चाउ समूह: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 25: Line 25:


==== एक वक्र पर चक्रों की तर्कसंगत तुल्यता ====
==== एक वक्र पर चक्रों की तर्कसंगत तुल्यता ====
अगर हम दो अलग लाइन बंडल लेते हैं, तो <math>L, L' \in\operatorname{Pic}(C)</math> एक समतल प्रक्षेपी वक्र के <math>C</math>, फिर दोनों लाइन बंडलों के <math>CH(C)</math> एक सामान्य खंड का लुप्त बिन्दुपथ गैर-समतुल्य चक्र वर्गों को परिभाषित करता है, ऐसा इसलिए होता है क्योंकि चिकनी किस्मों के लिए <math>\operatorname{Div}(C) \cong \operatorname{Pic}(C)</math> चिकनी किस्मों के लिए, इसलिए भाजक वर्ग <math>s \in H^0(C, L)</math> तथा <math>s' \in H^0(C, L')</math> असमान वर्गों को परिभाषित करता है।  
अगर हम दो अलग लाइन बंडल लेते हैं, तो <math>L, L' \in\operatorname{Pic}(C)</math> एक समतल प्रक्षेपी वक्र के <math>C</math>, फिर दोनों लाइन बंडलों के <math>CH(C)</math> एक सामान्य खंड का लुप्त बिन्दुपथ गैर-समतुल्य चक्र वर्गों को परिभाषित करता है, ऐसा इसलिए होता है क्योंकि समतल किस्मों के लिए <math>\operatorname{Div}(C) \cong \operatorname{Pic}(C)</math> समतल किस्मों के लिए, इसलिए भाजक वर्ग <math>s \in H^0(C, L)</math> तथा <math>s' \in H^0(C, L')</math> असमान वर्गों को परिभाषित करता है।  


== चाउ रिंग ==
== चाउ रिंग ==
'''जब योजना''' <math>X</math> एक मैदान पर चिकना है <math>k</math>, चाउ समूह एक वलय (गणित) बनाते हैं, न कि केवल एक वर्गीकृत एबेलियन समूह। अर्थात्, कब <math>X</math> चिकना है <math>k</math>, परिभाषित करना <math>CH^i(X)</math> [[ संहिता ]] का चाउ समूह होना-<math>i</math> चक्र चालू <math>X</math>. (कब <math>X</math> आयाम की एक किस्म है <math>n</math>, इसका सीधा सा मतलब है कि <math>CH^i(X) = CH_{n-i}(X)</math>।) फिर समूह <math>CH^*(X)</math> उत्पाद के साथ एक कम्यूटेटिव [[ वर्गीकृत अंगूठी ]] बनाएं:
'''जब योजना''' <math>X</math> एक मैदान पर चिकना है <math>k</math>, चाउ समूह एक वलय (गणित) बनाते हैं, न कि केवल एक वर्गीकृत एबेलियन समूह। अर्थात्, कब <math>X</math> चिकना है <math>k</math>, परिभाषित करना <math>CH^i(X)</math> [[ संहिता ]] का चाउ समूह होना-<math>i</math> चक्र चालू <math>X</math>. (कब <math>X</math> आयाम की एक किस्म है <math>n</math>, इसका सीधा सा मतलब है कि <math>CH^i(X) = CH_{n-i}(X)</math>।) फिर समूह <math>CH^*(X)</math> उत्पाद के साथ एक कम्यूटेटिव [[ वर्गीकृत अंगूठी ]] बनाएं:
:<math>CH^i(X) \times CH^j(X) \rightarrow CH^{i+j}(X).</math>
:<math>CH^i(X) \times CH^j(X) \rightarrow CH^{i+j}(X).</math>
उत्पाद बीजगणितीय चक्रों को काटने से उत्पन्न होता है। उदाहरण के लिए, यदि <math>Y</math> तथा <math>Z</math> चिकनी उप-प्रजातियां हैं <math>X</math> संहिता का <math>i</math> तथा <math>j</math> क्रमशः, और यदि <math>Y</math> तथा <math>Z</math> प्रतिच्छेदन [[ ट्रांसवर्सलिटी (गणित) ]], फिर उत्पाद <math>[Y][Z]</math> में <math>CH^{i+j}(X)</math> चौराहे के अपरिवर्तनीय घटकों का योग है <math>Y\cap Z</math>, जिसमें सभी का कोडिमेंशन है <math>i+j</math>.
उत्पाद बीजगणितीय चक्रों को काटने से उत्पन्न होता है। उदाहरण के लिए, यदि <math>Y</math> तथा <math>Z</math> समतल उप-प्रजातियां हैं <math>X</math> संहिता का <math>i</math> तथा <math>j</math> क्रमशः, और यदि <math>Y</math> तथा <math>Z</math> प्रतिच्छेदन [[ ट्रांसवर्सलिटी (गणित) ]], फिर उत्पाद <math>[Y][Z]</math> में <math>CH^{i+j}(X)</math> चौराहे के अपरिवर्तनीय घटकों का योग है <math>Y\cap Z</math>, जिसमें सभी का कोडिमेंशन है <math>i+j</math>.


अधिक सामान्यतः, विभिन्न मामलों में, [[ प्रतिच्छेदन सिद्धांत ]] एक स्पष्ट चक्र का निर्माण करता है जो उत्पाद का प्रतिनिधित्व करता है <math>[Y][Z]</math> चाउ रिंग में। उदाहरण के लिए, यदि <math>Y</math> तथा <math>Z</math> पूरक आयाम की उप-प्रजातियां हैं (जिसका अर्थ है कि उनके आयाम के आयाम के योग हैं) <math>X</math>) जिसके प्रतिच्छेदन का आयाम शून्य है, तब <math>[Y][Z]</math> चौराहों के बिंदुओं के योग के बराबर होता है, जिसमें गुणांक होते हैं जिन्हें प्रतिच्छेदन संख्या कहा जाता है। किसी भी उप-किस्म के लिए <math>Y</math> तथा <math>Z</math> एक चिकनी योजना की <math>X</math> ऊपर <math>k</math>, चौराहे के आयाम पर कोई धारणा नहीं होने के कारण, [[ विलियम फुल्टन (गणितज्ञ) ]] और [[ रॉबर्ट मैकफर्सन (गणितज्ञ) ]] का प्रतिच्छेदन सिद्धांत चाउ समूहों के एक विहित तत्व का निर्माण करता है <math>Y\cap Z</math> चाउ समूहों में जिनकी छवि <math>X</math> उत्पाद है <math>[Y][Z]</math>.<ref>Fulton, Intersection Theory, section 8.1.</ref>
अधिक सामान्यतः, विभिन्न मामलों में, [[ प्रतिच्छेदन सिद्धांत ]] एक स्पष्ट चक्र का निर्माण करता है जो उत्पाद का प्रतिनिधित्व करता है <math>[Y][Z]</math> चाउ रिंग में। उदाहरण के लिए, यदि <math>Y</math> तथा <math>Z</math> पूरक आयाम की उप-प्रजातियां हैं (जिसका अर्थ है कि उनके आयाम के आयाम के योग हैं) <math>X</math>) जिसके प्रतिच्छेदन का आयाम शून्य है, तब <math>[Y][Z]</math> चौराहों के बिंदुओं के योग के बराबर होता है, जिसमें गुणांक होते हैं जिन्हें प्रतिच्छेदन संख्या कहा जाता है। किसी भी उप-किस्म के लिए <math>Y</math> तथा <math>Z</math> एक समतल योजना की <math>X</math> ऊपर <math>k</math>, चौराहे के आयाम पर कोई धारणा नहीं होने के कारण, [[ विलियम फुल्टन (गणितज्ञ) ]] और [[ रॉबर्ट मैकफर्सन (गणितज्ञ) ]] का प्रतिच्छेदन सिद्धांत चाउ समूहों के एक विहित तत्व का निर्माण करता है <math>Y\cap Z</math> चाउ समूहों में जिनकी छवि <math>X</math> उत्पाद है <math>[Y][Z]</math>.<ref>Fulton, Intersection Theory, section 8.1.</ref>




