द्रव यांत्रिकी में आयामहीन संख्याएँ: Difference between revisions
No edit summary |
|||
Line 96: | Line 96: | ||
{| class="wikitable sortable" | {| class="wikitable sortable" | ||
|- | |- | ||
! scope="col" | | ! scope="col" | नाम | ||
! scope="col" | | ! scope="col" | मानक प्रतीक | ||
! scope="col" class="unsortable" | | ! scope="col" class="unsortable" | परिभाषा | ||
! scope="col" | | ! scope="col" | उपयोग का क्षेत्र | ||
|- | |- | ||
| [[Archimedes number]] || Ar || <math> \mathrm{Ar} = \frac{g L^3 \rho_\ell (\rho - \rho_\ell)}{\mu^2}</math>|| [[fluid mechanics]] (motion of [[fluid]]s due to [[density]] differences) | | [[Archimedes number|आर्किमिडीज़ संख्या]] || Ar || <math> \mathrm{Ar} = \frac{g L^3 \rho_\ell (\rho - \rho_\ell)}{\mu^2}</math>|| [[fluid mechanics]] (motion of [[fluid]]s due to [[density]] differences) | ||
|- | |- | ||
| [[Atwood number]] || A || <math>\mathrm{A} = \frac{\rho_1 - \rho_2} {\rho_1 + \rho_2} </math> || [[fluid mechanics]] (onset of instabilities in [[fluid]] mixtures due to [[density]] differences) | | [[Atwood number|एटवुड नंबर]] || A || <math>\mathrm{A} = \frac{\rho_1 - \rho_2} {\rho_1 + \rho_2} </math> || [[fluid mechanics]] (onset of instabilities in [[fluid]] mixtures due to [[density]] differences) | ||
|- | |- | ||
| [[Bejan number]]<br /><small>([[fluid mechanics]])</small>|| Be || <math>\mathrm{Be} = \frac{\Delta P L^2} {\mu \alpha}</math> || [[fluid mechanics]] (dimensionless [[pressure]] drop along a [[Channel (geography)|channel]])<ref>{{cite conference |title=The formation of wall jet near a high temperature wall under microgravity environment |first1=Subrata |last1=Bhattacharje |first2=William L. |last2=Grosshandler |date=1988 |conference=National Heat Transfer Conference |editor1-first=Harold R. |editor1-last=Jacobs |volume=1 |publisher=American Society of Mechanical Engineers |location=Houston, TX |pages=711–716 |bibcode=1988nht.....1..711B}}</ref> | | [[Bejan number|बेजान संख्या]]<br /><small>([[fluid mechanics|द्रव यांत्रिकी]])</small>|| Be || <math>\mathrm{Be} = \frac{\Delta P L^2} {\mu \alpha}</math> || [[fluid mechanics]] (dimensionless [[pressure]] drop along a [[Channel (geography)|channel]])<ref>{{cite conference |title=The formation of wall jet near a high temperature wall under microgravity environment |first1=Subrata |last1=Bhattacharje |first2=William L. |last2=Grosshandler |date=1988 |conference=National Heat Transfer Conference |editor1-first=Harold R. |editor1-last=Jacobs |volume=1 |publisher=American Society of Mechanical Engineers |location=Houston, TX |pages=711–716 |bibcode=1988nht.....1..711B}}</ref> | ||
|- | |- | ||
| [[Herschel–Bulkley fluid#Channel flow| | | [[Herschel–Bulkley fluid#Channel flow|बिंघम संख्या]] || Bm ||<math>\mathrm{Bm} = \frac{ \tau_y L }{ \mu V }</math>|| [[fluid mechanics]], [[rheology]] (ratio of yield stress to viscous stress)<ref name="berkley" /> | ||
|- | |- | ||
