय सहसंगति में उत्पन्न होते हैं। सीगल मॉड्यूलर रूपों का उपयोग भौतिकी के कुछ क्षेत्रों जैसे अनुरूप क्षेत्र सिद्धांत और स्ट्रिंग सिद्धांत में ब्लैक होल थर्मोडायनामिक्स में भी किया गया है। | ||
==परिभाषा== | ==परिभाषा== | ||
Line 11: | Line 11: | ||
होने देना <math>g, N \in \mathbb{N}</math> और परिभाषित करें | होने देना <math>g, N \in \mathbb{N}</math> और परिभाषित करें | ||
:<math>\mathcal{H}_g=\left\{\tau \in M_{g \times g}(\mathbb{C}) \ \big| \ \tau^{\mathrm{T}}=\tau, \textrm{Im}(\tau) \text{ positive definite} \right\},</math> सीगल ऊपरी आधा स्थान। स्तर | :<math>\mathcal{H}_g=\left\{\tau \in M_{g \times g}(\mathbb{C}) \ \big| \ \tau^{\mathrm{T}}=\tau, \textrm{Im}(\tau) \text{ positive definite} \right\},</math> | ||
:सीगल ऊपरी आधा स्थान। स्तर <math>N</math> के सहानुभूति समूह को परिभाषित करें, जिसे <math>\Gamma_g(N),</math> द्वारा दर्शाया गया है | |||
:<math>\Gamma_g(N)=\left\{ \gamma \in GL_{2g}(\mathbb{Z}) \ \big| \ \gamma^{\mathrm{T}} \begin{pmatrix} 0 & I_g \\ -I_g & 0 \end{pmatrix} \gamma= \begin{pmatrix} 0 & I_g \\ -I_g & 0 \end{pmatrix} , \ \gamma \equiv I_{2g}\mod N\right\},</math> | :<math>\Gamma_g(N)=\left\{ \gamma \in GL_{2g}(\mathbb{Z}) \ \big| \ \gamma^{\mathrm{T}} \begin{pmatrix} 0 & I_g \\ -I_g & 0 \end{pmatrix} \gamma= \begin{pmatrix} 0 & I_g \\ -I_g & 0 \end{pmatrix} , \ \gamma \equiv I_{2g}\mod N\right\},</math> | ||
जहां <math>I_g</math>, <math>g \times g</math> पहचान आव्यूह है। अंत में, चलो | |||
:<math>\rho:\textrm{GL}_g(\mathbb{C}) \rightarrow \textrm{GL}(V)</math> एक [[तर्कसंगत प्रतिनिधित्व]] हो, जहां <math>V</math> एक परिमित-आयामी | :<math>\rho:\textrm{GL}_g(\mathbb{C}) \rightarrow \textrm{GL}(V)</math> एक [[तर्कसंगत प्रतिनिधित्व]] हो, जहां <math>V</math> एक परिमित-आयामी समष्टि [[सदिश स्थल]] है। | ||
===सीगल मॉड्यूलर | ===सीगल मॉड्यूलर रूप === | ||
दिया गया | दिया गया | ||
Line 26: | Line 27: | ||
:<math>(f\big|\gamma)(\tau)=(\rho(C\tau+D))^{-1}f(\gamma\tau).</math> | :<math>(f\big|\gamma)(\tau)=(\rho(C\tau+D))^{-1}f(\gamma\tau).</math> | ||
फिर एक होलोमोर्फिक | फिर एक होलोमोर्फिक फलन | ||
:<math>f:\mathcal{H}_g \rightarrow V</math> डिग्री | :<math>f:\mathcal{H}_g \rightarrow V</math> | ||
: | |||
:डिग्री <math>g</math> (कभी-कभी जीनस भी कहा जाता है), वजन <math>\rho</math>, और स्तर <math>N</math> का सीगल मॉड्यूलर रूप है यदि | |||
:<math>(f\big|\gamma)=f</math> | :<math>(f\big|\gamma)=f</math> | ||
सभी के लिए <math>\gamma \in \Gamma_g(N)</math>. | : | ||