Line 47: Line 47:


=== प्रोजेक्टिव बंडल फॉर्मूला ===
=== प्रोजेक्टिव बंडल फॉर्मूला ===
एक वेक्टर बंडल दिया गया <math>E \to X</math> रैंक के <math>r</math> एक चिकनी उचित योजना पर <math>X</math> एक क्षेत्र के ऊपर, संबंधित प्रक्षेप्य बंडल की चाउ रिंग <math>\mathbb{P}(E)</math> की चाउ रिंग का उपयोग करके गणना की जा सकती है <math>X</math> और चेर्न वर्ग <math>E</math>. अगर हम जाने दें <math>\zeta = c_1(\mathcal O_{\mathbb{P}(E)}(1))</math> तथा <math>c_1,\ldots, c_r</math> की चेर्न कक्षाएं <math>E</math>, फिर रिंगों का एक समरूपता है
एक वेक्टर बंडल दिया गया <math>E \to X</math> रैंक के <math>r</math> एक समतल उचित योजना पर <math>X</math> एक क्षेत्र के ऊपर, संबंधित प्रक्षेप्य बंडल की चाउ रिंग <math>\mathbb{P}(E)</math> की चाउ रिंग का उपयोग करके गणना की जा सकती है <math>X</math> और चेर्न वर्ग <math>E</math>. अगर हम जाने दें <math>\zeta = c_1(\mathcal O_{\mathbb{P}(E)}(1))</math> तथा <math>c_1,\ldots, c_r</math> की चेर्न कक्षाएं <math>E</math>, फिर रिंगों का एक समरूपता है
:<math>
:<math>
CH^\bullet(\mathbb{P}(E)) \cong \frac{CH^\bullet(X)[\zeta]}{\zeta^r + c_1\zeta^{r-1} + c_2\zeta^{r-2} + \cdots + c_r}  
CH^\bullet(\mathbb{P}(E)) \cong \frac{CH^\bullet(X)[\zeta]}{\zeta^r + c_1\zeta^{r-1} + c_2\zeta^{r-2} + \cdots + c_r}  
Line 111: Line 111:
इस मामले में (एक्स स्मूथ ओवर 'सी'), ये होमोमोर्फिज्म चाउ रिंग से कोहोलॉजी रिंग तक रिंग होमोमोर्फिज्म बनाते हैं। सहज रूप से, यह इसलिए है क्योंकि चाउ रिंग और कोहोलॉजी रिंग दोनों में उत्पाद चक्रों के प्रतिच्छेदन का वर्णन करते हैं।
इस मामले में (एक्स स्मूथ ओवर 'सी'), ये होमोमोर्फिज्म चाउ रिंग से कोहोलॉजी रिंग तक रिंग होमोमोर्फिज्म बनाते हैं। सहज रूप से, यह इसलिए है क्योंकि चाउ रिंग और कोहोलॉजी रिंग दोनों में उत्पाद चक्रों के प्रतिच्छेदन का वर्णन करते हैं।


एक चिकनी जटिल प्रक्षेपी विविधता के लिए, चाउ रिंग से सामान्य कोहोलॉजी कारकों के चक्र मानचित्र को एक समृद्ध सिद्धांत, [[ डेलिग्ने कोहोलॉजी ]] के माध्यम से।<ref>Voisin, Hodge Theory and Complex Algebraic Geometry, v. 1, section 12.3.3; v. 2, Theorem 9.24.</ref> इसमें एबेल-जैकोबी मानचित्र शामिल है जो चक्रों से समरूप रूप से शून्य से [[ मध्यवर्ती जैकोबियन ]] के बराबर है। [[ घातीय अनुक्रम ]] से पता चलता है कि सीएच<sup>1</sup>(X) आइसोमॉर्फिक रूप से Deligne cohomology के लिए मैप करता है, लेकिन यह CH के लिए विफल रहता है<sup>j</sup>(X) j > 1 के साथ।
एक समतल जटिल प्रक्षेपी विविधता के लिए, चाउ रिंग से सामान्य कोहोलॉजी कारकों के चक्र मानचित्र को एक समृद्ध सिद्धांत, [[ डेलिग्ने कोहोलॉजी ]] के माध्यम से।<ref>Voisin, Hodge Theory and Complex Algebraic Geometry, v. 1, section 12.3.3; v. 2, Theorem 9.24.</ref> इसमें एबेल-जैकोबी मानचित्र शामिल है जो चक्रों से समरूप रूप से शून्य से [[ मध्यवर्ती जैकोबियन ]] के बराबर है। [[ घातीय अनुक्रम ]] से पता चलता है कि सीएच<sup>1</sup>(X) आइसोमॉर्फिक रूप से Deligne cohomology के लिए मैप करता है, लेकिन यह CH के लिए विफल रहता है<sup>j</sup>(X) j > 1 के साथ।


एक मनमाना क्षेत्र k पर एक योजना X के लिए, चाउ समूहों से (बोरेल-मूर) [[ एटेल कोहोलॉजी ]] के लिए एक समान चक्र मानचित्र है। जब X, k पर चिकना होता है, तो इस समरूपता को चाउ रिंग से लेकर ईटेल कोहोलॉजी तक रिंग होमोमोर्फिज्म से पहचाना जा सकता है।<ref>Deligne, Cohomologie Etale (SGA 4 1/2), Expose 4.</ref>
एक मनमाना क्षेत्र k पर एक योजना X के लिए, चाउ समूहों से (बोरेल-मूर) [[ एटेल कोहोलॉजी ]] के लिए एक समान चक्र मानचित्र है। जब X, k पर चिकना होता है, तो इस समरूपता को चाउ रिंग से लेकर ईटेल कोहोलॉजी तक रिंग होमोमोर्फिज्म से पहचाना जा सकता है।<ref>Deligne, Cohomologie Etale (SGA 4 1/2), Expose 4.</ref>
Line 117: Line 117:


== के-सिद्धांत से संबंध ==
== के-सिद्धांत से संबंध ==
एक क्षेत्र पर एक चिकनी योजना एक्स पर एक (बीजीय) [[ वेक्टर बंडल ]] ई में [[ चेर्न वर्ग ]] सी है<sub>''i''</sub>(ई) सीएच में<sup>i</sup>(X), टोपोलॉजी के समान औपचारिक गुणों के साथ।<ref>Fulton, Intersection Theory, section 3.2 and Example 8.3.3.</ref> चर्न वर्ग सदिश बंडलों और चाउ समूहों के बीच घनिष्ठ संबंध प्रदान करते हैं। अर्थात्, चलो के<sub>0</sub>(X) X पर वेक्टर बंडलों का [[ ग्रोथेंडिक समूह ]] हो। ग्रोथेंडिक-रीमैन-रोच प्रमेय के हिस्से के रूप में, [[ अलेक्जेंडर ग्रोथेंडिक ]] ने दिखाया कि [[ चेर्न चरित्र ]] एक समरूपता देता है
एक क्षेत्र पर एक समतल योजना एक्स पर एक (बीजीय) [[ वेक्टर बंडल ]] ई में [[ चेर्न वर्ग ]] सी है<sub>''i''</sub>(ई) सीएच में<sup>i</sup>(X), टोपोलॉजी के समान औपचारिक गुणों के साथ।<ref>Fulton, Intersection Theory, section 3.2 and Example 8.3.3.</ref> चर्न वर्ग सदिश बंडलों और चाउ समूहों के बीच घनिष्ठ संबंध प्रदान करते हैं। अर्थात्, चलो के<sub>0</sub>(X) X पर वेक्टर बंडलों का [[ ग्रोथेंडिक समूह ]] हो। ग्रोथेंडिक-रीमैन-रोच प्रमेय के हिस्से के रूप में, [[ अलेक्जेंडर ग्रोथेंडिक ]] ने दिखाया कि [[ चेर्न चरित्र ]] एक समरूपता देता है
:<math>K_0(X)\otimes_{\mathbf{Z}}\mathbf{Q} \cong \prod_i \mathit{CH}^i(X)\otimes_{\mathbf{Z}}\mathbf{Q}.</math>
:<math>K_0(X)\otimes_{\mathbf{Z}}\mathbf{Q} \cong \prod_i \mathit{CH}^i(X)\otimes_{\mathbf{Z}}\mathbf{Q}.</math>
बीजगणितीय चक्रों पर किसी अन्य [[ पर्याप्त तुल्यता संबंध ]] की तुलना में यह तुल्याकारिता तर्कसंगत तुल्यता के महत्व को दर्शाती है।
बीजगणितीय चक्रों पर किसी अन्य [[ पर्याप्त तुल्यता संबंध ]] की तुलना में यह तुल्याकारिता तर्कसंगत तुल्यता के महत्व को दर्शाती है।
Line 125: Line 125:


*मोर्डेल-वील प्रमेय का अर्थ है कि विभाजक वर्ग समूह CHn-1(X) किसी संख्या क्षेत्र पर आयाम n के किसी भी किस्म X के लिए परिमित रूप से उत्पन्न होता है। यह एक संवृत समस्या है, कि क्या सभी चाउ समूह एक संख्या क्षेत्र में प्रत्येक किस्म के लिए सूक्ष्म रूप से उत्पन्न होते हैं। [[ एल-फ़ंक्शंस के विशेष मूल्य |एल-फलन के मानों]] पर  [[ स्पेंसर बलोच |बलोच-काटो]]  अनुमान पूर्वाकलन करता है, कि ये समूह सूक्ष्म रूप से उत्पन्न होते हैं। इसके अतिरिक्त चक्रों के समूह का रैंक मॉडुलो होमोलॉजिकल तुल्यता, और चक्रों के समूह का भी सामान्य रूप से शून्य के बराबर है, निश्चित पूर्णांक बिंदुओं पर दी गई विविधता के एल-फलन के लुप्त होने के क्रम के बराबर होना चाहिए। बीजगणितीय k-सिद्धांत में  [[ बास अनुमान |बास अनुमान]]  से इन रैंकों की परिमितता का भी पालन होगा।
*मोर्डेल-वील प्रमेय का अर्थ है कि विभाजक वर्ग समूह CHn-1(X) किसी संख्या क्षेत्र पर आयाम n के किसी भी किस्म X के लिए परिमित रूप से उत्पन्न होता है। यह एक संवृत समस्या है, कि क्या सभी चाउ समूह एक संख्या क्षेत्र में प्रत्येक किस्म के लिए सूक्ष्म रूप से उत्पन्न होते हैं। [[ एल-फ़ंक्शंस के विशेष मूल्य |एल-फलन के मानों]] पर  [[ स्पेंसर बलोच |बलोच-काटो]]  अनुमान पूर्वाकलन करता है, कि ये समूह सूक्ष्म रूप से उत्पन्न होते हैं। इसके अतिरिक्त चक्रों के समूह का रैंक मॉडुलो होमोलॉजिकल तुल्यता, और चक्रों के समूह का भी सामान्य रूप से शून्य के बराबर है, निश्चित पूर्णांक बिंदुओं पर दी गई विविधता के एल-फलन के लुप्त होने के क्रम के बराबर होना चाहिए। बीजगणितीय k-सिद्धांत में  [[ बास अनुमान |बास अनुमान]]  से इन रैंकों की परिमितता का भी पालन होगा।
* एक समतल जटिल प्रक्षेपी विविधता x के लिए, [[ हॉज अनुमान |हॉज अनुमान]]  चाउ समूहों से एकवचन कोहोलॉजी के लिए चक्र मानचित्र की छवि (तर्कों Q के साथ  [[ टेंसर उत्पाद |टेंसर उत्पाद]]) की भविष्यवाणी करता है। एक सूक्ष्म रूप से उत्पन्न क्षेत्र (जैसे एक [[ परिमित क्षेत्र |परिमित क्षेत्र]]  या संख्या क्षेत्र) पर एक समतल प्रक्षेप्य विविधता के लिए, [[ टेट अनुमान |टेट अनुमान]]  चाउ समूहों से  [[ एल-एडिक कोहोलॉजी |एल-एडिक कोहोलॉजी]]  के चक्र मानचित्र की छवि ('''Q'''<sub>''l''</sub> के साथ तन्यता) की भविष्यवाणी करता है।
* एक समतल जटिल प्रक्षेपी विविधता x के लिए, [[ हॉज अनुमान |हॉज अनुमान]]  चाउ समूहों से एकवचन कोहोलॉजी के लिए चक्र मानचित्र की छवि (तर्कों Q के साथ  [[ टेंसर उत्पाद |टेंसर उत्पाद]]) की पूर्वाकलन करता है। एक सूक्ष्म रूप से उत्पन्न क्षेत्र (जैसे एक [[ परिमित क्षेत्र |परिमित क्षेत्र]]  या संख्या क्षेत्र) पर एक समतल प्रक्षेप्य विविधता के लिए, [[ टेट अनुमान |टेट अनुमान]]  चाउ समूहों से  [[ एल-एडिक कोहोलॉजी |एल-एडिक कोहोलॉजी]]  के चक्र मानचित्र की छवि ('''Q'''<sub>''l''</sub> के साथ तन्यता) का पूर्वाकलन करता है।
* किसी भी क्षेत्र पर समतल प्रक्षेपी किस्म x के लिए, [[ सिकंदर हो मैं बेटा |बलोच-बेइलिन्सन]]  अनुमान मजबूत गुणों के साथ x के चाउ समूहों (तर्कसंगत के साथ तन्यता) पर एक निस्पंदन की पूर्वाकलन करता है।<ref>Voisin, Hodge Theory and Complex Algebraic Geometry, v. 2, Conjecture 11.21.</ref> अनुमान x के अद्वितीय या ईटेल कोहोलॉजी और x के चाउ समूहों के बीच एक तंग संबंध का संकेत देता है।  
* किसी भी क्षेत्र पर समतल प्रक्षेपी किस्म x के लिए, [[ सिकंदर हो मैं बेटा |बलोच-बेइलिन्सन]]  अनुमान मजबूत गुणों के साथ x के चाउ समूहों (तर्कसंगत के साथ तन्यता) पर एक निस्पंदन की पूर्वाकलन करता है।<ref>Voisin, Hodge Theory and Complex Algebraic Geometry, v. 2, Conjecture 11.21.</ref> अनुमान x के अद्वितीय या ईटेल कोहोलॉजी और x के चाउ समूहों के बीच एक तंग संबंध का संकेत देता है।  


