गतिशीलता में कमी: Difference between revisions

From Vigyanwiki
(Created page with "क्वांटम यांत्रिकी में, विशेष रूप से खुला क्वांटम सिस्टम के अध्य...")
 
No edit summary
Line 1: Line 1:
[[क्वांटम यांत्रिकी]] में, विशेष रूप से [[खुला क्वांटम सिस्टम]] के अध्ययन में, कम गतिशीलता एक पर्यावरण से जुड़े सिस्टम के लिए [[घनत्व मैट्रिक्स]] के समय के विकास को संदर्भित करती है। प्रारंभ में राज्य में एक व्यवस्था एवं वातावरण पर विचार करें <math>\rho_{SE} (0) \,</math> (जो सामान्यतः क्वांटम उलझाव हो सकता है) और द्वारा दिए गए एकात्मक विकास से गुजर रहा है <math>U_t \,</math>. तब अकेले सिस्टम की कम हुई गतिशीलता ही सरल है
[[क्वांटम यांत्रिकी]] में, विशेष रूप से [[खुला क्वांटम सिस्टम|विवृत क्वांटम सिस्टम]] के अध्ययन में, कम गतिशीलता एक पर्यावरण से जुड़े सिस्टम के लिए [[घनत्व मैट्रिक्स|घनत्व आव्यूह]] के समय के विकास को संदर्भित करती है। प्रारंभ में राज्य में एक व्यवस्था एवं वातावरण पर विचार करें <math>\rho_{SE} (0) \,</math> (जो सामान्यतः क्वांटम उलझाव हो सकता है) और द्वारा दिए गए एकात्मक विकास से गुजर रहा है <math>U_t \,</math>. तब अकेले सिस्टम की कम हुई गतिशीलता ही सरल है
:<math>\rho_S (t) = \mathrm{Tr}_E [U_t \rho_{SE} (0) U_t^\dagger] </math>
:<math>\rho_S (t) = \mathrm{Tr}_E [U_t \rho_{SE} (0) U_t^\dagger] </math>
अगर हम मान लें कि मैपिंग <math>\rho_S(0) \mapsto \rho_S(t)</math> रैखिक मानचित्र है और पूरी तरह से सकारात्मक है, तो कम गतिशीलता को [[क्वांटम ऑपरेशन]] द्वारा दर्शाया जा सकता है। इसका मतलब है कि हम इसे ऑपरेटर-योग रूप में व्यक्त कर सकते हैं
अगर हम मान लें कि मैपिंग <math>\rho_S(0) \mapsto \rho_S(t)</math> रैखिक मानचित्र है और पूरी तरह से घनात्मक है, तो कम गतिशीलता को [[क्वांटम ऑपरेशन|क्वांटम संचालन]] द्वारा दर्शाया जा सकता है। इसका तात्पर्य है कि हम इसे ऑपरेटर-योग रूप में व्यक्त कर सकते हैं
:<math>\rho_S = \sum_i F_i \rho_S (0) F_i^\dagger </math>
:<math>\rho_S = \sum_i F_i \rho_S (0) F_i^\dagger </math>
जहां <math>F_i \,</math> अकेले सिस्टम के [[हिल्बर्ट स्थान]] पर ऑपरेटर हैं, और पर्यावरण का कोई संदर्भ नहीं दिया गया है। विशेष रूप से, यदि सिस्टम और वातावरण प्रारंभ में उत्पाद स्थिति में हैं <math>\rho_{SE} (0) = \rho_S (0) \otimes \rho_E (0)</math>, यह दिखाया जा सकता है कि कम हुई गतिशीलता पूरी तरह से सकारात्मक है। हालाँकि, सबसे सामान्य संभव कम गतिशीलता पूरी तरह से सकारात्मक नहीं है।<ref>{{cite journal | last=Pechukas | first=Philip | title=कम की गई गतिशीलता को पूरी तरह से सकारात्मक होने की आवश्यकता नहीं है| journal=Physical Review Letters | publisher=American Physical Society (APS) | volume=73 | issue=8 | date=1994-08-22 | issn=0031-9007 | doi=10.1103/physrevlett.73.1060 | pages=1060–1062| pmid=10057614 | bibcode=1994PhRvL..73.1060P }}</ref>
जहां <math>F_i \,</math> अकेले सिस्टम के [[हिल्बर्ट स्थान|हिल्बर्ट समष्टि]] पर ऑपरेटर हैं, और पर्यावरण का कोई संदर्भ नहीं दिया गया है। विशेष रूप से, यदि सिस्टम और वातावरण प्रारंभ में उत्पाद स्थिति में हैं <math>\rho_{SE} (0) = \rho_S (0) \otimes \rho_E (0)</math>, यह दिखाया जा सकता है कि कम हुई गतिशीलता पूरी तरह से घनात्मक है। हालाँकि, सबसे सामान्य संभव कम गतिशीलता पूरी तरह से घनात्मक नहीं है।<ref>{{cite journal | last=Pechukas | first=Philip | title=कम की गई गतिशीलता को पूरी तरह से सकारात्मक होने की आवश्यकता नहीं है| journal=Physical Review Letters | publisher=American Physical Society (APS) | volume=73 | issue=8 | date=1994-08-22 | issn=0031-9007 | doi=10.1103/physrevlett.73.1060 | pages=1060–1062| pmid=10057614 | bibcode=1994PhRvL..73.1060P }}</ref>
 