सभी के लिए <math>\gamma \in \Gamma_g(N)</math>. इस स्थिति में कि <math>g=1</math>, हमें आगे यह भी आवश्यक है कि <math>f</math> 'अनंत पर' होलोमोर्फिक हो और नीचे बताए गए कोएचर सिद्धांत के कारण यह धारणा <math>g>1</math> के लिए आवश्यक नहीं है। वजन <math>\rho</math>, डिग्री <math>g</math>, और स्तर <math>N</math> सीगल मॉड्यूलर रूपों के स्थान को निरूपित करें | |||
:<math>M_{\rho}(\Gamma_g(N)).</math> | :<math>M_{\rho}(\Gamma_g(N)).</math> | ||
Line 39: | Line 42: | ||
==उदाहरण== | ==उदाहरण== | ||
सीगल मॉड्यूलर | सीगल मॉड्यूलर रूप के निर्माण की कुछ विधियों में सम्मिलित हैं: | ||
*आइसेनस्टीन श्रृंखला | *आइसेनस्टीन श्रृंखला | ||
*जालकों के थीटा कार्य (संभवतः बहु-हार्मोनिक बहुपद के साथ) | *जालकों के थीटा कार्य (संभवतः बहु-हार्मोनिक बहुपद के साथ) | ||
Line 45: | Line 48: | ||
*[[इकेदा लिफ्ट]] | *[[इकेदा लिफ्ट]] | ||
*[[मियावाकी लिफ्ट]] | *[[मियावाकी लिफ्ट]] | ||
*सीगल मॉड्यूलर | *सीगल मॉड्यूलर रूप के उत्पाद। | ||
===स्तर 1, छोटी डिग्री=== | ===स्तर 1, छोटी डिग्री=== | ||
डिग्री 1 के लिए, लेवल 1 सीगल मॉड्यूलर | डिग्री 1 के लिए, लेवल 1 सीगल मॉड्यूलर रूप लेवल 1 मॉड्यूलर रूप के समान हैं। ऐसे रूपों का वलय (डिग्री 1) ईसेनस्टीन श्रृंखला ''E''<sub>4</sub> और ''E''<sub>6</sub>. में एक बहुपद वलय '''C'''[''E''<sub>4</sub>,''E''<sub>6</sub>] है। | ||
डिग्री 2 के लिए, | डिग्री 2 के लिए, (इगुसा 1962, 1967) ने दिखाया कि स्तर 1 सीगल मॉड्यूलर रूपों की वलय (डिग्री 2) ईसेनस्टीन श्रृंखला ''E''<sub>4</sub> और ''E''<sub>6</sub> और वजन 10, 12, और 35 के 3 और रूपों से उत्पन्न होती है। उनके बीच संबंधों का आदर्श वजन 35 के वर्ग से उत्पन्न होता है जो अन्य में एक निश्चित बहुपद को घटाता है। | ||
डिग्री 3 के लिए, {{harvtxt|Tsuyumine|1986}} लेवल 1 सीगल मॉड्यूलर | डिग्री 3 के लिए, {{harvtxt|Tsuyumine|1986}} लेवल 1 सीगल मॉड्यूलर रूप की वलय का वर्णन किया गया है, जिसमें 34 जनरेटर का एक समुच्चय दिया गया है। | ||
डिग्री 4 के लिए, छोटे वजन के स्तर 1 सीगल मॉड्यूलर रूप पाए गए हैं। वज़न 2, 4, या 6 का कोई | डिग्री 4 के लिए, छोटे वजन के स्तर 1 सीगल मॉड्यूलर रूप पाए गए हैं। वज़न 2, 4, या 6 का कोई उभार रूप नहीं है। भार 8 के उभार रूपों का स्थान 1-आयामी है, जो [[शोट्की रूप]] द्वारा फैला हुआ है। भार 10 के पुच्छ रूपों के स्थान का आयाम 1 है, भार 12 के पुच्छ रूपों के स्थान का आयाम 2 है, भार 14 के पुच्छ रूपों के स्थान का आयाम 3 है, और भार 16 के पुच्छ रूपों के स्थान का आयाम 7 है {{harv|Poor|Yuen|2007}}. | ||
डिग्री 5 के लिए, | डिग्री 5 के लिए, उभार रूपों के स्थान का वजन 10 के लिए आयाम 0 है, वजन 12 के लिए आयाम 2 है। वजन 12 के रूपों के स्थान का आयाम 5 है। | ||
