वेक्टर-मूल्यवान फ़ंक्शन: Difference between revisions
No edit summary |
|||
Line 1: | Line 1: | ||
{{Use American English|date = March 2019}} | {{Use American English|date = March 2019}} | ||
{{Short description|Function valued in a vector space; typically a real or complex one}} | {{Short description|Function valued in a vector space; typically a real or complex one}} | ||
एक वेक्टर-मूल्यवान फ़ंक्शन, जिसे वेक्टर फ़ंक्शन के रूप में भी जाना जाता है, एक या एक से अधिक [[ चर (गणित) ]] का | एक वेक्टर-मूल्यवान फ़ंक्शन, जिसे वेक्टर फ़ंक्शन के रूप में भी जाना जाता है, एक या एक से अधिक [[ चर (गणित) | चर]] का गणितीय फ़ंक्शन है, जिसकी सीमा [[ आयाम |बहुआयामी]] [[ वेक्टर (गणित और भौतिकी) | वेक्टर]] या अनंत-आयामी-वेक्टर का एक सेट है। वेक्टर-मूल्यांकन फ़ंक्शन का इनपुट एक स्केलर या एक वेक्टर हो सकता है (यानी, डोमेन का आयाम 1 या 1 से अधिक हो सकता है), फ़ंक्शन के डोमेन के आयाम का उसकी सीमा के आयाम से कोई संबंध नहीं है। | ||
==उदाहरण: हेलिक्स== | ==उदाहरण: हेलिक्स== | ||
{{further| | {{further|पैरामीट्रिक वक्र}} | ||
[[Image:Vector-valued function-2.png|300px|thumb|right|वेक्टर-मूल्यवान फ़ंक्शन का एक ग्राफ {{math|1='''r'''(''z'') = ⟨2 cos ''z'', 4 sin ''z'', ''z''⟩}} निकट मूल्यांकन किए जाने पर समाधान और वेक्टर की एक श्रृंखला का संकेत देता है {{math|1=''z'' = 19.5}}]]वेक्टर-मूल्यवान फ़ंक्शन का एक सामान्य उदाहरण वह है जो | [[Image:Vector-valued function-2.png|300px|thumb|right|वेक्टर-मूल्यवान फ़ंक्शन का एक ग्राफ {{math|1='''r'''(''z'') = ⟨2 cos ''z'', 4 sin ''z'', ''z''⟩}} निकट मूल्यांकन किए जाने पर समाधान और वेक्टर की एक श्रृंखला का संकेत देता है {{math|1=''z'' = 19.5}}]]वेक्टर-मूल्यवान फ़ंक्शन का एक सामान्य उदाहरण वह है जो [[ वास्तविक संख्या | वास्तविक]] पैरामीटर t पर निर्भर करता है, जो अक्सर[[ समय ]]का प्रतिनिधित्व करता है, परिणाम के रूप में [[ यूक्लिडियन वेक्टर |यूक्लिडियन वेक्टर]] v(t) उत्पन्न करता है। मानक इकाई वैक्टर i, j, k कार्टेसियन 3-स्पेस के संदर्भ में, इन विशिष्ट प्रकार के वेक्टर-मूल्यांकन कार्यों को इस प्रकार के व्यंजकों द्वारा किये जाते हैं: | ||
<math display="block">\mathbf{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}</math> | <math display="block">\mathbf{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}</math> | ||
