द्रव यांत्रिकी में आयामहीन संख्याएँ: Difference between revisions
No edit summary |
(→सूची) |
||
Line 153: | Line 153: | ||
| [[Görtler vortices|गॉर्टलर नंबर]] || G || <math>\mathrm{G} = \frac{U_e \theta}{\nu} \left( \frac{\theta}{R} \right)^{1/2}</math> || [[fluid dynamics]] ([[boundary layer flow]] along a concave wall) | | [[Görtler vortices|गॉर्टलर नंबर]] || G || <math>\mathrm{G} = \frac{U_e \theta}{\nu} \left( \frac{\theta}{R} \right)^{1/2}</math> || [[fluid dynamics]] ([[boundary layer flow]] along a concave wall) | ||
|- | |- | ||
| [[Graetz number]] || Gz || <math>\mathrm{Gz} = {D_H \over L} \mathrm{Re}\, \mathrm{Pr}</math> || [[heat transfer]], [[fluid mechanics]] ([[laminar flow]] through a conduit; also used in [[mass transfer]]) | | [[Graetz number|ग्रेत्ज़ संख्या]] || Gz || <math>\mathrm{Gz} = {D_H \over L} \mathrm{Re}\, \mathrm{Pr}</math> || [[heat transfer]], [[fluid mechanics]] ([[laminar flow]] through a conduit; also used in [[mass transfer]]) | ||
|- | |- | ||
| [[Grashof number]] || Gr || <math> \mathrm{Gr}_L = \frac{g \beta (T_s - T_\infty ) L^3}{\nu ^2}</math> || [[heat transfer]], [[natural convection]] (ratio of the [[buoyancy]] to [[viscous]] force) | | [[Grashof number|ग्राशोफ़ संख्या]] || Gr || <math> \mathrm{Gr}_L = \frac{g \beta (T_s - T_\infty ) L^3}{\nu ^2}</math> || [[heat transfer]], [[natural convection]] (ratio of the [[buoyancy]] to [[viscous]] force) | ||
|- | |- | ||
| [[Hartmann number]] || Ha || <math>\mathrm{Ha} = BL \left( \frac{\sigma}{\rho\nu} \right)^\frac{1}{2}</math> || [[magnetohydrodynamics]] (ratio of [[Lorentz force|Lorentz]] to [[viscous]] forces) | | [[Hartmann number|हार्टमैन संख्या]] || Ha || <math>\mathrm{Ha} = BL \left( \frac{\sigma}{\rho\nu} \right)^\frac{1}{2}</math> || [[magnetohydrodynamics]] (ratio of [[Lorentz force|Lorentz]] to [[viscous]] forces) | ||
|- | |- | ||
| [[Hagen number]] || Hg || <math> \mathrm{Hg} = -\frac{1}{\rho}\frac{\mathrm{d} p}{\mathrm{d} x}\frac{L^3}{\nu^2} </math> || [[heat transfer]] (ratio of the [[buoyancy]] to [[viscous]] force in [[forced convection]]) | | [[Hagen number|हेगन संख्या]] || Hg || <math> \mathrm{Hg} = -\frac{1}{\rho}\frac{\mathrm{d} p}{\mathrm{d} x}\frac{L^3}{\nu^2} </math> || [[heat transfer]] (ratio of the [[buoyancy]] to [[viscous]] force in [[forced convection]]) | ||
|- | |- | ||
| [[Iribarren number]] || Ir || <math>\mathrm{Ir} = \frac{\tan \alpha}{\sqrt{H/L_0}}</math> || [[wave]] mechanics (breaking [[surface gravity wave]]s on a slope) | | [[Iribarren number|इरिबैरेन संख्या]] || Ir || <math>\mathrm{Ir} = \frac{\tan \alpha}{\sqrt{H/L_0}}</math> || [[wave]] mechanics (breaking [[surface gravity wave]]s on a slope) | ||
|- | |- | ||
| [[Max Jakob| | | [[Max Jakob|जैकब संख्या]] || Ja || <math>\mathrm{Ja} = \frac{c_{p,f}(T_w - T_{sat})}{h_{fg}}</math> || [[heat transfer]] (ratio of [[sensible heat]] to [[latent heat]] during [[phase changes]]) | ||
|- | |- | ||
| [[Karlovitz number]] || Ka || <math>\mathrm{Ka} = k t_c</math> || [[Turbulence|turbulent]] [[combustion]] (characteristic flow time times flame stretch rate) | | [[Karlovitz number|कार्लोविट्ज़ संख्या]] || Ka || <math>\mathrm{Ka} = k t_c</math> || [[Turbulence|turbulent]] [[combustion]] (characteristic flow time times flame stretch rate) | ||