डिग्री 6 के लिए, वजन 0, 2, 4, 6, 8 का कोई | डिग्री 6 के लिए, वजन 0, 2, 4, 6, 8 का कोई उभार रूप नहीं है। वजन 2 के सीगल मॉड्यूलर रूपों के स्थान का आयाम 0 है, और वजन 4 या 6 दोनों का आयाम 1 है। | ||
===स्तर 1, | ===स्तर 1, छोटे वजन === | ||
छोटे वजन और स्तर 1 के लिए, {{harvtxt|Duke|Imamoḡlu|1998}} निम्नलिखित परिणाम दें (किसी भी सकारात्मक डिग्री के लिए): | छोटे वजन और स्तर 1 के लिए, {{harvtxt|Duke|Imamoḡlu|1998}} निम्नलिखित परिणाम दें (किसी भी सकारात्मक डिग्री के लिए): | ||
*वजन 0: रूपों का स्थान 1-आयामी है, 1 द्वारा फैला हुआ है। | *वजन 0: रूपों का स्थान 1-आयामी है, 1 द्वारा फैला हुआ है। | ||
*वजन 1: एकमात्र सीगल मॉड्यूलर | *वजन 1: एकमात्र सीगल मॉड्यूलर रूप 0 है। | ||
*वजन 2: एकमात्र सीगल मॉड्यूलर | *वजन 2: एकमात्र सीगल मॉड्यूलर रूप 0 है। | ||
*वजन 3: एकमात्र सीगल मॉड्यूलर | *वजन 3: एकमात्र सीगल मॉड्यूलर रूप 0 है। | ||
* वजन 4: किसी भी डिग्री के लिए, वजन 4 के रूपों का स्थान 1-आयामी है, जो | * वजन 4: किसी भी डिग्री के लिए, वजन 4 के रूपों का स्थान 1-आयामी है, जो E<sub>8</sub> के थीटा फलन द्वारा फैला हुआ है जाली (उचित डिग्री की) एकमात्र उभार रूप 0 है | ||
*वजन 5: एकमात्र सीगल मॉड्यूलर | *वजन 5: एकमात्र सीगल मॉड्यूलर रूप 0 है। | ||
*भार 6: भार 6 के रूपों के स्थान का आयाम 1 है यदि डिग्री अधिकतम 8 है, और आयाम 0 यदि डिग्री कम से कम 9 है। एकमात्र | *भार 6: भार 6 के रूपों के स्थान का आयाम 1 है यदि डिग्री अधिकतम 8 है, और आयाम 0 यदि डिग्री कम से कम 9 है। एकमात्र उभार रूप 0 है। | ||
*वजन 7: यदि डिग्री 4 या 7 है तो | *वजन 7: यदि डिग्री 4 या 7 है तो उभार रूपों का स्थान अदृश्य हो जाता है। | ||
*वजन 8: जीनस 4 में, | *वजन 8: जीनस 4 में, उभार रूपों का स्थान 1-आयामी है, शोट्की रूप द्वारा फैला हुआ है और रूपों का स्थान 2-आयामी है। यदि जीनस 8 है तो कोई उभार रूप नहीं हैं। | ||
*यदि वंश वजन के दोगुने से अधिक है तो कोई | *यदि वंश वजन के दोगुने से अधिक है तो कोई उभार रूप नहीं है। | ||
===स्तर 1 सीगल मॉड्यूलर | ===स्तर 1 सीगल मॉड्यूलर रूप के स्थानों के आयामों की तालिका === | ||
निम्न तालिका उपरोक्त परिणामों को | निम्न तालिका उपरोक्त परिणामों को {{harvtxt|Poor|Yuen|2006}} और {{harvtxt|Chenevier|Lannes|2014}}और {{harvtxt|Taïbi|2014}} की जानकारी के साथ जोड़ती है। | ||
{| class="wikitable" | {| class="wikitable" | ||
|+ | |+ स्तर 1 सीगल कस्प फॉर्म के स्थानों के आयाम: सीगल मॉड्यूलर फॉर्म | ||
! | ! वज़न !! डिग्री 0 !! डिग्री 1!! डिग्री 2!! डिग्री 3!! डिग्री 4!! डिग्री 5!! डिग्री 6!! डिग्री 7!! डिग्री 8!!डिग्री 9!!डिग्री 10!!डिग्री 11!!डिग्री 12 | ||
