सिलिकॉन फोटोमल्टीप्लायर: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
Line 1: Line 1:
[[Image:SiPM IRST.JPG|300px|thumb|ट्रेंटो, इटली में स्थित FBK अनुसंधान केंद्र (पूर्व में आईआरएसटी) द्वारा निर्मित पहले SiPM में से एक।]]सिलिकॉन फोटोमल्टीप्लायर, जिन्हें साहित्यिक भाषा में अधिकांशतः SiPM कहा जाता है, [[सॉलिड-स्टेट इलेक्ट्रॉनिक्स]] हैं। सामान्य सिलिकॉन सब्सट्रेट पर प्रयुक्त [[सिंगल-फोटॉन हिमस्खलन डायोड]] (एसपीएडी) पर आधारित सॉलिड-स्टेट सिंगल-फोटॉन-सेंसिटिव उपकरण।<ref>{{citation |url=https://indico.cern.ch/event/117424/contributions/1329247/attachments/56777/81753/STMicroelectronics_SIPM_CERN_2011-02-17.pdf |title=Silicon Photomultiplier Technology at STMicroelectronics |last=Mascotto |first=Massimo |date=17 February 2011 |access-date=25 July 2020}}</ref> प्रत्येक एसपीएडी का आयाम 10 से 100 माइक्रोमीटर तक भिन्न हो सकता है, और उनका घनत्व 10000 प्रति वर्ग मिलीमीटर तक हो सकता है। SiPM में प्रत्येक एसपीएडी सिंगल-फोटॉन हिमस्खलन डायोड में संचालित होता है और एक धातु या [[पॉलीसिलिकॉन]] क्वेंचिंग रेसिस्टर द्वारा दूसरों के साथ युग्मित होता है। चूंकि उपकरण डिजिटल/स्विचिंग मोड में काम करता है।  
[[Image:SiPM IRST.JPG|300px|thumb|ट्रेंटो, इटली में स्थित FBK अनुसंधान केंद्र (पूर्व में आईआरएसटी) द्वारा निर्मित पहले SiPM में से एक।]]'''सिलिकॉन फोटोमल्टीप्लायर''', जिन्हें साहित्यिक भाषा में अधिकांशतः SiPM कहा जाता है, [[सॉलिड-स्टेट इलेक्ट्रॉनिक्स]] हैं। सामान्य सिलिकॉन सब्सट्रेट पर प्रयुक्त [[सिंगल-फोटॉन हिमस्खलन डायोड]] (एसपीएडी) पर आधारित सॉलिड-स्टेट सिंगल-फोटॉन-सेंसिटिव उपकरण।<ref>{{citation |url=https://indico.cern.ch/event/117424/contributions/1329247/attachments/56777/81753/STMicroelectronics_SIPM_CERN_2011-02-17.pdf |title=Silicon Photomultiplier Technology at STMicroelectronics |last=Mascotto |first=Massimo |date=17 February 2011 |access-date=25 July 2020}}</ref> प्रत्येक एसपीएडी का आयाम 10 से 100 माइक्रोमीटर तक भिन्न हो सकता है, और उनका घनत्व 10000 प्रति वर्ग मिलीमीटर तक हो सकता है। SiPM में प्रत्येक एसपीएडी सिंगल-फोटॉन हिमस्खलन डायोड में संचालित होता है और एक धातु या [[पॉलीसिलिकॉन]] क्वेंचिंग रेसिस्टर द्वारा दूसरों के साथ युग्मित होता है। चूंकि उपकरण डिजिटल/स्विचिंग मोड में काम करता है।  