|- | |- | ||
| [[Kapitza number]] || Ka || <math>\mathrm{Ka} = \frac{\sigma}{\rho(g\sin\beta)^{1/3}\nu^{4/3}}</math> || [[fluid mechanics]] (thin film of liquid flows down inclined surfaces) | | [[Kapitza number|कपित्जा संख्या]] || Ka || <math>\mathrm{Ka} = \frac{\sigma}{\rho(g\sin\beta)^{1/3}\nu^{4/3}}</math> || [[fluid mechanics]] (thin film of liquid flows down inclined surfaces) | ||
|- | |- | ||
| [[Keulegan–Carpenter number]] || K<sub>C</sub> || <math>\mathrm{K_C} = \frac{V\,T}{L}</math> || [[fluid dynamics]] (ratio of [[drag force]] to [[inertia]] for a bluff object in [[oscillation|oscillatory]] fluid flow) | | [[Keulegan–Carpenter number|क्यूलेगन-बढ़ई संख्या]] || K<sub>C</sub> || <math>\mathrm{K_C} = \frac{V\,T}{L}</math> || [[fluid dynamics]] (ratio of [[drag force]] to [[inertia]] for a bluff object in [[oscillation|oscillatory]] fluid flow) | ||
|- | |- | ||
| [[Knudsen number]] || Kn || <math>\mathrm{Kn} = \frac {\lambda}{L}</math> || [[gas dynamics]] (ratio of the molecular [[mean free path]] length to a representative physical length scale) | | [[Knudsen number|नुडसेन संख्या]] || Kn || <math>\mathrm{Kn} = \frac {\lambda}{L}</math> || [[gas dynamics]] (ratio of the molecular [[mean free path]] length to a representative physical length scale) | ||
|- | |- | ||
| [[Kutateladze number]] || Ku || <math>\mathrm{Ku} = \frac{U_h \rho_g^{1/2}}{\left({\sigma g (\rho_l - \rho_g)}\right)^{1/4}}</math> || [[fluid mechanics]] (counter-current [[two-phase flow]])<ref>{{Cite journal | last1 = Tan | first1 = R. B. H. | last2 = Sundar | first2 = R. | doi = 10.1016/S0009-2509(01)00247-0 | title = On the froth–spray transition at multiple orifices | journal = Chemical Engineering Science | volume = 56 | issue = 21–22 | pages = 6337 | year = 2001 | bibcode = 2001ChEnS..56.6337T }}</ref> | | [[Kutateladze number|कुटाटेलडेज़ संख्या]] || Ku || <math>\mathrm{Ku} = \frac{U_h \rho_g^{1/2}}{\left({\sigma g (\rho_l - \rho_g)}\right)^{1/4}}</math> || [[fluid mechanics]] (counter-current [[two-phase flow]])<ref>{{Cite journal | last1 = Tan | first1 = R. B. H. | last2 = Sundar | first2 = R. | doi = 10.1016/S0009-2509(01)00247-0 | title = On the froth–spray transition at multiple orifices | journal = Chemical Engineering Science | volume = 56 | issue = 21–22 | pages = 6337 | year = 2001 | bibcode = 2001ChEnS..56.6337T }}</ref> | ||
|- | |- | ||
| [[Laplace number]] || La || <math>\mathrm{La} = \frac{\sigma \rho L}{\mu^2}</math> || [[fluid dynamics]] ([[free convection]] within [[Miscibility|immiscible]] fluids; ratio of [[surface tension]] to [[momentum]]-transport) | | [[Laplace number|लाप्लास संख्या]] || La || <math>\mathrm{La} = \frac{\sigma \rho L}{\mu^2}</math> || [[fluid dynamics]] ([[free convection]] within [[Miscibility|immiscible]] fluids; ratio of [[surface tension]] to [[momentum]]-transport) | ||
|- | |- | ||
| [[Lewis number]] || Le || <math>\mathrm{Le} = \frac{\alpha}{D} = \frac{\mathrm{Sc}}{\mathrm{Pr}}</math> || [[heat transfer|heat]] and [[mass transfer]] (ratio of [[thermal diffusivity|thermal]] to [[mass diffusivity]]) | | [[Lewis number|लुईस संख्या]] || Le || <math>\mathrm{Le} = \frac{\alpha}{D} = \frac{\mathrm{Sc}}{\mathrm{Pr}}</math> || [[heat transfer|heat]] and [[mass transfer]] (ratio of [[thermal diffusivity|thermal]] to [[mass diffusivity]]) | ||