|- | |- | ||
| 0 || 1: 1||0: 1||0: 1||0: 1||0: 1||0: 1||0: 1||0: 1||0: 1||0: 1||0: 1||0: 1||0: 1 | | 0 || 1: 1||0: 1||0: 1||0: 1||0: 1||0: 1||0: 1||0: 1||0: 1||0: 1||0: 1||0: 1||0: 1 | ||
Line 117: | Line 120: | ||
==कोएचर सिद्धांत== | ==कोएचर सिद्धांत== | ||
कोएचर सिद्धांत के | कोएचर सिद्धांत के रूप में जाना जाने वाला प्रमेय बताता है कि यदि <math>f</math> वजन <math>\rho</math>, स्तर 1, और डिग्री <math>g>1</math> का सीगल मॉड्यूलर रूप है, तो <math>f</math> , <math>\mathcal{H}_g</math> के उपसमुच्चय पर घिरा है। प्रपत्र | ||
:<math>\left\{\tau \in \mathcal{H}_g \ | \textrm{Im}(\tau) > \epsilon I_g \right\},</math> | :<math>\left\{\tau \in \mathcal{H}_g \ | \textrm{Im}(\tau) > \epsilon I_g \right\}, | ||
</math> | |||
जहाँ <math>\epsilon>0</math> इस प्रमेय का परिणाम यह तथ्य है कि डिग्री <math>g>1</math> के सीगल मॉड्यूलर रूपों में फूरियर विस्तार होता है और इस प्रकार अनंत पर होलोमोर्फिक होते हैं।<ref>This was proved by [[Max Koecher]], ''Zur Theorie der Modulformen n-ten Grades I'', Mathematische. Zeitschrift 59 (1954), 455–466. A corresponding principle for [[Hilbert modular form]]s was apparently known earlier, after Fritz Gotzky, ''Uber eine zahlentheoretische Anwendung von Modulfunktionen zweier Veranderlicher'', Math. Ann. 100 (1928), pp. 411-37</ref> | |||
==भौतिकी में अनुप्रयोग== | ==भौतिकी में अनुप्रयोग== | ||
स्ट्रिंग सिद्धांत में | स्ट्रिंग सिद्धांत में सुपरसिमेट्रिक ब्लैक होल की D1D5P प्रणाली में, वह फ़ंक्शन जो स्वाभाविक रूप से ब्लैक होल एन्ट्रापी के माइक्रोस्टेट्स को अधिकृत करता है, एक सीगल मॉड्यूलर रूप है। सामान्य रूप से , सीगल मॉड्यूलर रूपों को ब्लैक होल या अन्य गुरुत्वाकर्षण प्रणालियों का वर्णन करने की क्षमता के रूप में वर्णित किया गया है।<ref name="entropy">{{cite journal |last1=Belin |first1=Alexandre |last2=Castro |first2=Alejandra |last3=Gomes |first3=João |last4=Keller |first4=Christoph A. |title=सीगल मॉड्यूलर रूप और ब्लैक होल एन्ट्रापी|journal=Journal of High Energy Physics |date=11 April 2017 |volume=2017 |issue=4 |page=57 |doi=10.1007/JHEP04(2017)057|arxiv=1611.04588 |bibcode=2017JHEP...04..057B |s2cid=256037311 }}</ref> | ||
