अव्युत्क्रमणीय फलन (सिंगुलर फंक्शन): Difference between revisions
No edit summary |
No edit summary |
||
Line 7: | Line 7: | ||
एकल फलन का मानक उदाहरण [[कैंटर फ़ंक्शन|कैंटर फलन]] है, जिसे कभी-कभी डेविल्स की सीढ़ी भी कहा जाता है (यह शब्द सामान्य रूप से एकल कार्यों के लिए भी उपयोग किया जाता है)। चूँकि, ऐसे अन्य कार्य भी हैं जिन्हें यह नाम दिया गया है। एक को वृत्त मानचित्र के रूप में परिभाषित किया गया है। | एकल फलन का मानक उदाहरण [[कैंटर फ़ंक्शन|कैंटर फलन]] है, जिसे कभी-कभी डेविल्स की सीढ़ी भी कहा जाता है (यह शब्द सामान्य रूप से एकल कार्यों के लिए भी उपयोग किया जाता है)। चूँकि, ऐसे अन्य कार्य भी हैं जिन्हें यह नाम दिया गया है। एक को वृत्त मानचित्र के रूप में परिभाषित किया गया है। | ||
यदि सभी x ≤ a के लिए f(x) = 0 और सभी x ≥ b के लिए f(x) = 1 है, तो फलन को यादृच्छिक चर के लिए संचयी वितरण फलन का प्रतिनिधित्व करने के लिए लिया जा सकता है जो न तो [[असतत यादृच्छिक चर]] है (क्योंकि संभाव्यता प्रत्येक बिंदु के लिए शून्य है) और न ही | यदि सभी x ≤ a के लिए f(x) = 0 और सभी x ≥ b के लिए f(x) = 1 है, तो फलन को यादृच्छिक चर के लिए संचयी वितरण फलन का प्रतिनिधित्व करने के लिए लिया जा सकता है जो न तो [[असतत यादृच्छिक चर]] है (क्योंकि संभाव्यता प्रत्येक बिंदु के लिए शून्य है) और न ही सम्पूर्ण रूप में [[निरंतर यादृच्छिक चर]] (चूंकि संभाव्यता घनत्व फलन हर स्थान शून्य है)। | ||
उदाहरण के लिए, एकल कार्य [[ठोस]] और चुम्बकों में स्थानिक रूप से संशोधित चरणों या संरचनाओं के अनुक्रम के रूप में होते हैं, जिन्हें फ्रेनकेल-कोंटोरोवा मॉडल और एएनएनएनआई मॉडल के साथ-साथ कुछ गतिशील प्रणालियों में प्रोटोटाइपिक फैशन में वर्णित किया गया है। सबसे प्रसिद्ध रूप से, संभवतः, वे भिन्नात्मक क्वांटम हॉल प्रभाव के केंद्र में स्थित हैं। | उदाहरण के लिए, एकल कार्य [[ठोस]] और चुम्बकों में स्थानिक रूप से संशोधित चरणों या संरचनाओं के अनुक्रम के रूप में होते हैं, जिन्हें फ्रेनकेल-कोंटोरोवा मॉडल और एएनएनएनआई मॉडल के साथ-साथ कुछ गतिशील प्रणालियों में प्रोटोटाइपिक फैशन में वर्णित किया गया है। सबसे प्रसिद्ध रूप से, संभवतः, वे भिन्नात्मक क्वांटम हॉल प्रभाव के केंद्र में स्थित हैं। | ||
'''ल प्रणालियों में प्रोटोटाइपिक फैशन में वर्णित किया गया है। सबसे प्रसिद्ध रूप से, संभवतः, वे भिन्नात्मक क्वांटम हॉल | '''ल प्रणालियों में प्रोटोटाइपिक फैशन में वर्णित किया गया है। सबसे प्रसिद्ध रूप से, संभवतः, वे भिन्नात्मक क्वांटम हॉल प्र। सबसे प्रसिद्ध रूप से, संभवतः, वे भिन्नात्मक क्वांटम हॉल प्रभाव के केंद्र में स्थित हैं''' | ||
==एक विलक्षणता वाले कार्यों का | ==एक विलक्षणता वाले कार्यों का उल्लेख करते समय== | ||
सामान्य रूप से [[गणितीय विश्लेषण]], या अधिक विशेष रूप से [[वास्तविक विश्लेषण]] या [[जटिल विश्लेषण]] या [[अंतर समीकरण]] | सामान्य रूप से [[गणितीय विश्लेषण]], या अधिक विशेष रूप से [[वास्तविक विश्लेषण]] या [[जटिल विश्लेषण|स्पष्ट विश्लेषण]] या [[अंतर समीकरण]] पर चर्चा करते समय, ऐसे फलन के लिए यह सामान्य है जिसमें [[गणितीय विलक्षणता]] होती है जिसे 'एकल फलन' के रूप में संदर्भित किया जाता है। यह उन कार्यों के संदर्भ में विशेष रूप से सच है जो बिंदु या सीमा पर अनंत तक विचरण करते हैं। उदाहरण के लिए, कोई कह सकता है, 1/x मूल बिंदु पर एकल बन जाता है, इसलिए 1/x विलक्षण फलन है। | ||