|- | |- | ||
| [[Lift coefficient]] || ''C''<sub>L</sub> || <math>C_\mathrm{L} = \frac{L}{q\,S}</math> || [[aerodynamics]] ([[lift (force)|lift]] available from an [[airfoil]] at a given [[angle of attack]]) | | [[Lift coefficient|लिफ्ट गुणांक]] || ''C''<sub>L</sub> || <math>C_\mathrm{L} = \frac{L}{q\,S}</math> || [[aerodynamics]] ([[lift (force)|lift]] available from an [[airfoil]] at a given [[angle of attack]]) | ||
|- | |- | ||
| [[Lockhart–Martinelli parameter]] || <math>\chi</math> || <math>\chi = \frac{m_\ell}{m_g} \sqrt{\frac{\rho_g}{\rho_\ell}}</math> || [[two-phase flow]] (flow of [[wet gas]]es; [[liquid]] fraction)<ref>{{cite journal |last1=Stewart |first1=David |title=The Evaluation of Wet Gas Metering Technologies for Offshore Applications, Part 1 – Differential Pressure Meters |journal=Flow Measurement Guidance Note |date=February 2003 |volume=40 |url=http://www.flowprogramme.co.uk/publications/guidancenotes/GN40.pdf |archive-url=https://web.archive.org/web/20061117065355/http://www.flowprogramme.co.uk:80/publications/guidancenotes/GN40.pdf |archive-date=17 November 2006 |publisher=National Engineering Laboratory |location=Glasgow, UK}}</ref> | | [[Lockhart–Martinelli parameter|लॉकहार्ट-मार्टिनेली पैरामीटर]] || <math>\chi</math> || <math>\chi = \frac{m_\ell}{m_g} \sqrt{\frac{\rho_g}{\rho_\ell}}</math> || [[two-phase flow]] (flow of [[wet gas]]es; [[liquid]] fraction)<ref>{{cite journal |last1=Stewart |first1=David |title=The Evaluation of Wet Gas Metering Technologies for Offshore Applications, Part 1 – Differential Pressure Meters |journal=Flow Measurement Guidance Note |date=February 2003 |volume=40 |url=http://www.flowprogramme.co.uk/publications/guidancenotes/GN40.pdf |archive-url=https://web.archive.org/web/20061117065355/http://www.flowprogramme.co.uk:80/publications/guidancenotes/GN40.pdf |archive-date=17 November 2006 |publisher=National Engineering Laboratory |location=Glasgow, UK}}</ref> | ||
|- | |- | ||
| [[Mach number]] || M or Ma ||<math> \mathrm{M} = \frac{{v}}{{v_\mathrm{sound}}}</math> || [[gas dynamics]] ([[compressible flow]]; dimensionless [[velocity]]) | | [[Mach number|मैक संख्या]] || M or Ma ||<math> \mathrm{M} = \frac{{v}}{{v_\mathrm{sound}}}</math> || [[gas dynamics]] ([[compressible flow]]; dimensionless [[velocity]]) | ||
|- | |- | ||
| [[Manning formula| | | [[Manning formula|मैनिंग खुरदरापन गुणांक]] || ''n'' || || [[open channel flow]] (flow driven by [[gravity]])<ref>{{cite book |author1=Science Applications International Corporation |title=Performing Quality Flow Measurements at Mine Sites |date=2001 |publisher=U.S. Environmental Protection Agency |location=Washington, DC |id=EPA/600/R-01/043 |url=http://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=30002H0Y.txt}}</ref> | ||
|- | |- | ||