सीगल मॉड्यूलर फॉर्म का उपयोग अनुरूप क्षेत्र सिद्धांत, विशेष रूप से काल्पनिक AdS/CFT पत्राचार में बढ़ते केंद्रीय चार्ज के साथ CFT2 के वर्गों के लिए कार्य उत्पन्न करने के रूप में भी होता है।<ref>{{cite journal |last1=Belin |first1=Alexandre |last2=Castro |first2=Alejandra |last3=Gomes |first3=João |last4=Keller |first4=Christoph A. |title=Siegel paramodular forms and sparseness in AdS3/CFT2 |journal=Journal of High Energy Physics |date=7 November 2018 |volume=2018 |issue=11 |page=37 |doi=10.1007/JHEP11(2018)037|arxiv=1805.09336 |bibcode=2018JHEP...11..037B |s2cid=256040660 }}</ref> | |||
==संदर्भ== | ==संदर्भ== | ||
<references/> | <references/> |
Revision as of 09:23, 21 July 2023
गणित में, सीगल मॉड्यूलर रूप एक प्रमुख प्रकार का ऑटोमोर्फिक रूप है। ये पारंपरिक दीर्घवृत्तीय मॉड्यूलर रूप को सामान्यीकृत करते हैं जो दीर्घवृत्तीय वक्र से निकटता से संबंधित हैं। सीगल मॉड्यूलर रूपों के सिद्धांत में निर्मित समष्टि मैनिफोल्ड्स सीगल मॉड्यूलर विविध हैं, जो कि एबेलियन विविधो (कुछ अतिरिक्त स्तर की संरचना के साथ) के लिए मॉड्यूलि स्पेस के लिए मूलभूत मॉडल हैं और अलग-अलग समूहों द्वारा ऊपरी आधे समतल के अतिरिक्त सीगल ऊपरी आधे-स्थान के भागफल के रूप में निर्मित किए जाते हैं।
सीगल मॉड्यूलर रूप सकारात्मक निश्चित काल्पनिक भाग के साथ सममित आव्यूह n × n आव्यूह के समुच्चय पर होलोमोर्फिक फलन हैं; प्रपत्रों को ऑटोमोर्फि नियम को पूरा करना होगा। सीगल मॉड्यूलर रूपों को बहुपरिवर्तनीय मॉड्यूलर रूपों के रूप में माना जा सकता है, अथार्त कई समष्टि वेरिएबल के विशेष कार्यों के रूप में माना जाता है।
विश्लेषणात्मक रूप से द्विघात रूपों का अध्ययन करने के उद्देश्य से सीगल मॉड्यूलर रूपों की जांच सबसे पहले कार्ल लुडविग सीगल (1939) द्वारा की गई थी। ये मुख्य रूप से संख्या सिद्धांत की विभिन्न शाखाओं जैसे अंकगणितीय ज्यामिति और दीर्घवृत्तीय सहसंगति में उत्पन्न होते हैं। सीगल मॉड्यूलर रूपों का उपयोग भौतिकी के कुछ क्षेत्रों जैसे अनुरूप क्षेत्र सिद्धांत और स्ट्रिंग सिद्धांत में ब्लैक होल थर्मोडायनामिक्स में भी किया गया है।
परिभाषा
प्रारंभिक
होने देना और परिभाषित करें
- सीगल ऊपरी आधा स्थान। स्तर के सहानुभूति समूह को परिभाषित करें, जिसे द्वारा दर्शाया गया है
जहां , पहचान आव्यूह है। अंत में, चलो
- एक तर्कसंगत प्रतिनिधित्व हो, जहां एक परिमित-आयामी समष्टि सदिश स्थल है।
सीगल मॉड्यूलर रूप
दिया गया
- और
- संकेतन को परिभाषित करें
फिर एक होलोमोर्फिक फलन
- डिग्री (कभी-कभी जीनस भी कहा जाता है), वजन , और स्तर का सीगल मॉड्यूलर रूप है यदि
सभी के लिए . इस स्थिति में कि , हमें आगे यह भी आवश्यक है कि 'अनंत पर' होलोमोर्फिक हो और नीचे बताए गए कोएचर सिद्धांत के कारण यह धारणा के लिए आवश्यक नहीं है। वजन , डिग्री , और स्तर सीगल मॉड्यूलर रूपों के स्थान को निरूपित करें
उदाहरण
सीगल मॉड्यूलर रूप के निर्माण की कुछ विधियों में सम्मिलित हैं:
- आइसेनस्टीन श्रृंखला
- जालकों के थीटा कार्य (संभवतः बहु-हार्मोनिक बहुपद के साथ)
