अव्युत्क्रमणीय फलन (सिंगुलर फंक्शन): Difference between revisions
m (Abhishek moved page विचित्र फलन to विचित्र फलन (सिंगुलर फंक्शन) without leaving a redirect) |
No edit summary |
||
Line 1: | Line 1: | ||
[[Image:Devils-staircase.svg|thumb|right|450px|[[वृत्त मानचित्र]] की घुमावदार संख्या का ग्राफ़ विलक्षण फलन का उदाहरण है।]]गणित में, [[अंतराल (गणित)]] [a, b] पर वास्तविक-मूल्यवान फलन f को ' | [[Image:Devils-staircase.svg|thumb|right|450px|[[वृत्त मानचित्र]] की घुमावदार संख्या का ग्राफ़ विलक्षण फलन का उदाहरण है।]]गणित में, [[अंतराल (गणित)|मध्यान्तर (गणित)]] [a, b] पर वास्तविक-मूल्यवान फलन f को 'विलक्षण' कहा जाता है यदि इसमें निम्नलिखित गुण हैं: | ||
*f [a, b] पर [[सतत कार्य]] है। (**) | *f [a, b] पर [[सतत कार्य|सतत]] है। (**) | ||
*[[माप (गणित)]] 0 का समुच्चय N उपस्थित है, जैसे कि N के बाहर सभी x के लिए व्युत्पन्न f{{prime}}(x) उपस्थित है और शून्य है, अर्थात, f का व्युत्पन्न [[लगभग हर जगह| | *[[माप (गणित)]] 0 का समुच्चय N उपस्थित है, जैसे कि N के बाहर सभी x के लिए व्युत्पन्न f{{prime}}(x) उपस्थित है और शून्य है, अर्थात, f का व्युत्पन्न [[लगभग हर जगह|प्राय: हर स्थान]] विलुप्त हो जाता है। | ||
*f [a, b] पर स्थिर है। | *f [a, b] पर स्थिर है। | ||
''' | '''विलक्षण फलन''' का मानक उदाहरण [[कैंटर फ़ंक्शन|कैंटर फलन]] है, जिसे कभी-कभी डेविल्स की सीढ़ी भी कहा जाता है (यह शब्द सामान्य रूप से विलक्षण फलनों के लिए भी उपयोग किया जाता है)। चूँकि, ऐसे अन्य कार्य भी हैं जिन्हें यह नाम दिया गया है। एक को वृत्त मानचित्र के रूप में परिभाषित किया गया है। | ||
यदि सभी x ≤ a के लिए f(x) = 0 और सभी x ≥ b के लिए f(x) = 1 है, तो फलन को यादृच्छिक | यदि सभी x ≤ a के लिए f(x) = 0 और सभी x ≥ b के लिए f(x) = 1 है, तो फलन को यादृच्छिक चर के लिए संचयी वितरण फलन का प्रतिनिधित्व करने के लिए लिया जा सकता है जो न तो [[असतत यादृच्छिक चर|असतत यादृच्छिक]] चर है (क्योंकि संभाव्यता प्रत्येक बिंदु के लिए शून्य है) और न ही सम्पूर्ण रूप में [[निरंतर यादृच्छिक चर|निरंतर यादृच्छिक]] चर (चूंकि संभाव्यता घनत्व फलन हर स्थान शून्य है)। | ||
उदाहरण के लिए, | उदाहरण के लिए, विलक्षण फलन [[ठोस]] और चुम्बकों में स्थानिक रूप से संशोधित चरणों या संरचनाओं के अनुक्रम के रूप में होते हैं, जिन्हें फ्रेनकेल-कोंटोरोवा मॉडल और एएनएनएनआई मॉडल के साथ-साथ कुछ गतिशील प्रणालियों में प्रोटोटाइपिक फैशन में वर्णित किया गया है। सबसे प्रसिद्ध रूप से, संभवतः, वे भिन्नात्मक क्वांटम हॉल प्रभाव के केंद्र में स्थित हैं। | ||
== | ==विलक्षण फलन का उल्लेख करते समय== | ||
सामान्य रूप से [[गणितीय विश्लेषण]], या अधिक विशेष रूप से [[वास्तविक विश्लेषण]] या [[जटिल विश्लेषण|स्पष्ट विश्लेषण]] या [[अंतर समीकरण]] पर विचार करते समय, ऐसे फलन के लिए यह सामान्य है जिसमें [[गणितीय विलक्षणता]] होती है जिसे ' | सामान्य रूप से [[गणितीय विश्लेषण]], या अधिक विशेष रूप से [[वास्तविक विश्लेषण]] या [[जटिल विश्लेषण|स्पष्ट विश्लेषण]] या [[अंतर समीकरण]] पर विचार करते समय, ऐसे फलन के लिए यह सामान्य है जिसमें [[गणितीय विलक्षणता]] होती है जिसे 'विलक्षण फलन' के रूप में संदर्भित किया जाता है। यह उन फलन के संदर्भ में विशेष रूप से सच है जो बिंदु या सीमा पर अनंत तक विचरण करते हैं। उदाहरण के लिए, कोई कह सकता है,जो की 1/x मूल बिंदु पर विलक्षण बन जाता है, इसलिए 1/x विलक्षण फलन है। | ||