अधिकांश एसआईपीएम [[एनालॉग डिवाइस|एनालॉग उपकरण]] हैं क्योंकि सभी माइक्रोकेल्स समानांतर में पढ़े जाते हैं, जिससे वर्ग मिलीमीटर क्षेत्र के साथ उपकरण के लिए  फोटॉन से 1000 फोटॉन तक गतिशील रेंज के अन्दर सिग्नल उत्पन्न करना संभव हो जाता है। [[ LIDAR का |लिडार का]] अनुप्रयोगों के लिए अधिक उन्नत रीडआउट योजनाओं का उपयोग किया जाता है।<ref>[http://www.st.com/content/ccc/resource/technical/document/datasheet/group3/7d/85/c8/95/fb/3b/4e/2d/DM00452094/files/DM00452094.pdf/jcr:content/translations/en.DM00452094.pdf A new generation, long distance ranging Time-of-Flight sensor based on ST’s FlightSense™ technology]</ref> आपूर्ति वोल्टेज (''V''<sub>b</sub>) उपयोग की गई एपीडी तकनीक पर निर्भर करता है और सामान्यतः 20 V और 100 V के बीच भिन्न होता है, इस प्रकार पारंपरिक [[फोटोमल्टीप्लायर ट्यूब]] (पीएमटी) ऑपरेशन के लिए आवश्यक वोल्टेज से 15 से 75 गुना कम होता है।
अधिकांश एसआईपीएम [[एनालॉग डिवाइस|एनालॉग उपकरण]] हैं क्योंकि सभी माइक्रोकेल्स समानांतर में पढ़े जाते हैं, जिससे वर्ग मिलीमीटर क्षेत्र के साथ उपकरण के लिए  फोटॉन से 1000 फोटॉन तक गतिशील रेंज के अन्दर सिग्नल उत्पन्न करना संभव हो जाता है। [[ LIDAR का |लिडार का]] अनुप्रयोगों के लिए अधिक उन्नत रीडआउट योजनाओं का उपयोग किया जाता है।<ref>[http://www.st.com/content/ccc/resource/technical/document/datasheet/group3/7d/85/c8/95/fb/3b/4e/2d/DM00452094/files/DM00452094.pdf/jcr:content/translations/en.DM00452094.pdf A new generation, long distance ranging Time-of-Flight sensor based on ST’s FlightSense™ technology]</ref> आपूर्ति वोल्टेज (''V''<sub>b</sub>) उपयोग की गई एपीडी तकनीक पर निर्भर करता है और सामान्यतः 20 V और 100 V के बीच भिन्न होता है, इस प्रकार पारंपरिक [[फोटोमल्टीप्लायर ट्यूब]] (पीएमटी) ऑपरेशन के लिए आवश्यक वोल्टेज से 15 से 75 गुना कम होता है।

Latest revision as of 12:04, 25 September 2023

ट्रेंटो, इटली में स्थित FBK अनुसंधान केंद्र (पूर्व में आईआरएसटी) द्वारा निर्मित पहले SiPM में से एक।

सिलिकॉन फोटोमल्टीप्लायर, जिन्हें साहित्यिक भाषा में अधिकांशतः SiPM कहा जाता है, सॉलिड-स्टेट इलेक्ट्रॉनिक्स हैं। सामान्य सिलिकॉन सब्सट्रेट पर प्रयुक्त सिंगल-फोटॉन हिमस्खलन डायोड (एसपीएडी) पर आधारित सॉलिड-स्टेट सिंगल-फोटॉन-सेंसिटिव उपकरण।[1] प्रत्येक एसपीएडी का आयाम 10 से 100 माइक्रोमीटर तक भिन्न हो सकता है, और उनका घनत्व 10000 प्रति वर्ग मिलीमीटर तक हो सकता है। SiPM में प्रत्येक एसपीएडी सिंगल-फोटॉन हिमस्खलन डायोड में संचालित होता है और एक धातु या पॉलीसिलिकॉन क्वेंचिंग रेसिस्टर द्वारा दूसरों के साथ युग्मित होता है। चूंकि उपकरण डिजिटल/स्विचिंग मोड में काम करता है।

अधिकांश एसआईपीएम एनालॉग उपकरण हैं क्योंकि सभी माइक्रोकेल्स समानांतर में पढ़े जाते हैं, जिससे वर्ग मिलीमीटर क्षेत्र के साथ उपकरण के लिए फोटॉन से 1000 फोटॉन तक गतिशील रेंज के अन्दर सिग्नल उत्पन्न करना संभव हो जाता है। लिडार का अनुप्रयोगों के लिए अधिक उन्नत रीडआउट योजनाओं का उपयोग किया जाता है।[2] आपूर्ति वोल्टेज (Vb) उपयोग की गई एपीडी तकनीक पर निर्भर करता है और सामान्यतः 20 V और 100 V के बीच भिन्न होता है, इस प्रकार पारंपरिक फोटोमल्टीप्लायर ट्यूब (पीएमटी) ऑपरेशन के लिए आवश्यक वोल्टेज से 15 से 75 गुना कम होता है।

SiPM के लिए विशिष्ट विनिर्देश:

  • फोटो डिटेक्शन एफिशिएंसी (पीडीई) उपकरण और तरंग दैर्ध्य के आधार पर 20 से 50% तक होती है, यह पारंपरिक फोटोमल्टीप्लायर ट्यूब के समान है।
  • लाभ (G) भी पीएमटी के समान है, लगभग 106
  • G बनाम Vb निर्भरता रैखिक है और पीएमटी के स्थितियों में विद्युत् नियम का पालन नहीं करती है
  • टाइमिंग जिटर को लगभग 100-300 पीएस के फोटॉन आगमन समय रिज़ॉल्यूशन के लिए अनुकूलित किया गया है
  • सिग्नल क्षय समय उत्तेजना घटना के अन्दर फोटोइलेक्ट्रॉन संख्या के वर्गमूल के व्युत्क्रमानुपाती होता है
  • वैक्यूम पीएमटी के विपरीत, सिग्नल पैरामीटर बाहरी चुंबकीय क्षेत्रों से व्यावहारिक रूप से स्वतंत्र हैं
  • आफ्टरपल्सिंग प्रायिकता (3-30%), जिसे सिंगल फोटॉन आगमन के बाद नकली दूसरी दालों की संभावना के रूप में परिभाषित किया गया है
  • डार्क काउंट डेंसिटी रोशनी के अभाव में पल्स की आवृत्ति है (105-106 पल्स/सेकंड/मिमी2)
  • छोटे आयाम और कम वोल्टेज बहुत कॉम्पैक्ट, हल्के और मजबूत यांत्रिक डिजाइन की अनुमति देते हैं