| [[Biot number]] || Bi ||<math>\mathrm{Bi} = \frac{h L_C}{k_b}</math>|| [[heat transfer]] (surface vs. volume [[thermal conductivity|conductivity]] of solids) | | [[Biot number|बायोट संख्या]] || Bi ||<math>\mathrm{Bi} = \frac{h L_C}{k_b}</math>|| [[heat transfer]] (surface vs. volume [[thermal conductivity|conductivity]] of solids) | ||
|- | |- | ||
| [[Blake number]] || Bl or B ||<math>\mathrm{B} = \frac{u \rho}{\mu (1 - \epsilon) D}</math> || [[geology]], [[fluid mechanics]], [[porous media]] (inertial over [[Viscosity|viscous forces]] in fluid flow through porous media) | | [[Blake number|ब्लेक संख्या]] || Bl or B ||<math>\mathrm{B} = \frac{u \rho}{\mu (1 - \epsilon) D}</math> || [[geology]], [[fluid mechanics]], [[porous media]] (inertial over [[Viscosity|viscous forces]] in fluid flow through porous media) | ||
|- | |- | ||
| [[Bond number]] || Bo ||<math>\mathrm{Bo} = \frac{\rho a L^2}{\gamma}</math>|| [[geology]], [[fluid mechanics]], [[porous media]] ([[buoyancy|buoyant]] versus [[capillary]] forces, similar to the [[Eötvös number]]) <ref>{{cite journal |last1=Mahajan |first1=Milind P. |last2=Tsige |first2=Mesfin |last3=Zhang |first3=Shiyong |last4=Alexander |first4=J. Iwan D. |last5=Taylor |first5=P. L. |last6=Rosenblatt |first6=Charles |title=Collapse Dynamics of Liquid Bridges Investigated by Time-Varying Magnetic Levitation |journal=Physical Review Letters |date=10 January 2000 |volume=84 |issue=2 |pages=338–341 |doi=10.1103/PhysRevLett.84.338 |pmid=11015905 |bibcode=2000PhRvL..84..338M |url=http://ising.phys.cwru.edu/plt/PapersInPdf/181BridgeCollapse.pdf |archive-url=https://web.archive.org/web/20120305114521/http://ising.phys.cwru.edu/plt/PapersInPdf/181BridgeCollapse.pdf |archive-date=5 March 2012}}</ref> | | [[Bond number|बांड संख्या]] || Bo ||<math>\mathrm{Bo} = \frac{\rho a L^2}{\gamma}</math>|| [[geology]], [[fluid mechanics]], [[porous media]] ([[buoyancy|buoyant]] versus [[capillary]] forces, similar to the [[Eötvös number]]) <ref>{{cite journal |last1=Mahajan |first1=Milind P. |last2=Tsige |first2=Mesfin |last3=Zhang |first3=Shiyong |last4=Alexander |first4=J. Iwan D. |last5=Taylor |first5=P. L. |last6=Rosenblatt |first6=Charles |title=Collapse Dynamics of Liquid Bridges Investigated by Time-Varying Magnetic Levitation |journal=Physical Review Letters |date=10 January 2000 |volume=84 |issue=2 |pages=338–341 |doi=10.1103/PhysRevLett.84.338 |pmid=11015905 |bibcode=2000PhRvL..84..338M |url=http://ising.phys.cwru.edu/plt/PapersInPdf/181BridgeCollapse.pdf |archive-url=https://web.archive.org/web/20120305114521/http://ising.phys.cwru.edu/plt/PapersInPdf/181BridgeCollapse.pdf |archive-date=5 March 2012}}</ref> | ||
|- | |- | ||
| [[Brinkman number]] || Br ||<math> \mathrm{Br} = \frac {\mu U^2}{\kappa (T_w - T_0)}</math>|| [[heat transfer]], [[fluid mechanics]] ([[Thermal conductivity|conduction]] from a wall to a [[viscosity|viscous]] [[fluid]]) | | [[Brinkman number|ब्रिंकमैन नंबर]] || Br ||<math> \mathrm{Br} = \frac {\mu U^2}{\kappa (T_w - T_0)}</math>|| [[heat transfer]], [[fluid mechanics]] ([[Thermal conductivity|conduction]] from a wall to a [[viscosity|viscous]] [[fluid]]) | ||