[[वितरण (गणित)]] या सामान्यीकृत फलन विश्लेषण नामक विषय में विलक्षणताओं वाले कार्यों के साथ काम करने की उन्नत तकनीक विकसित की गई है। [[कमजोर व्युत्पन्न]] को परिभाषित किया गया है जो एकल कार्यों को आंशिक अंतर समीकरणों आदि में उपयोग करने की अनुमति देता है। | [[वितरण (गणित)]] या सामान्यीकृत फलन विश्लेषण नामक विषय में विलक्षणताओं वाले कार्यों के साथ काम करने की उन्नत तकनीक विकसित की गई है। [[कमजोर व्युत्पन्न]] को परिभाषित किया गया है जो एकल कार्यों को आंशिक अंतर समीकरणों आदि में उपयोग करने की अनुमति देता है। |
Revision as of 09:07, 21 September 2023
गणित में, अंतराल (गणित) [a, b] पर वास्तविक-मूल्यवान फलन f को 'एकल' कहा जाता है यदि इसमें निम्नलिखित गुण हैं:
- f [a, b] पर सतत कार्य है। (**)
- माप (गणित) 0 का समुच्चय N उपस्थित है, जैसे कि N के बाहर सभी x के लिए व्युत्पन्न f′(x) उपस्थित है और शून्य है, अर्थात, f का व्युत्पन्न लगभग हर स्थान गायब हो जाता है।
- f [a, b] पर अचर है।
एकल फलन का मानक उदाहरण कैंटर फलन है, जिसे कभी-कभी डेविल्स की सीढ़ी भी कहा जाता है (यह शब्द सामान्य रूप से एकल कार्यों के लिए भी उपयोग किया जाता है)। चूँकि, ऐसे अन्य कार्य भी हैं जिन्हें यह नाम दिया गया है। एक को वृत्त मानचित्र के रूप में परिभाषित किया गया है।
यदि सभी x ≤ a के लिए f(x) = 0 और सभी x ≥ b के लिए f(x) = 1 है, तो फलन को यादृच्छिक चर के लिए संचयी वितरण फलन का प्रतिनिधित्व करने के लिए लिया जा सकता है जो न तो असतत यादृच्छिक चर है (क्योंकि संभाव्यता प्रत्येक बिंदु के लिए शून्य है) और न ही सम्पूर्ण रूप में निरंतर यादृच्छिक चर (चूंकि संभाव्यता घनत्व फलन हर स्थान शून्य है)।
उदाहरण के लिए, एकल कार्य ठोस और चुम्बकों में स्थानिक रूप से संशोधित चरणों या संरचनाओं के अनुक्रम के रूप में होते हैं, जिन्हें फ्रेनकेल-कोंटोरोवा मॉडल और एएनएनएनआई मॉडल के साथ-साथ कुछ गतिशील प्रणालियों में प्रोटोटाइपिक फैशन में वर्णित किया गया है। सबसे प्रसिद्ध रूप से, संभवतः, वे भिन्नात्मक क्वांटम हॉल प्रभाव के केंद्र में स्थित हैं।
ल प्रणालियों में प्रोटोटाइपिक फैशन में वर्णित किया गया है। सबसे प्रसिद्ध रूप से, संभवतः, वे भिन्नात्मक क्वांटम हॉल प्र। सबसे प्रसिद्ध रूप से, संभवतः, वे भिन्नात्मक क्वांटम हॉल प्रभाव के केंद्र में स्थित हैं
एक विलक्षणता वाले कार्यों का उल्लेख करते समय
सामान्य रूप से गणितीय विश्लेषण, या अधिक विशेष रूप से वास्तविक विश्लेषण या स्पष्ट विश्लेषण या अंतर समीकरण पर चर्चा करते समय, ऐसे फलन के लिए यह सामान्य है जिसमें गणितीय विलक्षणता होती है जिसे 'एकल फलन' के रूप में संदर्भित किया जाता है। यह उन कार्यों के संदर्भ में विशेष रूप से सच है जो बिंदु या सीमा पर अनंत तक विचरण करते हैं। उदाहरण के लिए, कोई कह सकता है, 1/x मूल बिंदु पर एकल बन जाता है, इसलिए 1/x विलक्षण फलन है।
वितरण (गणित) या सामान्यीकृत फलन विश्लेषण नामक विषय में विलक्षणताओं वाले कार्यों के साथ काम करने की उन्नत तकनीक विकसित की गई है। कमजोर व्युत्पन्न को परिभाषित किया गया है जो एकल कार्यों को आंशिक अंतर समीकरणों आदि में उपयोग करने की अनुमति देता है।
यह भी देखें
- पूर्ण निरंतरता
- गणितीय विलक्षणता
- सामान्यीकृत कार्य
- वितरण (गणित)
- मिन्कोव्स्की का प्रश्न-चिह्न कार्य
संदर्भ
(**) This condition depends on the references [1]
- ↑ "Singular function", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
- Lebesgue, H. (1955–1961), Theory of functions of a real variable, F. Ungar
- Halmos, P.R. (1950), Measure theory, v. Nostrand
- Royden, H.L (1988), Real Analysis, Prentice-Hall, Englewood Cliffs, New Jersey
- Lebesgue, H. (1928), Leçons sur l'intégration et la récherche des fonctions primitives, Gauthier-Villars