| [[Marangoni number]] || Mg || <math>\mathrm{Mg} = - {\frac{\mathrm{d}\sigma}{\mathrm{d}T}}\frac{L \Delta T}{\eta \alpha} </math> || [[fluid mechanics]] ([[Marangoni flow]]; thermal [[surface tension]] forces over [[viscosity|viscous]] forces) | | [[Marangoni number]] || Mg || <math>\mathrm{Mg} = - {\frac{\mathrm{d}\sigma}{\mathrm{d}T}}\frac{L \Delta T}{\eta \alpha} </math> || [[fluid mechanics]] ([[Marangoni flow]]; thermal [[surface tension]] forces over [[viscosity|viscous]] forces) |
Revision as of 13:00, 17 August 2023
अभिलक्षणिक संख्याएँ आयामहीन मात्राओं का एक समूह हैं जो तरल पदार्थों के व्यवहार और उनके प्रवाह के साथ-साथ अन्य परिवहन घटनाओं के विश्लेषण में महत्वपूर्ण भूमिका निभाते हैं।[1] उनमें रेनॉल्ड्स संख्या और मैक संख्याएं शामिल हैं, जो द्रव के सापेक्ष परिमाण और घनत्व, चिपचिपाहट, ध्वनि की गति और वेग गति जैसी भौतिक प्रणाली विशेषताओं के अनुपात का वर्णन करती हैं।
किसी वास्तविक स्थिति (उदाहरण के लिए एक विमान) की तुलना छोटे पैमाने के मॉडल से करने के लिए महत्वपूर्ण विशेषता संख्याओं को समान रखना आवश्यक है। इन नंबरों के नाम और सूत्रीकरण आईएसओ 31-12 और आईएसओ 80000-11 में मानकीकृत किए गए थे।
परिवहन परिघटना में विवर्तनिक संख्याएँ
vs. | Inertial | Viscous | Thermal | Mass |
---|---|---|---|---|
Inertial | vd | Re | Pe | PeAB |
Viscous | Re−1 | μ/ρ, ν | Pr | Sc |
Thermal | Pe−1 | Pr−1 | α | Le |
Mass | PeAB−1 | Sc−1 | Le−1 | D |
द्रव यांत्रिकी में आयामहीन संख्याएँ कैसे उत्पन्न होती हैं, इसके एक सामान्य उदाहरण के रूप में, द्रव्यमान संरक्षण, संवेग संरक्षण और ऊर्जा संरक्षण की परिवहन घटनाओं में उत्कृष्ट संख्याओं का मुख्य रूप से प्रत्येक परिवहन तंत्र में प्रभावी प्रसार के अनुपात द्वारा विश्लेषण किया जाता है। छह आयामहीन मात्राएँ जड़ता, श्यानता, ऊष्मा चालन और विसरणीय जन परिवहन की विभिन्न घटनाओं की सापेक्ष शक्ति देती हैं। (तालिका में, विकर्ण मात्राओं के लिए सामान्य प्रतीक देते हैं, और दी गई आयाम रहित संख्या शीर्ष पंक्ति की मात्रा पर बाएं स्तंभ की मात्रा का अनुपात है; उदाहरण के लिए Re = जड़त्व बल/श्यान बल = vd/ν)। इन्हीं मात्राओं को वैकल्पिक रूप से विशिष्ट समय, लंबाई या ऊर्जा पैमानों के अनुपात के रूप में व्यक्त किया जा सकता है। ऐसे फॉर्म आमतौर पर व्यवहार में कम उपयोग किए जाते हैं, लेकिन विशेष अनुप्रयोगों में अंतर्दृष्टि प्रदान कर सकते हैं।
बूंद निर्माण
vs. | Momentum | Viscosity | Surface tension | Gravity | Kinetic energy |
---|---|---|---|---|---|
Momentum | ρvd | Re | Fr | ||
Viscosity | Re−1 | ρν, μ | Oh, Ca, La−1 | Ga−1 | |
Surface tension | Oh−1, Ca−1, La | σ | Bo−1 | We−1 | |
Gravity | Fr−1 | Ga | Bo | g | |
Kinetic energy | We | ρv2d |
बूंदों का निर्माण अधिकतर गति, श्यान बल और सतह तनाव पर निर्भर करता है।[2] उदाहरण के लिए, इंकजेट मुद्रण में, बहुत अधिक ओहनेसॉर्ज संख्या वाली स्याही ठीक से जेट नहीं होगी, और बहुत कम ओहनेसॉर्ज संख्या वाली स्याही कई उपग्रह बूंदों के साथ जेट होगी।[3] सभी मात्रा अनुपातों को स्पष्ट रूप से नामित नहीं किया गया है, हालांकि प्रत्येक अनाम अनुपात को दो अन्य नामित आयामहीन संख्याओं के उत्पाद के रूप में व्यक्त किया जा सकता है।
सूची
सभी संख्याएँ [[आयामहीन मात्राएँ]] हैं। आयामहीन मात्राओं की विस्तृत सूची के लिए अन्य लेख देखें। द्रव यांत्रिकी के लिए कुछ महत्व की कुछ आयामहीन मात्राएँ नीचे दी गई हैं:
संदर्भ
- ↑ "ISO 80000-1:2009". International Organization for Standardization. Retrieved 2019-09-15.
A.3.2 Some combinations of dimension one of quantities, such as those occurring in the description of transport phenomena, are called characteristic numbers and carry the term "number" in their names.