|- | |- | ||
| [[Brownell–Katz number]] || N<sub>BK</sub> || <math>\mathrm{N}_\mathrm{BK} = \frac{u \mu}{k_\mathrm{rw}\sigma} </math> || [[fluid mechanics]] (combination of [[capillary number]] and [[Bond number]]) <ref>{{cite web|url=http://www.onepetro.org/mslib/servlet/onepetropreview?id=00020506 |title=Home |publisher=OnePetro |date=2015-05-04 |access-date=2015-05-08}}</ref> | | [[Brownell–Katz number|ब्राउनेल-काट्ज़ संख्या]] || N<sub>BK</sub> || <math>\mathrm{N}_\mathrm{BK} = \frac{u \mu}{k_\mathrm{rw}\sigma} </math> || [[fluid mechanics]] (combination of [[capillary number]] and [[Bond number]]) <ref>{{cite web|url=http://www.onepetro.org/mslib/servlet/onepetropreview?id=00020506 |title=Home |publisher=OnePetro |date=2015-05-04 |access-date=2015-05-08}}</ref> | ||
|- | |- | ||
| [[Capillary number]] || Ca || <math>\mathrm{Ca} = \frac{\mu V}{\gamma} </math> || [[porous media]], [[fluid mechanics]] ([[viscous forces]] versus [[surface tension]]) | | [[Capillary number|कैपिलरी संख्या]] || Ca || <math>\mathrm{Ca} = \frac{\mu V}{\gamma} </math> || [[porous media]], [[fluid mechanics]] ([[viscous forces]] versus [[surface tension]]) | ||
|- | |- | ||
| [[Chandrasekhar number]] || C || <math>\mathrm{C} = \frac{B^2 L^2}{\mu_o \mu D_M} </math> || [[hydromagnetics]] ([[Lorentz force]] versus [[viscosity]]) | | [[Chandrasekhar number|चन्द्रशेखर संख्या]] || C || <math>\mathrm{C} = \frac{B^2 L^2}{\mu_o \mu D_M} </math> || [[hydromagnetics]] ([[Lorentz force]] versus [[viscosity]]) | ||
|- | |- | ||
| [[Chilton and Colburn J-factor analogy| | | [[Chilton and Colburn J-factor analogy|कोलबर्न जे कारक]] || ''J''<sub>M</sub>, ''J''<sub>H</sub>, ''J''<sub>D</sub> || || [[turbulence]]; [[heat transfer|heat]], [[mass transfer|mass]], and [[fluid mechanics|momentum]] transfer (dimensionless transfer coefficients) | ||
|- | |- | ||
| [[Damkohler number]] || Da ||<math> \mathrm{Da} = k \tau</math>|| [[chemistry]] (reaction time scales vs. residence time) | | [[Damkohler number|दमकोहलर संख्या]] || Da ||<math> \mathrm{Da} = k \tau</math>|| [[chemistry]] (reaction time scales vs. residence time) | ||
|- | |- | ||
| [[Darcy friction factor]] || ''C''<sub>f</sub> or ''f''<sub>D</sub> || || [[fluid mechanics]] (fraction of [[pressure]] losses due to [[friction]] in a [[pipe (fluid conveyance)|pipe]]; four times the [[Fanning friction factor]]) | | [[Darcy friction factor|डार्सी घर्षण कारक]] || ''C''<sub>f</sub> or ''f''<sub>D</sub> || || [[fluid mechanics]] (fraction of [[pressure]] losses due to [[friction]] in a [[pipe (fluid conveyance)|pipe]]; four times the [[Fanning friction factor]]) | ||
|- | |- | ||
| [[Dean number]] || D || <math>\mathrm{D} = \frac{\rho V d}{\mu} \left( \frac{d}{2 R} \right)^{1/2}</math> || [[Turbulence|turbulent flow]] ([[Vortex|vortices]] in curved ducts) | | [[Dean number|डीन संख्या]] || D || <math>\mathrm{D} = \frac{\rho V d}{\mu} \left( \frac{d}{2 R} \right)^{1/2}</math> || [[Turbulence|turbulent flow]] ([[Vortex|vortices]] in curved ducts) | ||