: उदाहरण के लिए, X को एक चिकनी जटिल प्रक्षेप्य सतह होने दें। एक्स मैप्स पर शून्य-चक्र का चाउ समूह डिग्री होमोमोर्फिज्म द्वारा पूर्णांकों पर; K को कर्नेल होने दें। यदि [[ ज्यामितीय जीनस |ज्यामितीय जीनस]] ''h''<sup>0</sup>(''X'', Ω<sup>2</sup>) शून्य नहीं है, तो  [[ डेविड ममफोर्ड |डेविड ममफोर्ड]]  ने दिखाया कि, K अनंत-आयामी होते है (X पर शून्य-चक्रों के किसी परिमित-आयामी सहलक्षणीय का प्रतिरूप नहीं होता है।)<ref>Voisin, Hodge Theory and Complex Algebraic Geometry, v. 2, Theorem 10.1.</ref> तथा बलोच-बेइलिनसन अनुमान एक संतोषजनक बातचीत का अर्थ होगा कि, ज्यामितीय जीनस शून्य के साथ एक समतल जटिल प्रक्षेपी सतह x के लिए, k परिमित-आयामी होना चाहिए एवं  अधिक सटीक रूप से इसे x के अल्बनीज किस्म के जटिल बिंदुओं के समूह के लिए आइसोमोर्फिक रूप से मैप करना चाहिए।<ref>Voisin, Hodge Theory and Complex Algebraic Geometry, v. 2, Ch. 11.</ref>
: उदाहरण के लिए, X को एक समतल जटिल प्रक्षेप्य सतह होने दें। एक्स मैप्स पर शून्य-चक्र का चाउ समूह डिग्री होमोमोर्फिज्म द्वारा पूर्णांकों पर K को कर्नेल होने दें। यदि [[ ज्यामितीय जीनस |ज्यामितीय जीनस]] ''h''<sup>0</sup>(''X'', Ω<sup>2</sup>) शून्य नहीं होता है, तो  [[ डेविड ममफोर्ड |डेविड ममफोर्ड]]  ने दिखाया कि, K अनंत-आयामी होते है, X पर शून्य-चक्रों के किसी परिमित-आयामी सहलक्षणीय का प्रतिरूप नहीं होता है।<ref>Voisin, Hodge Theory and Complex Algebraic Geometry, v. 2, Theorem 10.1.</ref> तथा बलोच-बेइलिनसन अनुमान एक संतोषजनक बातचीत का अर्थ होगा कि, ज्यामितीय जीनस शून्य के साथ समतल जटिल प्रक्षेपी सतह x के लिए, k परिमित-आयामी होना चाहिए एवं  अधिक सटीक रूप से इसे x के अल्बनीज किस्म के जटिल बिंदुओं के समूह के लिए आइसोमोर्फिक रूप से छायाचित्र करना चाहिए।<ref>Voisin, Hodge Theory and Complex Algebraic Geometry, v. 2, Ch. 11.</ref>
== वेरिएंट ==
== वेरिएंट (रूपांतर) ==


=== द्विचर सिद्धांत ===
=== द्विचर सिद्धांत ===


विलियम फुल्टन (गणितज्ञ) और रॉबर्ट मैकफर्सन (गणितज्ञ) ने चाउ रिंग को परिचालन चाउ रिंग को परिभाषित करके और आमतौर पर योजनाओं के किसी भी रूपवाद से जुड़े एक द्विचर सिद्धांत को परिभाषित करके एकवचन किस्मों तक बढ़ाया।<ref>Fulton, Intersection Theory, Chapter 17.</ref> एक द्विपरिवर्ती सिद्धांत सहसंयोजक और प्रतिपरिवर्ती [[ ऑपरेटर ]]ों की एक जोड़ी है जो क्रमशः एक [[ समूह (गणित) ]] और एक अंगूठी (गणित) को एक मानचित्र प्रदान करता है। यह एक [[ कोहोलॉजी सिद्धांत ]] को सामान्यीकृत करता है, जो कि एक विरोधाभासी फ़ैक्टर है जो अंतरिक्ष को एक अंगूठी, अर्थात् एक सह-विज्ञान की अंगूठी प्रदान करता है। द्विपरिवर्ती नाम इस तथ्य को संदर्भित करता है कि सिद्धांत में सहपरिवर्ती और प्रतिपरिवर्ती दोनों प्रकार के कारक शामिल हैं।<ref>{{Cite book|url=https://books.google.com/books?id=pR7UCQAAQBAJ|title=एकवचन स्थान के अध्ययन के लिए श्रेणीबद्ध ढांचा|last=Fulton|first=William|last2=MacPherson|first2=Robert|date=1981|publisher=[[American Mathematical Society]]|isbn=9780821822432|language=en}}</ref>
विलियन फुल्टन और मैकफ़र्सन ने संक्रियात्मक चाउ रिंग को परिभाषित करके चाउ रिंग को अद्वितीय किस्मों तक बढ़ाया और सामान्य रूप से योजनाओं के किसी भी आकारिता से जुड़े एक द्विपरिवर्ती सिद्धांत को परिभाषित किया।<ref>Fulton, Intersection Theory, Chapter 17.</ref> द्विपरिवर्तक सिद्धांत सहसंयोजक और प्रतिपरिवर्ती [[ ऑपरेटर |कार्यकर्ताओं]] की एक जोड़ी होती है, जो एक मानचित्र को क्रमशः एक [[ समूह (गणित) |समूह]] और एक रिंग प्रदान करता है। यह एक [[ कोहोलॉजी सिद्धांत |कोहोलॉजी सिद्धांत]] को सामान्यीकृत करता है, जो कि एक विरोधाभासी कार्यकर्ता होता है, तथा अंतरिक्ष रिंग अर्थात् एक सह-विज्ञान की रिंग प्रदान करता है। बिवेरिएंट नाम इस तथ्य को यह संदर्भित करता है कि सिद्धांत में सहपरिवर्ती और प्रतिपरिवर्ती दोनों प्रकार के कारक सम्मिलित हैं।<ref>{{Cite book|url=https://books.google.com/books?id=pR7UCQAAQBAJ|title=एकवचन स्थान के अध्ययन के लिए श्रेणीबद्ध ढांचा|last=Fulton|first=William|last2=MacPherson|first2=Robert|date=1981|publisher=[[American Mathematical Society]]|isbn=9780821822432|language=en}}</ref>
यह एक अर्थ में चाउ रिंग का एकवचन किस्मों के लिए सबसे प्रारंभिक विस्तार है; अन्य सिद्धांत जैसे मोटिविक कोहोलॉजी मैप टू ऑपरेशनल चाउ रिंग।<ref>B. Totaro, [https://www.math.ucla.edu/~totaro/papers/public_html/linear5.pdf Chow groups, Chow cohomology and linear varieties]</ref>
 


यह एक अर्थ में चाउ रिंग का अद्वितीय किस्मों के लिए सबसे प्रारंभिक विस्तार है। अन्य सिद्धांत जैसे मोटिविक कोहोलॉजी मैप टू संक्रियात्मक चाउ रिंग आदि।<ref>B. Totaro, [https://www.math.ucla.edu/~totaro/papers/public_html/linear5.pdf Chow groups, Chow cohomology and linear varieties]</ref>
=== अन्य प्रकार ===
=== अन्य प्रकार ===


अंकगणितीय चाउ समूह क्यू से अधिक किस्मों के चाउ समूहों का एक समामेलन है, जिसमें एक घटक एन्कोडिंग अरकेलोव सिद्धांत | अरकेलोव-सैद्धांतिक जानकारी है, जो कि संबंधित जटिल मैनिफोल्ड पर अंतर रूप है।
अंकगणितीय चाउ समूह Q से अधिक किस्मों के चाउ समूहों का एक समामेलन होता है, जिसमें एक घटक एन्कोडिंग अरकेलोव-सैद्धांतिक जानकारी है, जो कि संबंधित जटिल मैनिफोल्ड पर अंतर रूप होता है।