- सैतो-कुरोकावा लिफ्ट डिग्री 2 के लिए
- इकेदा लिफ्ट
- मियावाकी लिफ्ट
- सीगल मॉड्यूलर रूप के उत्पाद।
स्तर 1, छोटी डिग्री
डिग्री 1 के लिए, लेवल 1 सीगल मॉड्यूलर रूप लेवल 1 मॉड्यूलर रूप के समान हैं। ऐसे रूपों का वलय (डिग्री 1) ईसेनस्टीन श्रृंखला E4 और E6. में एक बहुपद वलय C[E4,E6] है।
डिग्री 2 के लिए, (इगुसा 1962, 1967) ने दिखाया कि स्तर 1 सीगल मॉड्यूलर रूपों की वलय (डिग्री 2) ईसेनस्टीन श्रृंखला E4 और E6 और वजन 10, 12, और 35 के 3 और रूपों से उत्पन्न होती है। उनके बीच संबंधों का आदर्श वजन 35 के वर्ग से उत्पन्न होता है जो अन्य में एक निश्चित बहुपद को घटाता है।
डिग्री 3 के लिए, Tsuyumine (1986) लेवल 1 सीगल मॉड्यूलर रूप की वलय का वर्णन किया गया है, जिसमें 34 जनरेटर का एक समुच्चय दिया गया है।
डिग्री 4 के लिए, छोटे वजन के स्तर 1 सीगल मॉड्यूलर रूप पाए गए हैं। वज़न 2, 4, या 6 का कोई उभार रूप नहीं है। भार 8 के उभार रूपों का स्थान 1-आयामी है, जो शोट्की रूप द्वारा फैला हुआ है। भार 10 के पुच्छ रूपों के स्थान का आयाम 1 है, भार 12 के पुच्छ रूपों के स्थान का आयाम 2 है, भार 14 के पुच्छ रूपों के स्थान का आयाम 3 है, और भार 16 के पुच्छ रूपों के स्थान का आयाम 7 है (Poor & Yuen 2007) .
डिग्री 5 के लिए, उभार रूपों के स्थान का वजन 10 के लिए आयाम 0 है, वजन 12 के लिए आयाम 2 है। वजन 12 के रूपों के स्थान का आयाम 5 है।
डिग्री 6 के लिए, वजन 0, 2, 4, 6, 8 का कोई उभार रूप नहीं है। वजन 2 के सीगल मॉड्यूलर रूपों के स्थान का आयाम 0 है, और वजन 4 या 6 दोनों का आयाम 1 है।
स्तर 1, छोटे वजन
छोटे वजन और स्तर 1 के लिए, Duke & Imamoḡlu (1998) निम्नलिखित परिणाम दें (किसी भी सकारात्मक डिग्री के लिए):
- वजन 0: रूपों का स्थान 1-आयामी है, 1 द्वारा फैला हुआ है।
- वजन 1: एकमात्र सीगल मॉड्यूलर रूप 0 है।
- वजन 2: एकमात्र सीगल मॉड्यूलर रूप 0 है।
- वजन 3: एकमात्र सीगल मॉड्यूलर रूप 0 है।
- वजन 4: किसी भी डिग्री के लिए, वजन 4 के रूपों का स्थान 1-आयामी है, जो E8 के थीटा फलन द्वारा फैला हुआ है जाली (उचित डिग्री की) एकमात्र उभार रूप 0 है
- वजन 5: एकमात्र सीगल मॉड्यूलर रूप 0 है।
- भार 6: भार 6 के रूपों के स्थान का आयाम 1 है यदि डिग्री अधिकतम 8 है, और आयाम 0 यदि डिग्री कम से कम 9 है। एकमात्र उभार रूप 0 है।
- वजन 7: यदि डिग्री 4 या 7 है तो उभार रूपों का स्थान अदृश्य हो जाता है।
- वजन 8: जीनस 4 में, उभार रूपों का स्थान 1-आयामी है, शोट्की रूप द्वारा फैला हुआ है और रूपों का स्थान 2-आयामी है। यदि जीनस 8 है तो कोई उभार रूप नहीं हैं।
- यदि वंश वजन के दोगुने से अधिक है तो कोई उभार रूप नहीं है।
स्तर 1 सीगल मॉड्यूलर रूप के स्थानों के आयामों की तालिका