जहां f(t), g(t) और h(t) पैरामीटर t के | जहां f(t), g(t) और h(t) पैरामीटर t के समन्वय कार्य हैं, और इस वेक्टर-मूल्यवान फ़ंक्शन का डोमेन फ़ंक्शन f, g, और h के डोमेन का प्रतिच्छेदन है। इसे एक अलग संकेतन में भी संदर्भित किया जा सकता है:<math display="block">\mathbf{r}(t) = \langle f(t), g(t), h(t)\rangle</math> | ||
<math display="block">\mathbf{r}(t) = \langle f(t), g(t), h(t)\rangle</math> | |||
2D में, हम समान रूप से वेक्टर- | सदिश r(t) का पृष्ठभाग मूल बिंदु पर और शीर्ष फलन द्वारा मूल्यांकित निर्देशांकों पर है। | ||
ग्राफ़ में दाईं ओर दिखाया गया <math>\langle 2\cos t,\, 4\sin t,\, t\rangle</math> निकट t = 19.5 (6π और 6.5π के बीच; यानी, 3 से कुछ अधिक घूर्णन) वेक्टर फ़ंक्शन का मूल्यांकन है। हेलिक्सएक ऐसा मार्ग है जो वेक्टर के अग्रभाग से खोजा जाता है, क्योंकि t शून्य से 8π तक बढ़ जाता है। | |||
2D में, हम समान रूप से वेक्टर-मूल्यांकन कार्यों के बारे में दर्शा सकते हैं जैसे: | |||
<math display="block">\mathbf{r}(t)=f(t)\mathbf{i}+g(t)\mathbf{j}</math> या | <math display="block">\mathbf{r}(t)=f(t)\mathbf{i}+g(t)\mathbf{j}</math> या | ||
<math display="block">\mathbf{r}(t)=\langle f(t), g(t)\rangle</math> | <math display="block">\mathbf{r}(t)=\langle f(t), g(t)\rangle</math> | ||
== रैखिक | == रैखिक स्थिति == | ||
रैखिक | रैखिक स्थिति में फ़ंक्शन को मैट्रिक के संदर्भ में व्यक्त किया जा सकता है: | ||
:<math>y = Ax,</math> | :<math>y = Ax,</math> | ||
जहां y एक n × 1 आउटपुट वेक्टर | जहां y एक n × 1 आउटपुट वेक्टर, जहां y n x 1 आउटपुट वेक्टर, x k x 1 इनपुट वेक्टर और A n x k [[पैरामीटर]] मैट्रिक्स है। निकटता से संबंधित सजातीय स्थिति ([[ अनुवाद (ज्यामिति) |अनुवाद]] के लिए रैखिक) जहां फ़ंक्शन रूप लेता है | ||
:<math>y = Ax+b,</math> | :<math>y = Ax+b,</math> | ||
जहां इसके | जहां इसके अतिरिक्त b पैरामीटर का n × 1 वेक्टर है। | ||
रैखिक स्थिति अक्सर उत्पन्न होती है, उदाहरण के लिए [[ एकाधिक प्रतिगमन |एकाधिक प्रतिगमन]] {{clarify|reason = Is the affine case also common in multiple regression? If so please edit this paragraph accordingly.|date=December 2021}} में, जहां उदाहरण के लिए n × 1 वेक्टर <math>\hat{y}</math> एक आश्रित चर के अनुमानित मान को k × 1 वेक्टर . | |||
<nowiki>{\displaystyle {\hat {\beta }}}</nowiki> | |||
<nowiki>\displastyle {\hat {\beta }}}</nowiki> | |||
<math>\hat{\beta}</math> (k < n) मॉडल मापदंडों के अनुमानित मूल्यों का: | |||
:<math>\hat{y} = X\hat{\beta},</math> | :<math>\hat{y} = X\hat{\beta},</math> | ||
