तीन आयामों में तीन संभावित समतल-रेखा संबंध। (प्रत्येक मामले में दिखाया गया समतल का केवल एक हिस्सा है, जो असीम रूप से दूर तक फैला हुआ है।)
विश्लेषणात्मक ज्यामिति में, त्रि-आयामी स्थान में एक रेखा और एक समतल का प्रतिच्छेदन खाली सेट, एक बिंदु या एक रेखा हो सकता है। यह पूरी रेखा है यदि वह रेखा समतल में अंतःस्थापित है और यदि रेखा समतल के समानांतर है किन्तु उसके बाहर है तो यह खाली समुच्चय है। अन्यथा रेखा एक बिंदु पर समतल को काटती है।
इन स्थितियों को अलग करना और बाद के स्थितियों में बिंदु और रेखा के लिए समीकरणों का निर्धारण करना कंप्यूटर चित्रलेख गति योजना और टकराव का पता लगाने में उपयोग होता है।
बीजगणितीय रूप
सदिश संकेतन में एक तल को बिंदुओं के समुच्चय के रूप में व्यक्त किया जा सकता है जिसके लिए
जहाँ समतल का सामान्य सदिश है और समतल पर एक बिंदु है। (संकेत सदिश और के डॉट उत्पाद को दर्शाता है।
एक रेखा के लिए सदिश समीकरण है
जहाँ रेखा की दिशा में एक सदिश है, रेखा पर एक बिंदु है, और वास्तविक संख्या डोमेन में एक अदिश राशि है। समतल के समीकरण में रेखा के समीकरण को प्रतिस्थापित करने पर प्राप्त होता है
विस्तार देता है
और के लिए हल करना देता है
यदि तो रेखा और समतल समानांतर हैं। दो स्थितियाँ होंगी: यदि तो रेखा समतल में निहित है, अर्थात्, रेखा रेखा के प्रत्येक बिंदु पर समतल को काटती है। अन्यथा,रेखा और समतल का कोई प्रतिच्छेदन नहीं है।
यदि प्रतिच्छेदन का एक बिंदु है। के मान की गणना की जा सकती है और प्रतिच्छेदन बिंदु द्वारा दिया जाता है
- .
पैरामीट्रिक रूप
एक रेखा को उन सभी बिंदुओं द्वारा वर्णित किया जाता है जो एक बिंदु से दी गई दिशा हैं। बिंदुओं और से गुजरने वाली रेखा पर एक सामान्य बिंदु को इस रूप में दर्शाया जा सकता है
जहां , से की ओर इंगित करते हुए सदिश है।
इसी प्रकार बिंदुओं द्वारा परिभाषित त्रिकोण द्वारा निर्धारित समतल पर एक सामान्य बिंदु , और के रूप में दर्शाया जा सकता है
- जहाँ से इंगित करने वाला वेक्टर है को और वेक्टर है से की ओर इशारा करते हुए।
जिस बिंदु पर रेखा समतल को काटती है इसलिए समतल पर बिंदु के समान रेखा पर बिंदु सेट करके वर्णित किया जाता है, पैरामीट्रिक समीकरण देते हुए:
इस रूप में फिर से लिखा जा सकता है
जिसे आव्यूह रूप में व्यक्त किया जा सकता है
जहाँ सदिशों को स्तंभ सदिशों के रूप में लिखा जाता है।
यह रैखिक समीकरणों की एक प्रणाली का निर्माण करता है जिसे हल किया जा सकता है , और . यदि समाधान शर्त को पूरा करता है , तो प्रतिच्छेदन बिंदु के बीच रेखा खंड पर है और , अन्यथा यहरेखा पर कहीं और है। इसी तरह, यदि समाधान संतुष्ट करता है , तो प्रतिच्छेदन बिंदु बिंदु द्वारा गठित समांतर चतुर्भुज में है और वैक्टर और . यदि समाधान अतिरिक्त रूप से संतुष्ट करता है , तो प्रतिच्छेदन बिंदु तीन बिंदुओं से बने त्रिभुज में स्थित है , और .
यह रैखिक समीकरणों की एक प्रणाली का निर्माण करता है जिसे और के लिए हल किया जा सकता है। यदि समाधान की स्थिति को संतुष्ट करता है, तो प्रतिच्छेदन बिंदु और , के बीच रेखा खंड पर है। अन्यथा यह रेखा पर कहीं और है। इसी तरह, यदि समाधान को संतुष्ट करता है, तो प्रतिच्छेदन बिंदु बिंदु और वैक्टर और द्वारा गठित समांतर चतुर्भुज में है। यदि समाधान अतिरिक्त रूप से को संतुष्ट करता है, तो प्रतिच्छेदन बिंदु तीन बिंदुओं , और द्वारा गठित त्रिकोण में स्थित है।
आव्यूह के निर्धारक के रूप में गणना की जा सकती है
यदि सारणिक शून्य है, तो कोई अद्वितीय हल नहीं है; रेखा या तो समतल में है या उसके समांतर है।
यदि एक अद्वितीय समाधान उपस्थित है (निर्धारक 0 नहीं है) तो इसे आव्यूह व्युत्क्रम या 3 × 3 आव्यूहों के व्युत्क्रम द्वारा पाया जा सकता है और पुनर्व्यवस्थित किया जा सकता है:
जिसका विस्तार होता है
और फिर करने के लिए
इस प्रकार समाधान दे रहे हैं:
तब प्रतिच्छेदन बिंदु समान होता है
उपयोग करता है
कंप्यूटर ग्राफिक्स की रे ट्रेसिंग (ग्राफिक्स) विधि में एक सतह को स्थानों के टुकड़ों के एक सेट के रूप में दर्शाया जा सकता है। सतह की एक छवि बनाने के लिए प्रत्येक समतल के साथ प्रकाश की किरण के प्रतिच्छेदन का उपयोग किया जाता है। दृष्टि-आधारित 3डी पुनर्निर्माण में कंप्यूटर दृष्टि का एक उपक्षेत्र गहराई मान को सामान्यतः तथाकथित त्रिकोणासन विधि द्वारा मापा जाता है जो प्रकाश समतल और किरण के बीच प्रतिच्छेदन को कैमरे की ओर पाता है।
एल्गोरिदम को अन्य प्लानर आंकड़ों के साथ प्रतिच्छेदन को आवरण करने के लिए सामान्यीकृत किया जा सकता है, विशेष रूप से एक रेखा के साथ पॉलीहेड्रॉन का चौराहे।
यह भी देखें
- प्लकर निर्देशांक या प्लेन-लाइन चौराहों की गणना करते हुए मिलते हैं जबरेखा को प्लकर निर्देशांक प्लेन-समतल प्रतिच्छेदन द्वारा व्यक्त किया जाता है।
बाहरी संबंध