 
== टिप्पणियाँ ==
== टिप्पणियाँ ==
<references/>
<references/>
==संदर्भ==
==संदर्भ==
* Nielsen, Michael A. and [[Isaac L. Chuang]] (2000).  ''Quantum Computation and Quantum Information'', Cambridge University Press, {{ISBN|0-521-63503-9}}
* Nielsen, Michael A. and [[Isaac L. Chuang]] (2000).  ''Quantum Computation and Quantum Information'', Cambridge University Press, {{ISBN|0-521-63503-9}}
[[Category: क्वांटम सूचना विज्ञान]]  
[[Category: क्वांटम सूचना विज्ञान]]
{{quantum-stub}}
 
 
 
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 06/07/2023]]
[[Category:Created On 06/07/2023]]

Revision as of 22:13, 17 August 2023

क्वांटम यांत्रिकी में, विशेष रूप से विवृत क्वांटम सिस्टम के अध्ययन में, कम गतिशीलता एक पर्यावरण से जुड़े सिस्टम के लिए घनत्व आव्यूह के समय के विकास को संदर्भित करती है। प्रारंभ में राज्य में एक व्यवस्था एवं वातावरण पर विचार करें (जो सामान्यतः क्वांटम उलझाव हो सकता है) और द्वारा दिए गए एकात्मक विकास से गुजर रहा है . तब अकेले सिस्टम की कम हुई गतिशीलता ही सरल है

अगर हम मान लें कि मैपिंग रैखिक मानचित्र है और पूरी तरह से घनात्मक है, तो कम गतिशीलता को क्वांटम संचालन द्वारा दर्शाया जा सकता है। इसका तात्पर्य है कि हम इसे ऑपरेटर-योग रूप में व्यक्त कर सकते हैं

जहां अकेले सिस्टम के हिल्बर्ट समष्टि पर ऑपरेटर हैं, और पर्यावरण का कोई संदर्भ नहीं दिया गया है। विशेष रूप से, यदि सिस्टम और वातावरण प्रारंभ में उत्पाद स्थिति में हैं , यह दिखाया जा सकता है कि कम हुई गतिशीलता पूरी तरह से घनात्मक है। हालाँकि, सबसे सामान्य संभव कम गतिशीलता पूरी तरह से घनात्मक नहीं है।[1]

टिप्पणियाँ

  1. Pechukas, Philip (1994-08-22). "कम की गई गतिशीलता को पूरी तरह से सकारात्मक होने की आवश्यकता नहीं है". Physical Review Letters. American Physical Society (APS). 73 (8): 1060–1062. Bibcode:1994PhRvL..73.1060P. doi:10.1103/physrevlett.73.1060. ISSN 0031-9007. PMID 10057614.

संदर्भ