[[वितरण (गणित)]] या सामान्यीकृत फलन विश्लेषण नामक विषय में विलक्षणताओं वाले | [[वितरण (गणित)]] या सामान्यीकृत फलन विश्लेषण नामक विषय में विलक्षणताओं वाले फलन के साथ काम करने की उन्नत तकनीक विकसित की गई है। [[कमजोर व्युत्पन्न|अशक्त व्युत्पन्न]] को परिभाषित किया गया है जो विलक्षण फलनों को आंशिक अंतर समीकरणों आदि में उपयोग करने की अनुमति देता है। | ||
==यह भी देखें== | ==यह भी देखें== | ||
* [[पूर्ण निरंतरता]] | * [[पूर्ण निरंतरता]] | ||
* गणितीय विलक्षणता | * गणितीय विलक्षणता | ||
* सामान्यीकृत | * सामान्यीकृत फलन | ||
* वितरण (गणित) | * वितरण (गणित) | ||
* मिन्कोव्स्की का प्रश्न-चिह्न | * मिन्कोव्स्की का प्रश्न-चिह्न फलन | ||
==संदर्भ== | ==संदर्भ== |
Revision as of 10:19, 22 September 2023
गणित में, मध्यान्तर (गणित) [a, b] पर वास्तविक-मूल्यवान फलन f को 'विलक्षण' कहा जाता है यदि इसमें निम्नलिखित गुण हैं:
- f [a, b] पर सतत है। (**)
- माप (गणित) 0 का समुच्चय N उपस्थित है, जैसे कि N के बाहर सभी x के लिए व्युत्पन्न f′(x) उपस्थित है और शून्य है, अर्थात, f का व्युत्पन्न प्राय: हर स्थान विलुप्त हो जाता है।
- f [a, b] पर स्थिर है।
विलक्षण फलन का मानक उदाहरण कैंटर फलन है, जिसे कभी-कभी डेविल्स की सीढ़ी भी कहा जाता है (यह शब्द सामान्य रूप से विलक्षण फलनों के लिए भी उपयोग किया जाता है)। चूँकि, ऐसे अन्य कार्य भी हैं जिन्हें यह नाम दिया गया है। एक को वृत्त मानचित्र के रूप में परिभाषित किया गया है।
यदि सभी x ≤ a के लिए f(x) = 0 और सभी x ≥ b के लिए f(x) = 1 है, तो फलन को यादृच्छिक चर के लिए संचयी वितरण फलन का प्रतिनिधित्व करने के लिए लिया जा सकता है जो न तो असतत यादृच्छिक चर है (क्योंकि संभाव्यता प्रत्येक बिंदु के लिए शून्य है) और न ही सम्पूर्ण रूप में निरंतर यादृच्छिक चर (चूंकि संभाव्यता घनत्व फलन हर स्थान शून्य है)।
उदाहरण के लिए, विलक्षण फलन ठोस और चुम्बकों में स्थानिक रूप से संशोधित चरणों या संरचनाओं के अनुक्रम के रूप में होते हैं, जिन्हें फ्रेनकेल-कोंटोरोवा मॉडल और एएनएनएनआई मॉडल के साथ-साथ कुछ गतिशील प्रणालियों में प्रोटोटाइपिक फैशन में वर्णित किया गया है। सबसे प्रसिद्ध रूप से, संभवतः, वे भिन्नात्मक क्वांटम हॉल प्रभाव के केंद्र में स्थित हैं।
विलक्षण फलन का उल्लेख करते समय
सामान्य रूप से गणितीय विश्लेषण, या अधिक विशेष रूप से वास्तविक विश्लेषण या स्पष्ट विश्लेषण या अंतर समीकरण पर विचार करते समय, ऐसे फलन के लिए यह सामान्य है जिसमें गणितीय विलक्षणता होती है जिसे 'विलक्षण फलन' के रूप में संदर्भित किया जाता है। यह उन फलन के संदर्भ में विशेष रूप से सच है जो बिंदु या सीमा पर अनंत तक विचरण करते हैं। उदाहरण के लिए, कोई कह सकता है,जो की 1/x मूल बिंदु पर विलक्षण बन जाता है, इसलिए 1/x विलक्षण फलन है।
वितरण (गणित) या सामान्यीकृत फलन विश्लेषण नामक विषय में विलक्षणताओं वाले फलन के साथ काम करने की उन्नत तकनीक विकसित की गई है। अशक्त व्युत्पन्न को परिभाषित किया गया है जो विलक्षण फलनों को आंशिक अंतर समीकरणों आदि में उपयोग करने की अनुमति देता है।
यह भी देखें
- पूर्ण निरंतरता
- गणितीय विलक्षणता
- सामान्यीकृत फलन
- वितरण (गणित)
- मिन्कोव्स्की का प्रश्न-चिह्न फलन
संदर्भ
(**) This condition depends on the references [1]
- ↑ "Singular function", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
- Lebesgue, H. (1955–1961), Theory of functions of a real variable, F. Ungar
- Halmos, P.R. (1950), Measure theory, v. Nostrand
- Royden, H.L (1988), Real Analysis, Prentice-Hall, Englewood Cliffs, New Jersey
- Lebesgue, H. (1928), Leçons sur l'intégration et la récherche des fonctions primitives, Gauthier-Villars