|- | |- | ||
| [[Deborah number]] || De || <math> \mathrm{De} = \frac{t_\mathrm{c}}{t_\mathrm{p}}</math> || [[rheology]] ([[viscoelastic]] fluids) | | [[Deborah number|दबोरा संख्या]] || De || <math> \mathrm{De} = \frac{t_\mathrm{c}}{t_\mathrm{p}}</math> || [[rheology]] ([[viscoelastic]] fluids) | ||
|- | |- | ||
| [[Drag coefficient]] || ''c''<sub>d</sub> || <math>c_\mathrm{d} = \dfrac{2 F_\mathrm{d}}{\rho v^2 A}\, ,</math> || [[aeronautics]], [[fluid dynamics]] (resistance to fluid motion) | | [[Drag coefficient|ड्रैग गुणांक]] || ''c''<sub>d</sub> || <math>c_\mathrm{d} = \dfrac{2 F_\mathrm{d}}{\rho v^2 A}\, ,</math> || [[aeronautics]], [[fluid dynamics]] (resistance to fluid motion) | ||
|- | |- | ||
| [[Eckert number]] || Ec || <math> \mathrm{Ec} = \frac{V^2}{c_p\Delta T} </math> || [[Convection (heat transfer)|convective heat transfer]] (characterizes [[dissipation]] of [[energy]]; ratio of [[kinetic energy]] to [[enthalpy]]) | | [[Eckert number|एकर्ट संख्या]] || Ec || <math> \mathrm{Ec} = \frac{V^2}{c_p\Delta T} </math> || [[Convection (heat transfer)|convective heat transfer]] (characterizes [[dissipation]] of [[energy]]; ratio of [[kinetic energy]] to [[enthalpy]]) | ||
|- | |- | ||
| [[Eötvös number]] || Eo || <math>\mathrm{Eo}=\frac{\Delta\rho \,g \,L^2}{\sigma}</math> || [[fluid mechanics]] (shape of [[Liquid bubble|bubbles]] or [[drop (liquid)|drops]]) | | [[Eötvös number|इओटवोस संख्या]] || Eo || <math>\mathrm{Eo}=\frac{\Delta\rho \,g \,L^2}{\sigma}</math> || [[fluid mechanics]] (shape of [[Liquid bubble|bubbles]] or [[drop (liquid)|drops]]) | ||
|- | |- | ||
| [[Ericksen number]] || Er || <math>\mathrm{Er}=\frac{\mu v L}{K}</math> || [[fluid dynamics]] ([[liquid crystal]] flow behavior; [[viscous]] over [[Elasticity (physics)|elastic]] forces) | | [[Ericksen number|एरिक्सन संख्या]] || Er || <math>\mathrm{Er}=\frac{\mu v L}{K}</math> || [[fluid dynamics]] ([[liquid crystal]] flow behavior; [[viscous]] over [[Elasticity (physics)|elastic]] forces) | ||
|- | |- | ||
| [[Euler number (physics)| | | [[Euler number (physics)|यूलर संख्या]] || Eu || <math> \mathrm{Eu}=\frac{\Delta{}p}{\rho V^2} </math> || [[hydrodynamics]] (stream [[pressure]] versus [[inertia]] forces) | ||
|- | |- | ||
| [[Excess temperature coefficient]] || <math>\Theta_r</math> ||<math>\Theta_r = \frac{c_p (T-T_e)}{U_e^2/2}</math>|| [[heat transfer]], [[fluid dynamics]] (change in [[internal energy]] versus [[kinetic energy]])<ref>{{cite book|last=Schetz|first=Joseph A.|title=Boundary Layer Analysis|url=https://archive.org/details/boundarylayerana00sche|url-access=limited|year=1993|publisher=Prentice-Hall, Inc.|location=Englewood Cliffs, NJ|isbn=0-13-086885-X|pages=[https://archive.org/details/boundarylayerana00sche/page/n78 132]–134}}</ref> | | [[Excess temperature coefficient|अतिरिक्त तापमान गुणांक]] || <math>\Theta_r</math> ||<math>\Theta_r = \frac{c_p (T-T_e)}{U_e^2/2}</math>|| [[heat transfer]], [[fluid dynamics]] (change in [[internal energy]] versus [[kinetic energy]])<ref>{{cite book|last=Schetz|first=Joseph A.|title=Boundary Layer Analysis|url=https://archive.org/details/boundarylayerana00sche|url-access=limited|year=1993|publisher=Prentice-Hall, Inc.|location=Englewood Cliffs, NJ|isbn=0-13-086885-X|pages=[https://archive.org/details/boundarylayerana00sche/page/n78 132]–134}}</ref> | ||