एक क्षेत्र में परिमित प्रकार की योजनाओं के चाउ समूहों का सिद्धांत आसानी से बीजीय रिक्त स्थान तक फैला हुआ है। इस विस्तार का मुख्य लाभ यह है कि बाद की श्रेणी में भागफल बनाना आसान है और इस प्रकार बीजीय रिक्त स्थान के [[ समतुल्य चाउ समूह ]]ों पर विचार करना अधिक स्वाभाविक है। एक ढेर के चाउ समूह का एक और अधिक भयानक विस्तार है, जिसे केवल कुछ विशेष मामले में बनाया गया है और विशेष रूप से [[ आभासी मौलिक वर्ग ]] की समझ बनाने के लिए आवश्यक है।
एक क्षेत्र पर परिमित प्रकार की योजनाओं के चाउ समूह का सिद्धांत सरलता पूर्वक बीजगणितीय रिक्त स्थान तक फैला हुआ है। इस विस्तार का मुख्य लाभ यह है कि बाद की श्रेणी में भागफल बनाना सरल होता है और इस प्रकार बीजगणितीय रिक्त स्थान के [[ समतुल्य चाउ समूह |समतुल्य चाउ समूहों]] पर विचार करना अधिक स्वाभाविक है। एक बहुत अधिक दुर्जेय विस्तार एक स्टैक का चाउ समूह है, जिसका निर्माण केवल कुछ विशेष स्थिति में किया गया है और विशेष रूप से एक  [[ आभासी मौलिक वर्ग |आभासी मौलिक वर्ग]] की समझ बनाने के लिए इसकी आवश्यकता होती है।


== इतिहास ==
== इतिहास ==
19वीं शताब्दी के दौरान विभाजकों की तर्कसंगत तुल्यता (जिसे विभाजक (बीजगणित ज्यामिति) #विभाजक वर्ग समूह के रूप में जाना जाता है) का विभिन्न रूपों में अध्ययन किया गया, जिससे संख्या सिद्धांत में [[ आदर्श वर्ग समूह ]] और बीजगणितीय वक्रों के सिद्धांत में जैकोबियन विविधता का मार्ग प्रशस्त हुआ। उच्च-कोडिमेंशन चक्रों के लिए, 1930 के दशक में [[ फ्रांसिस सेवेरी ]] द्वारा तर्कसंगत तुल्यता पेश की गई थी। 1956 में, वेई-लियांग चाउ ने एक प्रभावशाली प्रमाण दिया कि चाउ के मूविंग लेम्मा का उपयोग करते हुए इंटरसेक्शन उत्पाद एक चिकनी अर्ध-प्रक्षेपी विविधता के लिए साइकिल मोडुलो तर्कसंगत तुल्यता पर अच्छी तरह से परिभाषित है। 1970 के दशक में, विलियम फुल्टन (गणितज्ञ) और रॉबर्ट मैकफ़र्सन (गणितज्ञ) ने चाउ समूहों के लिए वर्तमान मानक आधार दिया, जहाँ भी संभव हो एकवचन किस्मों के साथ काम करना। उनके सिद्धांत में, चिकनी किस्मों के लिए प्रतिच्छेदन उत्पाद का निर्माण ब्लोइंग अप#संबंधित निर्माणों द्वारा किया जाता है।<ref>Fulton, Intersection Theory, Chapters 5, 6, 8.</ref>
19वीं शताब्दी के दौरान विभाजकों की तर्कसंगत तुल्यता को रेखीय तुल्यता के रूप में जाना जाता है। एवं इसका विभिन्न रूपों में अध्ययन किया गया, जिससे संख्या सिद्धांत में [[ आदर्श वर्ग समूह |आदर्श वर्ग समूह]] और बीजगणितीय वक्रों के सिद्धांत में जैकोबियन विविधता का मार्ग प्रशस्त हुआ। उच्च-कोडिमेंशन चक्रों के लिए, 1930 के दशक में [[ फ्रांसिस सेवेरी |फ्रांसेस्को सेवेरी]] द्वारा तर्कसंगत तुल्यता प्रस्तुत की गई थी। 1956 में, वेई-लियांग चाउ ने एक प्रभावशाली प्रमाण दिया कि, चाउ के मूविंग लेम्मा का उपयोग करते हुए प्रतिच्छेदन उत्पाद एक समतल अर्ध-प्रक्षेपी विविधता के लिए चक्र सापेक्ष तर्कसंगत तुल्यता पर अच्छी तरह से परिभाषित है। 1970 के दशक में प्रारम्भ करते हुए, फुल्टन और मैकफर्सन ने चाउ समूहों के लिए वर्तमान मानक आधार दिया, जहाँ भी संभव अद्वितीय किस्मों के साथ काम करना उनके सिद्धांत में, समतल किस्मों के लिए प्रतिच्छेदन उत्पाद का निर्माण सामान्य शंकु के विरूपण द्वारा किया जाता है।<ref>Fulton, Intersection Theory, Chapters 5, 6, 8.</ref>
 
 
== यह भी देखें ==
== यह भी देखें ==
* प्रतिच्छेदन सिद्धांत
* प्रतिच्छेदन सिद्धांत
Line 154: Line 151:


==संदर्भ==
==संदर्भ==





Revision as of 12:08, 21 November 2022

बीजगणितीय ज्यामिति में, किसी भी क्षेत्र पर एक बीजगणितीय प्रजाति के चाउ समूह क्लाउड चेवेली (1958) द्वारा वी-लियांग चाउ के नाम पर एक स्थलीय स्थान समरूपता के बीजगणित ज्यामितीय मे अनुरूप होते हैं। चाउ समूह के तत्व उप-किस्मों (तथाकथित बीजगणितीय चक्र) से उसी तरह से बनते हैं जैसे सरल या सेलुलर होमोलॉजी समूह उप-परिसरों से बनते हैं। जब विविधता समतल होती है, तो चाउ समूहों को कोहोलॉजी समूहों के रूप में व्याख्या किया जा सकता है (पॉइनकेयर द्वैत की तुलना करें) और एक गुणन होता है जिसे प्रतिच्छेदन उत्पाद कहा जाता है। चाउ समूह एक बीजगणितीय विविधता के बारे में समृद्ध जानकारी रखते हैं, और वे सामान्य रूप से गणना करने के लिए समान रूप से कठिन हैं।

तर्कसंगत तुल्यता और चाउ समूह

निम्नलिखित के लिए, पर परिमित प्रकार की एक अभिन्न योजना होने के लिए . क्षेत्र पर विविधता को परिभाषित करें। तथा किसी भी योजना के लिए पर परिमित प्रकार पर एक बीजगणितीय चक्र का अर्थ पूर्णांक गुणांक के साथ की उप-प्रजातियों का एक परिमित रैखिक संयोजन है। और नीचे उप-प्रजातियों को में विवृत समझा जाता है, जब तक कि अन्यथा न कहा गया हो, एक प्राकृतिक संख्या के लिए , समूह का -आयामी चक्र या -चक्र, संक्षेप में प्रारम्भ के समुच्चय पर मुक्त एबेलियन समूह है, की आयामी उपप्रजाति होती है।

एक प्रकार के लिए आयाम का और बीजीय क़िस्म का कोई भी कार्य क्षेत्र पर जो समान रूप से शून्य का विभाजक नहीं है, बीजगणितीय ज्यामिति होता है -चक्र

जहां योग सभी -आयामी उप-वर्गों का और पूर्णांक के साथ के लुप्त होने के क्रम को दर्शाता है। इस प्रकार ऋणात्मक है, यदि के पास लुप्त होने के क्रम की परिभाषा के लिए अद्वितीय मे कुछ संरक्षण की आवश्यकता होती है।[1]

एक योजना के लिए परिमित प्रकार का , समूह -चक्र तर्कसंगत रूप से शून्य के बराबर का उपसमूह होता है,जो चक्रों द्वारा उत्पन्न सभी के लिए -आयामी उप-किस्मों मे का और सभी गैर-शून्य तर्कसंगत कार्य पर . चाउ समूह का -आयामी चक्र प्रारम्भ का भागफल समूह है,जो चक्रों के उपसमूह द्वारा तर्कसंगत रूप से शून्य के बराबर होता है। कभी-कभी कोई चाउ समूह में एक उपप्रकार के वर्ग के लिए लिखता है, और यदि दो उप-किस्मों और में डिस्प्लेस्टाइल तो तथा को तर्कसंगत रूप से समकक्ष कहा जाता है।