जिसमें एक्स (पिछले सामान्य रूप में ए की भूमिका निभा रहा है) निश्चित (अनुभवजन्य रूप से आधारित) संख्याओं का एक n × k मैट्रिक्स है। | जिसमें एक्स (पिछले सामान्य रूप में ए की भूमिका निभा रहा है) निश्चित (अनुभवजन्य रूप से आधारित) संख्याओं का एक n × k मैट्रिक्स है। |
Revision as of 13:30, 16 November 2022
एक वेक्टर-मूल्यवान फ़ंक्शन, जिसे वेक्टर फ़ंक्शन के रूप में भी जाना जाता है, एक या एक से अधिक चर का गणितीय फ़ंक्शन है, जिसकी सीमा बहुआयामी वेक्टर या अनंत-आयामी-वेक्टर का एक सेट है। वेक्टर-मूल्यांकन फ़ंक्शन का इनपुट एक स्केलर या एक वेक्टर हो सकता है (यानी, डोमेन का आयाम 1 या 1 से अधिक हो सकता है), फ़ंक्शन के डोमेन के आयाम का उसकी सीमा के आयाम से कोई संबंध नहीं है।
उदाहरण: हेलिक्स
वेक्टर-मूल्यवान फ़ंक्शन का एक सामान्य उदाहरण वह है जो वास्तविक पैरामीटर t पर निर्भर करता है, जो अक्सरसमय का प्रतिनिधित्व करता है, परिणाम के रूप में यूक्लिडियन वेक्टर v(t) उत्पन्न करता है। मानक इकाई वैक्टर i, j, k कार्टेसियन 3-स्पेस के संदर्भ में, इन विशिष्ट प्रकार के वेक्टर-मूल्यांकन कार्यों को इस प्रकार के व्यंजकों द्वारा किये जाते हैं:
सदिश r(t) का पृष्ठभाग मूल बिंदु पर और शीर्ष फलन द्वारा मूल्यांकित निर्देशांकों पर है।
ग्राफ़ में दाईं ओर दिखाया गया निकट t = 19.5 (6π और 6.5π के बीच; यानी, 3 से कुछ अधिक घूर्णन) वेक्टर फ़ंक्शन का मूल्यांकन है। हेलिक्सएक ऐसा मार्ग है जो वेक्टर के अग्रभाग से खोजा जाता है, क्योंकि t शून्य से 8π तक बढ़ जाता है।
2D में, हम समान रूप से वेक्टर-मूल्यांकन कार्यों के बारे में दर्शा सकते हैं जैसे:
रैखिक स्थिति
रैखिक स्थिति में फ़ंक्शन को मैट्रिक के संदर्भ में व्यक्त किया जा सकता है:
जहां y एक n × 1 आउटपुट वेक्टर, जहां y n x 1 आउटपुट वेक्टर, x k x 1 इनपुट वेक्टर और A n x k पैरामीटर मैट्रिक्स है। निकटता से संबंधित सजातीय स्थिति (अनुवाद के लिए रैखिक) जहां फ़ंक्शन रूप लेता है
जहां इसके अतिरिक्त b पैरामीटर का n × 1 वेक्टर है।
रैखिक स्थिति अक्सर उत्पन्न होती है, उदाहरण के लिए एकाधिक प्रतिगमन[clarification needed] में, जहां उदाहरण के लिए n × 1 वेक्टर एक आश्रित चर के अनुमानित मान को k × 1 वेक्टर .
{\displaystyle {\hat {\beta }}}
\displastyle {\hat {\beta }}}
(k < n) मॉडल मापदंडों के अनुमानित मूल्यों का:
जिसमें एक्स (पिछले सामान्य रूप में ए की भूमिका निभा रहा है) निश्चित (अनुभवजन्य रूप से आधारित) संख्याओं का एक n × k मैट्रिक्स है।
एक सतह का पैरामीट्रिक प्रतिनिधित्व
एक सतह (गणित) 3-आयामी अंतरिक्ष में (सबसे अधिक) एम्बेडेड बिंदुओं का एक 2-आयामी सेट है। सतह का प्रतिनिधित्व करने का एक तरीका पैरामीट्रिक समीकरण ों के साथ है, जिसमें दो पैरामीटर s और t सतह पर किसी भी बिंदु के तीन कार्टेशियन निर्देशांक निर्धारित करते हैं:
यहाँ F एक सदिश-मान फलन है। एन-आयामी अंतरिक्ष में एम्बेडेड सतह के लिए, एक समान रूप से प्रतिनिधित्व होता है
त्रि-आयामी वेक्टर फ़ंक्शन का व्युत्पन्न
कई सदिश-मूल्यवान फलन, जैसे अदिश-मूल्यवान फलन, कार्तीय समन्वय प्रणाली में घटकों को सरलता से विभेदित करके व्युत्पन्न किए जा सकते हैं। इस प्रकार, यदि
आंशिक व्युत्पन्न
एक अदिश चर q के संबंध में सदिश फलन a का आंशिक अवकलज इस प्रकार परिभाषित किया गया है[1]
साधारण व्युत्पन्न
यदि a को एकल अदिश चर के सदिश फलन के रूप में माना जाता है, जैसे कि समय t, तो उपरोक्त समीकरण t के संबंध में a के पहले अवकलज तक कम हो जाता है,[1]
कुल व्युत्पन्न
यदि सदिश a अदिश चर q की संख्या n का फलन हैr (आर = 1, ..., एन), और प्रत्येक क्यूr केवल समय टी का एक कार्य है, तो टी के संबंध में 'ए' के सामान्य व्युत्पन्न को कुल व्युत्पन्न के रूप में ज्ञात रूप में व्यक्त किया जा सकता है, जैसा कि[1]
संदर्भ फ्रेम
जबकि स्केलर-मूल्यवान कार्यों के लिए संदर्भ का केवल एक ही संभव फ्रेम है, वेक्टर-मूल्यवान फ़ंक्शन के व्युत्पन्न को लेने के लिए एक संदर्भ फ्रेम की पसंद की आवश्यकता होती है (कम से कम जब एक निश्चित कार्टेशियन समन्वय प्रणाली इस तरह निहित नहीं होती है)। एक बार एक संदर्भ फ्रेम चुने जाने के बाद, एक वेक्टर-मूल्यवान फ़ंक्शन के व्युत्पन्न की गणना स्केलर-मूल्यवान कार्यों के डेरिवेटिव की गणना के लिए समान तकनीकों का उपयोग करके की जा सकती है। संदर्भ फ्रेम का एक अलग विकल्प, सामान्य रूप से, एक अलग व्युत्पन्न कार्य उत्पन्न करेगा। विभिन्न संदर्भ फ्रेमों में व्युत्पन्न कार्यों में एक विशिष्ट वेक्टर-मूल्यवान फ़ंक्शन होता है # नॉनफिक्स्ड बेस वाले वेक्टर फ़ंक्शन का व्युत्पन्न।
नॉनफिक्स्ड बेस के साथ एक वेक्टर फंक्शन का व्युत्पन्न
एक वेक्टर फ़ंक्शन के व्युत्पन्न के लिए उपरोक्त सूत्र इस धारणा पर भरोसा करते हैं कि आधार (रैखिक बीजगणित) वैक्टर ई1, तथा2, तथा3 स्थिर हैं, अर्थात्, संदर्भ फ्रेम में तय किए गए हैं जिसमें ए का व्युत्पन्न लिया जा रहा है, और इसलिए ई1, तथा2, तथा3 प्रत्येक में समान रूप से शून्य का व्युत्पन्न है। यह अक्सर एक निश्चित समन्वय प्रणाली में वेक्टर क्षेत्र ों से निपटने वाली समस्याओं या भौतिकी में साधारण समस्याओं के लिए सही होता है। हालांकि, कई जटिल समस्याओं में कई चलती संदर्भ फ़्रेमों में एक वेक्टर फ़ंक्शन का व्युत्पन्न शामिल होता है, जिसका अर्थ है कि आधार वैक्टर आवश्यक रूप से स्थिर नहीं होंगे। ऐसे मामले में जहां आधार वैक्टर ई1, तथा2, तथा3 संदर्भ फ्रेम ई में तय किए गए हैं, लेकिन संदर्भ फ्रेम एन में नहीं, संदर्भ फ्रेम एन में वेक्टर के # सामान्य व्युत्पन्न के लिए अधिक सामान्य सूत्र है[1]