|- | |- | ||
| [[Fanning friction factor]] || ''f'' || || [[fluid mechanics]] (fraction of [[pressure]] losses due to [[friction]] in a [[pipe (fluid conveyance)|pipe]]; 1/4th the [[Darcy friction factor]])<ref>{{Cite web |url=http://www.engineering.uiowa.edu/~cee081/Exams/Final/Final.htm |title=Fanning friction factor |access-date=2015-06-25 |archive-url=https://web.archive.org/web/20131220032423/http://www.engineering.uiowa.edu/~cee081/Exams/Final/Final.htm |archive-date=2013-12-20 |url-status=dead }}</ref> | | [[Fanning friction factor|फैनिंग घर्षण कारक]] || ''f'' || || [[fluid mechanics]] (fraction of [[pressure]] losses due to [[friction]] in a [[pipe (fluid conveyance)|pipe]]; 1/4th the [[Darcy friction factor]])<ref>{{Cite web |url=http://www.engineering.uiowa.edu/~cee081/Exams/Final/Final.htm |title=Fanning friction factor |access-date=2015-06-25 |archive-url=https://web.archive.org/web/20131220032423/http://www.engineering.uiowa.edu/~cee081/Exams/Final/Final.htm |archive-date=2013-12-20 |url-status=dead }}</ref> | ||
|- | |- | ||
| [[Froude number]] || Fr || <math>\mathrm{Fr} = \frac{U}{\sqrt{g\ell}}</math> || [[fluid mechanics]] ([[wave]] and [[surface wave|surface]] behaviour; ratio of a body's [[inertia]] to [[gravity|gravitational forces]]) | | [[Froude number|घृणित संख्या]] || Fr || <math>\mathrm{Fr} = \frac{U}{\sqrt{g\ell}}</math> || [[fluid mechanics]] ([[wave]] and [[surface wave|surface]] behaviour; ratio of a body's [[inertia]] to [[gravity|gravitational forces]]) | ||
|- | |- | ||
| [[Galilei number]] || Ga || <math>\mathrm{Ga} = \frac{g\, L^3}{\nu^2}</math> || [[fluid mechanics]] ([[gravity|gravitational]] over [[viscosity|viscous]] forces) | | [[Galilei number|गैलीली संख्या]] || Ga || <math>\mathrm{Ga} = \frac{g\, L^3}{\nu^2}</math> || [[fluid mechanics]] ([[gravity|gravitational]] over [[viscosity|viscous]] forces) | ||
|- | |- | ||
| [[Görtler vortices| | | [[Görtler vortices|गॉर्टलर नंबर]] || G || <math>\mathrm{G} = \frac{U_e \theta}{\nu} \left( \frac{\theta}{R} \right)^{1/2}</math> || [[fluid dynamics]] ([[boundary layer flow]] along a concave wall) | ||
|- | |- | ||
| [[Graetz number]] || Gz || <math>\mathrm{Gz} = {D_H \over L} \mathrm{Re}\, \mathrm{Pr}</math> || [[heat transfer]], [[fluid mechanics]] ([[laminar flow]] through a conduit; also used in [[mass transfer]]) | | [[Graetz number]] || Gz || <math>\mathrm{Gz} = {D_H \over L} \mathrm{Re}\, \mathrm{Pr}</math> || [[heat transfer]], [[fluid mechanics]] ([[laminar flow]] through a conduit; also used in [[mass transfer]]) |
Revision as of 12:53, 17 August 2023