- ↑ Dijksman, J. Frits; Pierik, Anke (2012). "Dynamics of Piezoelectric Print-Heads". In Hutchings, Ian M.; Martin, Graham D. (eds.). डिजिटल निर्माण के लिए इंकजेट प्रौद्योगिकी. John Wiley & Sons. pp. 45–86. doi:10.1002/9781118452943.ch3. ISBN 9780470681985.
- ↑ Derby, Brian (2010). "Inkjet Printing of Functional and Structural Materials: Fluid Property Requirements, Feature Stability, and Resolution" (PDF). Annual Review of Materials Research. 40 (1): 395–414. Bibcode:2010AnRMS..40..395D. doi:10.1146/annurev-matsci-070909-104502. ISSN 1531-7331. S2CID 138001742.
- ↑ Bhattacharje, Subrata; Grosshandler, William L. (1988). Jacobs, Harold R. (ed.). The formation of wall jet near a high temperature wall under microgravity environment. National Heat Transfer Conference. Vol. 1. Houston, TX: American Society of Mechanical Engineers. pp. 711–716. Bibcode:1988nht.....1..711B.
- ↑ 5.0 5.1 "Table of Dimensionless Numbers" (PDF). Retrieved 2009-11-05.
- ↑ Mahajan, Milind P.; Tsige, Mesfin; Zhang, Shiyong; Alexander, J. Iwan D.; Taylor, P. L.; Rosenblatt, Charles (10 January 2000). "Collapse Dynamics of Liquid Bridges Investigated by Time-Varying Magnetic Levitation" (PDF). Physical Review Letters. 84 (2): 338–341. Bibcode:2000PhRvL..84..338M. doi:10.1103/PhysRevLett.84.338. PMID 11015905. Archived from the original (PDF) on 5 March 2012.
- ↑ "Home". OnePetro. 2015-05-04. Retrieved 2015-05-08.
- ↑ Schetz, Joseph A. (1993). Boundary Layer Analysis. Englewood Cliffs, NJ: Prentice-Hall, Inc. pp. 132–134. ISBN 0-13-086885-X.
- ↑ "Fanning friction factor". Archived from the original on 2013-12-20. Retrieved 2015-06-25.
- ↑ Tan, R. B. H.; Sundar, R. (2001). "On the froth–spray transition at multiple orifices". Chemical Engineering Science. 56 (21–22): 6337. Bibcode:2001ChEnS..56.6337T. doi:10.1016/S0009-2509(01)00247-0.
- ↑ Stewart, David (February 2003). "The Evaluation of Wet Gas Metering Technologies for Offshore Applications, Part 1 – Differential Pressure Meters" (PDF). Flow Measurement Guidance Note. Glasgow, UK: National Engineering Laboratory. 40. Archived from the original (PDF) on 17 November 2006.
- ↑ Science Applications International Corporation (2001). Performing Quality Flow Measurements at Mine Sites. Washington, DC: U.S. Environmental Protection Agency. EPA/600/R-01/043.
- ↑ Richardson number Archived 2015-03-02 at the Wayback Machine
- ↑ Schmidt number Archived 2010-01-24 at the Wayback Machine
- ↑ Ekerfors, Lars O. (1985). Boundary lubrication in screw-nut transmissions (PDF) (PhD). Luleå University of Technology. ISSN 0348-8373.
- ↑ Petritsch, G.; Mewes, D. (1999). "Experimental investigations of the flow patterns in the hot leg of a pressurized water reactor". Nuclear Engineering and Design. 188: 75–84. doi:10.1016/S0029-5493(99)00005-9.
- ↑ Smith, Douglas E.; Babcock, Hazen P.; Chu, Steven (12 March 1999). "Single-Polymer Dynamics in Steady Shear Flow" (PDF). Science. American Association for the Advancement of Science. 283 (5408): 1724–1727. Bibcode:1999Sci...283.1724S. doi:10.1126/science.283.5408.1724. PMID 10073935. Archived from the original (PDF) on 1 November 2011.
{{cite journal}}
:|archive-date=
/|archive-url=
timestamp mismatch (help) - ↑ Bookbinder; Engler; Hong; Miller (May 2001). "Comparison of Flow Measure Techniques during Continuous and Pulsatile Flow". 2001 BE Undergraduate Projects. Department of Bioengineering, University of Pennsylvania.
- ट्रोपिया, सी.; यारिन, ए.एल.; फास, जे.एफ. (2007). प्रायोगिक द्रव यांत्रिकी की स्प्रिंगर हैंडबुक. स्प्रिंगर-वेरलाग.