उदाहरण के लिए, जब विभिन्न प्रकार के आयाम है, तो चाउ समूह का भाजक वर्ग समूह है। जब , , पर समतल होता है, तो यह पर लाइन बंडलों के पिकार्ड समूह के लिए आइसोमोर्फिक होता है।

परिमेय तुल्यता के उदाहरण

प्रोजेक्टिव स्पेस पर तर्कसंगत तुल्यता

हाइपरसर्फेस द्वारा परिभाषित तर्कसंगत रूप से समतुल्य चक्र प्रक्षेपण स्थान पर निर्माण करना सरल होता है, क्योंकि वे सभी एक ही वेक्टर बंडल के लुप्त होने वाले रेखापथ के रूप में निर्मित किए जा सकते हैं। उदाहरण के लिए, डिग्री के दो सजातीय बहुपद दिए गए हैं,इसलिए हम हाइपरसर्फ्स के एक परिवार का निर्माण कर सकते हैं जिसे परिभाषित किया गया है का वैनिशिंग लोकस योजनाबद्ध रूप से, इसे इस रूप में बनाया जा सकता है।

प्रक्षेपण का उपयोग करके हम एक बिंदु पर फाइबर को देख सकते हैं प्रक्षेपण हाइपरसफेस द्वारा परिभाषित किया गया है। . इसका उपयोग यह दिखाने के लिए किया जा सकता है कि डिग्री के प्रत्येक हाइपरसफेस का चक्र वर्ग तार्किक रूप से के समतुल्य है। , चूँकि का उपयोग तर्कसंगत तुल्यता स्थापित करने के लिए किया जा सकता है। ध्यान दें कि का है बिन्दुपथ और इसकी बहुलता , है जो इसके चक्र वर्ग का गुणांक है।

एक वक्र पर चक्रों की तर्कसंगत तुल्यता

अगर हम दो अलग लाइन बंडल लेते हैं, तो एक समतल प्रक्षेपी वक्र के , फिर दोनों लाइन बंडलों के एक सामान्य खंड का लुप्त बिन्दुपथ गैर-समतुल्य चक्र वर्गों को परिभाषित करता है, ऐसा इसलिए होता है क्योंकि समतल किस्मों के लिए समतल किस्मों के लिए, इसलिए भाजक वर्ग तथा असमान वर्गों को परिभाषित करता है।

चाउ रिंग

जब योजना एक मैदान पर चिकना है , चाउ समूह एक वलय (गणित) बनाते हैं, न कि केवल एक वर्गीकृत एबेलियन समूह। अर्थात्, कब चिकना है , परिभाषित करना संहिता का चाउ समूह होना- चक्र चालू . (कब आयाम की एक किस्म है , इसका सीधा सा मतलब है कि ।) फिर समूह उत्पाद के साथ एक कम्यूटेटिव वर्गीकृत अंगूठी बनाएं:

उत्पाद बीजगणितीय चक्रों को काटने से उत्पन्न होता है। उदाहरण के लिए, यदि तथा समतल उप-प्रजातियां हैं संहिता का तथा क्रमशः, और यदि तथा प्रतिच्छेदन ट्रांसवर्सलिटी (गणित) , फिर उत्पाद में चौराहे के अपरिवर्तनीय घटकों का योग है , जिसमें सभी का कोडिमेंशन है .

अधिक सामान्यतः, विभिन्न मामलों में, प्रतिच्छेदन सिद्धांत एक स्पष्ट चक्र का निर्माण करता है जो उत्पाद का प्रतिनिधित्व करता है चाउ रिंग में। उदाहरण के लिए, यदि तथा पूरक आयाम की उप-प्रजातियां हैं (जिसका अर्थ है कि उनके आयाम के आयाम के योग हैं) ) जिसके प्रतिच्छेदन का आयाम शून्य है, तब चौराहों के बिंदुओं के योग के बराबर होता है, जिसमें गुणांक होते हैं जिन्हें प्रतिच्छेदन संख्या कहा जाता है। किसी भी उप-किस्म के लिए तथा एक समतल योजना की ऊपर , चौराहे के आयाम पर कोई धारणा नहीं होने के कारण, विलियम फुल्टन (गणितज्ञ) और रॉबर्ट मैकफर्सन (गणितज्ञ) का प्रतिच्छेदन सिद्धांत चाउ समूहों के एक विहित तत्व का निर्माण करता है चाउ समूहों में जिनकी छवि उत्पाद है .[2]


उदाहरण

प्रक्षेप्य स्थान

प्रोजेक्टिव स्पेस की चाउ रिंग किसी भी क्षेत्र पर अंगूठी है

कहाँ पे एक हाइपरप्लेन का वर्ग है (एकल रैखिक फ़ंक्शन का शून्य स्थान)। इसके अलावा, कोई भी उप-प्रजाति एक प्रक्षेपी किस्म की डिग्री और कोडिमेंशन प्रोजेक्टिव स्पेस में तर्कसंगत रूप से समकक्ष है . यह इस प्रकार है कि किन्हीं दो उप-प्रजातियों के लिए तथा में पूरक आयाम का और डिग्री , , क्रमशः, चाउ रिंग में उनका उत्पाद बस है

कहाँ पे a . का वर्ग है -तर्कसंगत बिंदु in . उदाहरण के लिए, यदि तथा अनुप्रस्थ रूप से प्रतिच्छेद करें, यह उसका अनुसरण करता है डिग्री का एक शून्य चक्र है . यदि आधार क्षेत्र बीजगणितीय रूप से विवृत क्षेत्र है, इसका मतलब है कि बिल्कुल हैं चौराहे के बिंदु; यह बेज़ाउट के प्रमेय का एक संस्करण है, गणनात्मक ज्यामिति का एक उत्कृष्ट परिणाम।

प्रोजेक्टिव बंडल फॉर्मूला

एक वेक्टर बंडल दिया गया रैंक के एक समतल उचित योजना पर एक क्षेत्र के ऊपर, संबंधित प्रक्षेप्य बंडल की चाउ रिंग की चाउ रिंग का उपयोग करके गणना की जा सकती है और चेर्न वर्ग . अगर हम जाने दें तथा की चेर्न कक्षाएं , फिर रिंगों का एक समरूपता है


हिरजेब्रूच सतहें

उदाहरण के लिए, एक हिरजेब्रुक सतह के चाउ रिंग को प्रोजेक्टिव बंडल फॉर्मूला का उपयोग करके आसानी से गणना की जा सकती है। याद रखें कि यह के रूप में बनाया गया है ऊपर . फिर, इस वेक्टर बंडल का एकमात्र गैर-तुच्छ चेर्न वर्ग है . इसका तात्पर्य है कि चाउ रिंग आइसोमॉर्फिक है


टिप्पणी

अन्य बीजगणितीय किस्मों के लिए, चाउ समूहों में समृद्ध व्यवहार हो सकता है। उदाहरण के लिए, चलो एक क्षेत्र के ऊपर एक अण्डाकार वक्र बनें . फिर शून्य-चक्रों का चाउ समूह एक सटीक क्रम में फिट बैठता है

इस प्रकार एक अण्डाकार वक्र का चाउ समूह समूह से घनिष्ठ रूप से सम्बन्धित है का -तर्कसंगत अंक . कब एक संख्या क्षेत्र है, मोर्डेल-वेइल समूह कहा जाता है , और संख्या सिद्धांत की कुछ गहन समस्याएँ इस समूह को समझने के प्रयास हैं। कब जटिल संख्या है, एक अण्डाकार वक्र के उदाहरण से पता चलता है कि चाउ समूह बेशुमार एबेलियन समूह हो सकते हैं।

कार्यात्मकता

एक उचित morphism के लिए योजनाओं का खत्म , एक आगे की ओर होमोमोर्फिज्म है प्रत्येक पूर्णांक के लिए . उदाहरण के लिए, पूरी विविधता के लिए ऊपर , यह एक समरूपता देता है , जो एक विवृत बिंदु लेता है इसकी डिग्री से अधिक . (एक विवृत बिंदु में रूप है परिमित विस्तार क्षेत्र के लिए का , और इसकी डिग्री का मतलब क्षेत्र के क्षेत्र विस्तार की डिग्री है ऊपर ।)

एक सपाट आकार के लिए योजनाओं का खत्म आयाम के तंतुओं के साथ (संभवतः खाली), एक गाइसिन समरूपता है .