अभिलक्षणिक संख्याएँ आयामहीन मात्राओं का एक समूह हैं जो तरल पदार्थों के व्यवहार और उनके प्रवाह के साथ-साथ अन्य परिवहन घटनाओं के विश्लेषण में महत्वपूर्ण भूमिका निभाते हैं।[1] उनमें रेनॉल्ड्स संख्या और मैक संख्याएं शामिल हैं, जो द्रव के सापेक्ष परिमाण और घनत्व, चिपचिपाहट, ध्वनि की गति और वेग गति जैसी भौतिक प्रणाली विशेषताओं के अनुपात का वर्णन करती हैं।
किसी वास्तविक स्थिति (उदाहरण के लिए एक विमान) की तुलना छोटे पैमाने के मॉडल से करने के लिए महत्वपूर्ण विशेषता संख्याओं को समान रखना आवश्यक है। इन नंबरों के नाम और सूत्रीकरण आईएसओ 31-12 और आईएसओ 80000-11 में मानकीकृत किए गए थे।
परिवहन परिघटना में विवर्तनिक संख्याएँ
vs. | Inertial | Viscous | Thermal | Mass |
---|---|---|---|---|
Inertial | vd | Re | Pe | PeAB |
Viscous | Re−1 | μ/ρ, ν | Pr | Sc |
Thermal | Pe−1 | Pr−1 | α | Le |
Mass | PeAB−1 | Sc−1 | Le−1 | D |
द्रव यांत्रिकी में आयामहीन संख्याएँ कैसे उत्पन्न होती हैं, इसके एक सामान्य उदाहरण के रूप में, द्रव्यमान संरक्षण, संवेग संरक्षण और ऊर्जा संरक्षण की परिवहन घटनाओं में उत्कृष्ट संख्याओं का मुख्य रूप से प्रत्येक परिवहन तंत्र में प्रभावी प्रसार के अनुपात द्वारा विश्लेषण किया जाता है। छह आयामहीन मात्राएँ जड़ता, श्यानता, ऊष्मा चालन और विसरणीय जन परिवहन की विभिन्न घटनाओं की सापेक्ष शक्ति देती हैं। (तालिका में, विकर्ण मात्राओं के लिए सामान्य प्रतीक देते हैं, और दी गई आयाम रहित संख्या शीर्ष पंक्ति की मात्रा पर बाएं स्तंभ की मात्रा का अनुपात है; उदाहरण के लिए Re = जड़त्व बल/श्यान बल = vd/ν)। इन्हीं मात्राओं को वैकल्पिक रूप से विशिष्ट समय, लंबाई या ऊर्जा पैमानों के अनुपात के रूप में व्यक्त किया जा सकता है। ऐसे फॉर्म आमतौर पर व्यवहार में कम उपयोग किए जाते हैं, लेकिन विशेष अनुप्रयोगों में अंतर्दृष्टि प्रदान कर सकते हैं।
बूंद निर्माण
vs. | Momentum | Viscosity | Surface tension | Gravity | Kinetic energy |
---|---|---|---|---|---|
Momentum | ρvd | Re | Fr | ||
Viscosity | Re−1 | ρν, μ | Oh, Ca, La−1 | Ga−1 | |
Surface tension | Oh−1, Ca−1, La | σ | Bo−1 | We−1 | |
Gravity | Fr−1 | Ga | Bo | g | |
Kinetic energy | We | ρv2d |
बूंदों का निर्माण अधिकतर गति, श्यान बल और सतह तनाव पर निर्भर करता है।[2] उदाहरण के लिए, इंकजेट मुद्रण में, बहुत अधिक ओहनेसॉर्ज संख्या वाली स्याही ठीक से जेट नहीं होगी, और बहुत कम ओहनेसॉर्ज संख्या वाली स्याही कई उपग्रह बूंदों के साथ जेट होगी।[3] सभी मात्रा अनुपातों को स्पष्ट रूप से नामित नहीं किया गया है, हालांकि प्रत्येक अनाम अनुपात को दो अन्य नामित आयामहीन संख्याओं के उत्पाद के रूप में व्यक्त किया जा सकता है।
सूची
सभी संख्याएँ [[आयामहीन मात्राएँ]] हैं। आयामहीन मात्राओं की विस्तृत सूची के लिए अन्य लेख देखें। द्रव यांत्रिकी के लिए कुछ महत्व की कुछ आयामहीन मात्राएँ नीचे दी गई हैं:
संदर्भ
- ↑ "ISO 80000-1:2009". International Organization for Standardization. Retrieved 2019-09-15.
A.3.2 Some combinations of dimension one of quantities, such as those occurring in the description of transport phenomena, are called characteristic numbers and carry the term "number" in their names.
- ↑ Dijksman, J. Frits; Pierik, Anke (2012). "Dynamics of Piezoelectric Print-Heads". In Hutchings, Ian M.; Martin, Graham D. (eds.). डिजिटल निर्माण के लिए इंकजेट प्रौद्योगिकी. John Wiley & Sons. pp. 45–86. doi:10.1002/9781118452943.ch3. ISBN 9780470681985.