मेडिकल इमेजिंग के लिए SiPM पोजीट्रान एमिशन टोमोग्राफी और एसपीईसीटी इमेजिंग में पारंपरिक पीएमटी के प्रतिस्थापन के लिए आकर्षक स्थिति हैं, क्योंकि वे कम वोल्टेज और तेज़ प्रतिक्रिया के साथ उच्च लाभ प्रदान करते हैं, वे बहुत कॉम्पैक्ट हैं और चुंबकीय अनुनाद सेटअप के साथ संगत हैं। फिर भी, अभी भी कई चुनौतियाँ हैं, उदाहरण के लिए, SiPM को बड़े मैट्रिसेस, सिग्नल प्रवर्धन और डिजिटलीकरण के लिए अनुकूलन की आवश्यकता है।

वैक्यूम ट्यूब फोटोमल्टीप्लायरों की तुलना

लाभ

पारंपरिक फोटोमल्टीप्लायर ट्यूब की तुलना में, फोटोइलेक्ट्रॉन लाभ सामान्यतः अधिक नियतात्मक होता है, जिसके परिणामस्वरूप कम या नगण्य अतिरिक्त शोर कारक होता है। परिणामस्वरूप, पता लगाए गए फोटोन की निश्चित संख्या के लिए एसएनआर (सिग्नल/शोर अनुपात) पीएमटी से अधिक हो सकता है। इसके विपरीत, पीएमटी के स्टोचैस्टिक लाभ को समान एसएनआर प्राप्त करने के लिए सामान्यतः अधिक ज्ञात फोटॉनों की आवश्यकता होती है।

कई विक्रेताओं द्वारा सिलिकॉन इलेक्ट्रॉनिक्स का बड़े पैमाने पर उत्पादन SiPMs को वैक्यूम ट्यूबों के सापेक्ष बहुत सस्ते में बनाने की अनुमति देता है।

बायस वोल्टेज 10-100 गुना कम है, इलेक्ट्रॉनिक्स को सरल बनाता है।

लाल से निकट-अवरक्त में, सिलिकॉन उपलब्ध पीएमटी फोटोकैथोड सामग्री की तुलना में बहुत अधिक क्वांटम दक्षता को सक्षम बनाता है।

डायनेमिक रेंज पीएमटी से बड़े परिमाण के आदेश हो सकते हैं यदि बड़ी संख्या में एसपीएडी को साथ रखा जाता है, जिससे तेजी से इमेजिंग दर या संतृप्ति के बिना उच्च एसएनआर को सक्षम किया जा सकता है।

हानि

डार्क करंट (भौतिकी) सामान्यतः किसी दिए गए तापमान पर पीएमटी की तुलना में बहुत अधिक होता है। इस प्रकार, SiPM को सबएम्बिएंट कूलिंग की आवश्यकता हो सकती है जबकि उसी एप्लिकेशन में उपयोग किए जाने वाले पीएमटी को नहीं, जिसके परिणामस्वरूप जटिलता और लागत में वृद्धि होती है। इसी तरह, पीएमटी की तुलना में प्रति क्षेत्र अधिक डार्क काउंट के कारण बड़े सक्रिय क्षेत्रों को प्राप्त करना कठिन हो सकता है।

एसआईपीएम की आवेग प्रतिक्रिया में जटिल, बहुआयामी आकार होता है। पीएमटी के सापेक्ष, सममित पल्स आकार या समान आवृत्ति प्रतिक्रिया प्राप्त करने के लिए अधिक जटिल एनालॉग फ़िल्टरिंग या पल्स को आकार देने वाले इलेक्ट्रॉनिक्स की आवश्यकता हो सकती है।

हिमस्खलन फोटोडायोड्स की तुलना

पारंपरिक हिमस्खलन फोटोडायोड्स (एपीडीs) प्रकाश अवशोषण के उत्तर में प्रवर्धित एनालॉग करंट भी उत्पन्न करते हैं। चुकीं, एपीडी में, कुल लाभ बहुत कम होता है और अतिरिक्त शोर कारक बहुत अधिक होता है। इसके विपरीत, क्वांटम दक्षता अधिक और डार्क नॉइज़ कम हो सकती है।

यह भी देखें

  • फोटोमल्टीप्लायर ट्यूब

संदर्भ

  1. Mascotto, Massimo (17 February 2011), Silicon Photomultiplier Technology at STMicroelectronics (PDF), retrieved 25 July 2020
  2. A new generation, long distance ranging Time-of-Flight sensor based on ST’s FlightSense™ technology