चाउ समूहों के लिए एक प्रमुख कम्प्यूटेशनल उपकरण स्थानीयकरण अनुक्रम है, जो निम्नानुसार है। एक योजना के लिए एक मैदान के ऊपर और एक विवृत उपयोजना का , एक सटीक क्रम है

जहां पहला होमोमोर्फिज्म उचित आकारिकी से जुड़ा पुशफॉरवर्ड है , और दूसरा होमोमोर्फिज्म फ्लैट मॉर्फिज्म के संबंध में पुलबैक है .[3] स्थानीयकरण अनुक्रम को चाउ समूहों के सामान्यीकरण का उपयोग करके बाईं ओर बढ़ाया जा सकता है, (बोरेल-मूर) प्रेरक कोहोलॉजी समूह, जिन्हें उच्च चाउ समूह भी कहा जाता है।[4] किसी भी रूपवाद के लिए सुचारू योजनाओं की समाप्ति , एक पुलबैक समरूपता है , जो वास्तव में एक वलय समरूपता है .

फ्लैट पुलबैक के उदाहरण

ध्यान दें कि ब्लोअप का उपयोग करके गैर-उदाहरणों का निर्माण किया जा सकता है; उदाहरण के लिए, यदि हम उत्पत्ति के विस्फोट को लेते हैं तो मूल पर फाइबर आइसोमोर्फिक है .

वक्रों का शाखित आवरण

वक्रों के शाखित आवरण पर विचार करें

चूंकि रूपवाद जब भी विचरण करता है हमें एक गुणनखंड मिलता है

जहां में से एक . इसका तात्पर्य यह है कि अंक बहुलता है क्रमश। बिंदु का सपाट पुलबैक तब है


किस्मों का समतल परिवार

किस्मों के एक फ्लैट परिवार पर विचार करें

और एक उपप्रकार . फिर, कार्तीय वर्ग का उपयोग करना

हम देखते हैं कि की छवि की एक उप-किस्म है . इसलिए, हमारे पास है


साइकिल के नक्शे

चाउ समूहों से लेकर अधिक संगणनीय सिद्धांतों तक कई समरूपताएं (चक्र मानचित्र के रूप में जानी जाती हैं) हैं।

सबसे पहले, जटिल संख्याओं पर एक योजना X के लिए, चाउ समूहों से बोरेल-मूर समरूपता तक एक समरूपता है:[5]

2 का गुणक प्रकट होता है क्योंकि X की i-आयामी उप-किस्म का वास्तविक आयाम 2i है। जब एक्स सम्मिश्र संख्याओं पर सहज होता है, तो इस चक्र मानचित्र को एक समरूपता के रूप में पॉइंकेयर द्वैत का उपयोग करके फिर से लिखा जा सकता है

इस मामले में (एक्स स्मूथ ओवर 'सी'), ये होमोमोर्फिज्म चाउ रिंग से कोहोलॉजी रिंग तक रिंग होमोमोर्फिज्म बनाते हैं। सहज रूप से, यह इसलिए है क्योंकि चाउ रिंग और कोहोलॉजी रिंग दोनों में उत्पाद चक्रों के प्रतिच्छेदन का वर्णन करते हैं।

एक समतल जटिल प्रक्षेपी विविधता के लिए, चाउ रिंग से सामान्य कोहोलॉजी कारकों के चक्र मानचित्र को एक समृद्ध सिद्धांत, डेलिग्ने कोहोलॉजी के माध्यम से।[6] इसमें एबेल-जैकोबी मानचित्र शामिल है जो चक्रों से समरूप रूप से शून्य से मध्यवर्ती जैकोबियन के बराबर है। घातीय अनुक्रम से पता चलता है कि सीएच1(X) आइसोमॉर्फिक रूप से Deligne cohomology के लिए मैप करता है, लेकिन यह CH के लिए विफल रहता हैj(X) j > 1 के साथ।

एक मनमाना क्षेत्र k पर एक योजना X के लिए, चाउ समूहों से (बोरेल-मूर) एटेल कोहोलॉजी के लिए एक समान चक्र मानचित्र है। जब X, k पर चिकना होता है, तो इस समरूपता को चाउ रिंग से लेकर ईटेल कोहोलॉजी तक रिंग होमोमोर्फिज्म से पहचाना जा सकता है।[7]


के-सिद्धांत से संबंध

एक क्षेत्र पर एक समतल योजना एक्स पर एक (बीजीय) वेक्टर बंडल ई में चेर्न वर्ग सी हैi(ई) सीएच मेंi(X), टोपोलॉजी के समान औपचारिक गुणों के साथ।[8] चर्न वर्ग सदिश बंडलों और चाउ समूहों के बीच घनिष्ठ संबंध प्रदान करते हैं। अर्थात्, चलो के0(X) X पर वेक्टर बंडलों का ग्रोथेंडिक समूह हो। ग्रोथेंडिक-रीमैन-रोच प्रमेय के हिस्से के रूप में, अलेक्जेंडर ग्रोथेंडिक ने दिखाया कि चेर्न चरित्र एक समरूपता देता है

बीजगणितीय चक्रों पर किसी अन्य पर्याप्त तुल्यता संबंध की तुलना में यह तुल्याकारिता तर्कसंगत तुल्यता के महत्व को दर्शाती है।

अनुमान

बीजगणितीय ज्यामिति और संख्या सिद्धांत में कुछ गहरे अनुमान चाउ समूहों को समझने के प्रयास हैं। उदाहरण के लिए-