- ↑ Derby, Brian (2010). "Inkjet Printing of Functional and Structural Materials: Fluid Property Requirements, Feature Stability, and Resolution" (PDF). Annual Review of Materials Research. 40 (1): 395–414. Bibcode:2010AnRMS..40..395D. doi:10.1146/annurev-matsci-070909-104502. ISSN 1531-7331. S2CID 138001742.
- ↑ Bhattacharje, Subrata; Grosshandler, William L. (1988). Jacobs, Harold R. (ed.). The formation of wall jet near a high temperature wall under microgravity environment. National Heat Transfer Conference. Vol. 1. Houston, TX: American Society of Mechanical Engineers. pp. 711–716. Bibcode:1988nht.....1..711B.
- ↑ 5.0 5.1 "Table of Dimensionless Numbers" (PDF). Retrieved 2009-11-05.
- ↑ Mahajan, Milind P.; Tsige, Mesfin; Zhang, Shiyong; Alexander, J. Iwan D.; Taylor, P. L.; Rosenblatt, Charles (10 January 2000). "Collapse Dynamics of Liquid Bridges Investigated by Time-Varying Magnetic Levitation" (PDF). Physical Review Letters. 84 (2): 338–341. Bibcode:2000PhRvL..84..338M. doi:10.1103/PhysRevLett.84.338. PMID 11015905. Archived from the original (PDF) on 5 March 2012.
- ↑ "Home". OnePetro. 2015-05-04. Retrieved 2015-05-08.
- ↑ Schetz, Joseph A. (1993). Boundary Layer Analysis. Englewood Cliffs, NJ: Prentice-Hall, Inc. pp. 132–134. ISBN 0-13-086885-X.
- ↑ "Fanning friction factor". Archived from the original on 2013-12-20. Retrieved 2015-06-25.
- ↑ Tan, R. B. H.; Sundar, R. (2001). "On the froth–spray transition at multiple orifices". Chemical Engineering Science. 56 (21–22): 6337. Bibcode:2001ChEnS..56.6337T. doi:10.1016/S0009-2509(01)00247-0.
- ↑ Stewart, David (February 2003). "The Evaluation of Wet Gas Metering Technologies for Offshore Applications, Part 1 – Differential Pressure Meters" (PDF). Flow Measurement Guidance Note. Glasgow, UK: National Engineering Laboratory. 40. Archived from the original (PDF) on 17 November 2006.
- ↑ Science Applications International Corporation (2001). Performing Quality Flow Measurements at Mine Sites. Washington, DC: U.S. Environmental Protection Agency. EPA/600/R-01/043.
- ↑ Richardson number Archived 2015-03-02 at the Wayback Machine
- ↑ Schmidt number Archived 2010-01-24 at the Wayback Machine
- ↑ Ekerfors, Lars O. (1985). Boundary lubrication in screw-nut transmissions (PDF) (PhD). Luleå University of Technology. ISSN 0348-8373.
- ↑ Petritsch, G.; Mewes, D. (1999). "Experimental investigations of the flow patterns in the hot leg of a pressurized water reactor". Nuclear Engineering and Design. 188: 75–84. doi:10.1016/S0029-5493(99)00005-9.
- ↑ Smith, Douglas E.; Babcock, Hazen P.; Chu, Steven (12 March 1999). "Single-Polymer Dynamics in Steady Shear Flow" (PDF). Science. American Association for the Advancement of Science. 283 (5408): 1724–1727. Bibcode:1999Sci...283.1724S. doi:10.1126/science.283.5408.1724. PMID 10073935. Archived from the original (PDF) on 1 November 2011.
{{cite journal}}
:|archive-date=
/|archive-url=
timestamp mismatch (help) - ↑ Bookbinder; Engler; Hong; Miller (May 2001). "Comparison of Flow Measure Techniques during Continuous and Pulsatile Flow". 2001 BE Undergraduate Projects. Department of Bioengineering, University of Pennsylvania.
- ट्रोपिया, सी.; यारिन, ए.एल.; फास, जे.एफ. (2007). प्रायोगिक द्रव यांत्रिकी की स्प्रिंगर हैंडबुक. स्प्रिंगर-वेरलाग.