निम्न तालिका उपरोक्त परिणामों को Poor & Yuen (2006) और Chenevier & Lannes (2014)और Taïbi (2014) की जानकारी के साथ जोड़ती है।
वज़न | डिग्री 0 | डिग्री 1 | डिग्री 2 | डिग्री 3 | डिग्री 4 | डिग्री 5 | डिग्री 6 | डिग्री 7 | डिग्री 8 | डिग्री 9 | डिग्री 10 | डिग्री 11 | डिग्री 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1: 1 | 0: 1 | 0: 1 | 0: 1 | 0: 1 | 0: 1 | 0: 1 | 0: 1 | 0: 1 | 0: 1 | 0: 1 | 0: 1 | 0: 1 |
2 | 1: 1 | 0: 0 | 0: 0 | 0: 0 | 0: 0 | 0: 0 | 0: 0 | 0: 0 | 0: 0 | 0: 0 | 0: 0 | 0: 0 | 0: 0 |
4 | 1: 1 | 0: 1 | 0: 1 | 0: 1 | 0: 1 | 0: 1 | 0: 1 | 0: 1 | 0: 1 | 0: 1 | 0: 1 | 0: 1 | 0: 1 |
6 | 1: 1 | 0: 1 | 0: 1 | 0: 1 | 0: 1 | 0: 1 | 0: 1 | 0: 1 | 0: 1 | 0: 0 | 0: 0 | 0: 0 | 0: 0 |
8 | 1: 1 | 0: 1 | 0: 1 | 0:1 | 1: 2 | 0: 2 | 0: 2 | 0: 2 | 0: 2 | 0: | 0: | 0: | 0: |
10 | 1: 1 | 0: 1 | 1: 2 | 0: 2 | 1: 3 | 0: 3 | 1: 4 | 0: 4 | 1: | 0: | 0: | 0: | 0: |
12 | 1: 1 | 1: 2 | 1: 3 | 1: 4 | 2: 6 | 2: 8 | 3: 11 | 3: 14 | 4: 18 | 2:20 | 2: 22 | 1: 23 | 1: 24 |
14 | 1: 1 | 0: 1 | 1: 2 | 1: 3 | 3:6 | 3: 9 | 9: 18 | 9: 27 | |||||
16 | 1: 1 | 1: 2 | 2: 4 | 3: 7 | 7: 14 | 13:27 | 33:60 | 83:143 | |||||
18 | 1: 1 | 1: 2 | 2: 4 | 4:8 | 12:20 | 28: 48 | 117: 163 | ||||||
20 | 1: 1 | 1: 2 | 3: 5 | 6: 11 | 22: 33 | 76: 109 | 486:595 | ||||||
22 | 1: 1 | 1: 2 | 4: 6 | 9:15 | 38:53 | 186:239 | |||||||
24 | 1: 1 | 2: 3 | 5: 8 | 14: 22 | |||||||||
26 | 1: 1 | 1: 2 | 5: 7 | 17: 24 | |||||||||
28 | 1: 1 | 2: 3 | 7: 10 | 27: 37 | |||||||||
30 | 1: 1 | 2: 3 | 8: 11 | 34: 45 |
कोएचर सिद्धांत
कोएचर सिद्धांत के रूप में जाना जाने वाला प्रमेय बताता है कि यदि वजन , स्तर 1, और डिग्री का सीगल मॉड्यूलर रूप है, तो , के उपसमुच्चय पर घिरा है। प्रपत्र
जहाँ इस प्रमेय का परिणाम यह तथ्य है कि डिग्री के सीगल मॉड्यूलर रूपों में फूरियर विस्तार होता है और इस प्रकार अनंत पर होलोमोर्फिक होते हैं।[1]
भौतिकी में अनुप्रयोग
स्ट्रिंग सिद्धांत में सुपरसिमेट्रिक ब्लैक होल की D1D5P प्रणाली में, वह फ़ंक्शन जो स्वाभाविक रूप से ब्लैक होल एन्ट्रापी के माइक्रोस्टेट्स को अधिकृत करता है, एक सीगल मॉड्यूलर रूप है। सामान्य रूप से , सीगल मॉड्यूलर रूपों को ब्लैक होल या अन्य गुरुत्वाकर्षण प्रणालियों का वर्णन करने की क्षमता के रूप में वर्णित किया गया है।[2]
सीगल मॉड्यूलर फॉर्म का उपयोग अनुरूप क्षेत्र सिद्धांत, विशेष रूप से काल्पनिक AdS/CFT पत्राचार में बढ़ते केंद्रीय चार्ज के साथ CFT2 के वर्गों के लिए कार्य उत्पन्न करने के रूप में भी होता है।[3]
संदर्भ