  • मोर्डेल-वील प्रमेय का अर्थ है कि विभाजक वर्ग समूह CHn-1(X) किसी संख्या क्षेत्र पर आयाम n के किसी भी किस्म X के लिए परिमित रूप से उत्पन्न होता है। यह एक संवृत समस्या है, कि क्या सभी चाउ समूह एक संख्या क्षेत्र में प्रत्येक किस्म के लिए सूक्ष्म रूप से उत्पन्न होते हैं। एल-फलन के मानों पर बलोच-काटो अनुमान पूर्वाकलन करता है, कि ये समूह सूक्ष्म रूप से उत्पन्न होते हैं। इसके अतिरिक्त चक्रों के समूह का रैंक मॉडुलो होमोलॉजिकल तुल्यता, और चक्रों के समूह का भी सामान्य रूप से शून्य के बराबर है, निश्चित पूर्णांक बिंदुओं पर दी गई विविधता के एल-फलन के लुप्त होने के क्रम के बराबर होना चाहिए। बीजगणितीय k-सिद्धांत में बास अनुमान से इन रैंकों की परिमितता का भी पालन होगा।
  • एक समतल जटिल प्रक्षेपी विविधता x के लिए, हॉज अनुमान चाउ समूहों से एकवचन कोहोलॉजी के लिए चक्र मानचित्र की छवि (तर्कों Q के साथ टेंसर उत्पाद) की पूर्वाकलन करता है। एक सूक्ष्म रूप से उत्पन्न क्षेत्र (जैसे एक परिमित क्षेत्र या संख्या क्षेत्र) पर एक समतल प्रक्षेप्य विविधता के लिए, टेट अनुमान चाउ समूहों से एल-एडिक कोहोलॉजी के चक्र मानचित्र की छवि (Ql के साथ तन्यता) का पूर्वाकलन करता है।
  • किसी भी क्षेत्र पर समतल प्रक्षेपी किस्म x के लिए, बलोच-बेइलिन्सन अनुमान मजबूत गुणों के साथ x के चाउ समूहों (तर्कसंगत के साथ तन्यता) पर एक निस्पंदन की पूर्वाकलन करता है।[9] अनुमान x के अद्वितीय या ईटेल कोहोलॉजी और x के चाउ समूहों के बीच एक तंग संबंध का संकेत देता है।
उदाहरण के लिए, X को एक समतल जटिल प्रक्षेप्य सतह होने दें। एक्स मैप्स पर शून्य-चक्र का चाउ समूह डिग्री होमोमोर्फिज्म द्वारा पूर्णांकों पर K को कर्नेल होने दें। यदि ज्यामितीय जीनस h0(X, Ω2) शून्य नहीं होता है, तो डेविड ममफोर्ड ने दिखाया कि, K अनंत-आयामी होते है, X पर शून्य-चक्रों के किसी परिमित-आयामी सहलक्षणीय का प्रतिरूप नहीं होता है।[10] तथा बलोच-बेइलिनसन अनुमान एक संतोषजनक बातचीत का अर्थ होगा कि, ज्यामितीय जीनस शून्य के साथ समतल जटिल प्रक्षेपी सतह x के लिए, k परिमित-आयामी होना चाहिए एवं अधिक सटीक रूप से इसे x के अल्बनीज किस्म के जटिल बिंदुओं के समूह के लिए आइसोमोर्फिक रूप से छायाचित्र करना चाहिए।[11]

वेरिएंट (रूपांतर)

द्विचर सिद्धांत

विलियन फुल्टन और मैकफ़र्सन ने संक्रियात्मक चाउ रिंग को परिभाषित करके चाउ रिंग को अद्वितीय किस्मों तक बढ़ाया और सामान्य रूप से योजनाओं के किसी भी आकारिता से जुड़े एक द्विपरिवर्ती सिद्धांत को परिभाषित किया।[12] द्विपरिवर्तक सिद्धांत सहसंयोजक और प्रतिपरिवर्ती कार्यकर्ताओं की एक जोड़ी होती है, जो एक मानचित्र को क्रमशः एक समूह और एक रिंग प्रदान करता है। यह एक कोहोलॉजी सिद्धांत को सामान्यीकृत करता है, जो कि एक विरोधाभासी कार्यकर्ता होता है, तथा अंतरिक्ष रिंग अर्थात् एक सह-विज्ञान की रिंग प्रदान करता है। बिवेरिएंट नाम इस तथ्य को यह संदर्भित करता है कि सिद्धांत में सहपरिवर्ती और प्रतिपरिवर्ती दोनों प्रकार के कारक सम्मिलित हैं।[13]

यह एक अर्थ में चाउ रिंग का अद्वितीय किस्मों के लिए सबसे प्रारंभिक विस्तार है। अन्य सिद्धांत जैसे मोटिविक कोहोलॉजी मैप टू संक्रियात्मक चाउ रिंग आदि।[14]

अन्य प्रकार

अंकगणितीय चाउ समूह Q से अधिक किस्मों के चाउ समूहों का एक समामेलन होता है, जिसमें एक घटक एन्कोडिंग अरकेलोव-सैद्धांतिक जानकारी है, जो कि संबंधित जटिल मैनिफोल्ड पर अंतर रूप होता है।

एक क्षेत्र पर परिमित प्रकार की योजनाओं के चाउ समूह का सिद्धांत सरलता पूर्वक बीजगणितीय रिक्त स्थान तक फैला हुआ है। इस विस्तार का मुख्य लाभ यह है कि बाद की श्रेणी में भागफल बनाना सरल होता है और इस प्रकार बीजगणितीय रिक्त स्थान के समतुल्य चाउ समूहों पर विचार करना अधिक स्वाभाविक है। एक बहुत अधिक दुर्जेय विस्तार एक स्टैक का चाउ समूह है, जिसका निर्माण केवल कुछ विशेष स्थिति में किया गया है और विशेष रूप से एक आभासी मौलिक वर्ग की समझ बनाने के लिए इसकी आवश्यकता होती है।

इतिहास

19वीं शताब्दी के दौरान विभाजकों की तर्कसंगत तुल्यता को रेखीय तुल्यता के रूप में जाना जाता है। एवं इसका विभिन्न रूपों में अध्ययन किया गया, जिससे संख्या सिद्धांत में आदर्श वर्ग समूह और बीजगणितीय वक्रों के सिद्धांत में जैकोबियन विविधता का मार्ग प्रशस्त हुआ। उच्च-कोडिमेंशन चक्रों के लिए, 1930 के दशक में फ्रांसेस्को सेवेरी द्वारा तर्कसंगत तुल्यता प्रस्तुत की गई थी। 1956 में, वेई-लियांग चाउ ने एक प्रभावशाली प्रमाण दिया कि, चाउ के मूविंग लेम्मा का उपयोग करते हुए प्रतिच्छेदन उत्पाद एक समतल अर्ध-प्रक्षेपी विविधता के लिए चक्र सापेक्ष तर्कसंगत तुल्यता पर अच्छी तरह से परिभाषित है। 1970 के दशक में प्रारम्भ करते हुए, फुल्टन और मैकफर्सन ने चाउ समूहों के लिए वर्तमान मानक आधार दिया, जहाँ भी संभव अद्वितीय किस्मों के साथ काम करना उनके सिद्धांत में, समतल किस्मों के लिए प्रतिच्छेदन उत्पाद का निर्माण सामान्य शंकु के विरूपण द्वारा किया जाता है।[15]

यह भी देखें

संदर्भ

उद्धरण

  1. Fulton. Intersection Theory, section 1.2 and Appendix A.3.
  2. Fulton, Intersection Theory, section 8.1.
  3. Fulton, Intersection Theory, Proposition 1.8.
  4. Bloch, Algebraic cycles and higher K-groups; Voevodsky, Triangulated categories of motives over a field, section 2.2 and Proposition 4.2.9.
  5. Fulton, Intersection Theory, section 19.1
  6. Voisin, Hodge Theory and Complex Algebraic Geometry, v. 1, section 12.3.3; v. 2, Theorem 9.24.
  7. Deligne, Cohomologie Etale (SGA 4 1/2), Expose 4.
  8. Fulton, Intersection Theory, section 3.2 and Example 8.3.3.
  9. Voisin, Hodge Theory and Complex Algebraic Geometry, v. 2, Conjecture 11.21.
  10. Voisin, Hodge Theory and Complex Algebraic Geometry, v. 2, Theorem 10.1.
  11. Voisin, Hodge Theory and Complex Algebraic Geometry, v. 2, Ch. 11.
  12. Fulton, Intersection Theory, Chapter 17.
  13. Fulton, William; MacPherson, Robert (1981). एकवचन स्थान के अध्ययन के लिए श्रेणीबद्ध ढांचा (in English). American Mathematical Society. ISBN 9780821822432.
  14. B. Totaro, Chow groups, Chow cohomology and linear varieties
  15. Fulton, Intersection Theory, Chapters 5, 6, 8.


परिचयात्मक

  • Eisenbud, David; Harris, Joe, 3264 and All That: A Second Course in Algebraic Geometry


उन्नत

वर्ग:बीजगणितीय ज्यामिति श्रेणी:प्रतिच्छेदन सिद्धांत श्रेणी:बीजीय ज्यामिति के टोपोलॉजिकल तरीके श्रेणी:चीनी गणितीय खोजें|झोउ, वेइलियांग