- ↑ This was proved by Max Koecher, Zur Theorie der Modulformen n-ten Grades I, Mathematische. Zeitschrift 59 (1954), 455–466. A corresponding principle for Hilbert modular forms was apparently known earlier, after Fritz Gotzky, Uber eine zahlentheoretische Anwendung von Modulfunktionen zweier Veranderlicher, Math. Ann. 100 (1928), pp. 411-37
- ↑ Belin, Alexandre; Castro, Alejandra; Gomes, João; Keller, Christoph A. (11 April 2017). "सीगल मॉड्यूलर रूप और ब्लैक होल एन्ट्रापी". Journal of High Energy Physics. 2017 (4): 57. arXiv:1611.04588. Bibcode:2017JHEP...04..057B. doi:10.1007/JHEP04(2017)057. S2CID 256037311.
- ↑ Belin, Alexandre; Castro, Alejandra; Gomes, João; Keller, Christoph A. (7 November 2018). "Siegel paramodular forms and sparseness in AdS3/CFT2". Journal of High Energy Physics. 2018 (11): 37. arXiv:1805.09336. Bibcode:2018JHEP...11..037B. doi:10.1007/JHEP11(2018)037. S2CID 256040660.
- Chenevier, Gaëtan; Lannes, Jean (2014), Formes automorphes et voisins de Kneser des réseaux de Niemeier, arXiv:1409.7616, Bibcode:2014arXiv1409.7616C
- Duke, W.; Imamoḡlu, Ö. (1998), "Siegel modular forms of small weight", Math. Ann., 310 (1): 73–82, doi:10.1007/s002080050137, MR 1600030, S2CID 122219495
- Freitag, E. (1983), Siegelsche Modulfunktionen, Grundlehren der Mathematischen Wissenschaften, vol. 254. Springer-Verlag, Berlin, doi:10.1007/978-3-642-68649-8, ISBN 978-3-540-11661-5, MR 0871067
{{citation}}
: CS1 maint: location missing publisher (link) - van der Geer, Gerard (2008), "Siegel modular forms and their applications", The 1-2-3 of modular forms, 181–245, Universitext, Berlin: Springer, pp. 181–245, arXiv:math/0605346, doi:10.1007/978-3-540-74119-0_3, ISBN 978-3-540-74117-6, MR 2409679
- Igusa, Jun-ichi (1962), "On Siegel modular forms of genus two", Amer. J. Math., 84 (1): 175–200, doi:10.2307/2372812, JSTOR 2372812, MR 0141643
- Klingen, Helmut (2003), Introductory Lectures on Siegel Modular Forms, Cambridge University Press, ISBN 978-0-521-35052-5
- Siegel, Carl Ludwig (1939), "Einführung in die Theorie der Modulfunktionen n-ten Grades", Math. Ann., 116: 617–657, doi:10.1007/bf01597381, MR 0001251, S2CID 124337559
- Taïbi, Olivier (2014), Dimensions of spaces of level one automorphic forms for split classical groups using the trace formula, arXiv:1406.4247, Bibcode:2014arXiv1406.4247T
- Tsuyumine, Shigeaki (1986), "On Siegel modular forms of degree three", Amer. J. Math., 108 (4): 755–862, doi:10.2307/2374517, JSTOR 2374517, MR 0853217