एक सामान्य उदाहरण जहां इस सूत्र का उपयोग किया जाता है, जमीन के सापेक्ष राकेट के वेग के माप का उपयोग करके जड़त्वीय संदर्भ फ्रेम में एक अंतरिक्ष-जनित वस्तु, जैसे कि रॉकेट, के वेग का पता लगाना है। वेग एन</सूप>इनस्थिति r . पर स्थित रॉकेट R के जड़त्वीय संदर्भ फ़्रेम N में Rआर सूत्र का उपयोग करके पाया जा सकता है
कहाँ पे ईसीR रॉकेट का वेग सदिश है जैसा कि पृथ्वी पर स्थिर एक संदर्भ फ्रेम E से मापा जाता है।
व्युत्पन्न और सदिश गुणन
सदिश फलनों के उत्पाद का व्युत्पन्न अदिश फलनों के उत्पाद नियम के समान व्यवहार करता है।[2] विशेष रूप से, सदिश के #अदिश गुणन के मामले में, यदि p, q का अदिश चर फलन है,[1]
- Dot उत्पाद के मामले में, दो वैक्टर a और b के लिए जो q के दोनों कार्य हैं,[1]
एक एन-आयामी वेक्टर फ़ंक्शन का व्युत्पन्न
रिक्त स्थान में मानों के साथ वास्तविक संख्या t का एक फ़ंक्शन f के रूप में लिखा जा सकता है . इसका व्युत्पन्न बराबर है
- .
यदि f कई चरों का एक फलन है, तो मान लीजिए , तो f के घटकों के आंशिक अवकलज a . बनाते हैं मैट्रिक्स को f का जैकोबियन मैट्रिक्स कहा जाता है।
अनंत-आयामी वेक्टर फ़ंक्शन
यदि किसी फलन f के मान एक आयाम (सदिश समष्टि) में हैं|अनंत-आयामी सदिश समष्टि X, जैसे हिल्बर्ट समष्टि, तब f को अनंत-विमीय सदिश फलन कहा जा सकता है।
हिल्बर्ट अंतरिक्ष में मूल्यों के साथ कार्य
यदि f के फ़ंक्शन का तर्क एक वास्तविक संख्या है और X एक हिल्बर्ट स्थान है, तो एक बिंदु t पर f के व्युत्पन्न को परिमित-आयामी मामले के रूप में परिभाषित किया जा सकता है:
परिमित-आयामी मामले के अधिकांश परिणाम अनंत-आयामी मामले में भी होते हैं, उत्परिवर्तन उत्परिवर्तन। विभेदन को कई चरों के कार्यों के लिए भी परिभाषित किया जा सकता है (उदाहरण के लिए, या और भी , जहाँ Y एक अनंत-विमीय सदिश समष्टि है)।
एन.बी. यदि एक्स एक हिल्बर्ट स्थान है, तो कोई भी आसानी से दिखा सकता है कि किसी भी व्युत्पन्न (और कोई अन्य सीमा (गणित) ) की गणना घटक के अनुसार की जा सकती है: यदि
(अर्थात।, , कहाँ पे अंतरिक्ष X ) का एक सामान्य आधार है, और मौजूद है, तो
- .
हालांकि, एक घटकवार व्युत्पन्न का अस्तित्व एक व्युत्पन्न के अस्तित्व की गारंटी नहीं देता है, क्योंकि हिल्बर्ट अंतरिक्ष में घटक-वार अभिसरण हिल्बर्ट अंतरिक्ष के वास्तविक स्थलीय स्थान के संबंध में अभिसरण की गारंटी नहीं देता है।
अन्य अनंत-आयामी वेक्टर रिक्त स्थान
उपरोक्त में से अधिकांश अन्य टोपोलॉजिकल वेक्टर स्पेस एक्स के लिए भी हैं। हालांकि, बनच स्पेस सेटिंग में उतने शास्त्रीय परिणाम नहीं हैं, उदाहरण के लिए, रेडॉन-निकोडिम संपत्ति में मूल्यों के साथ एक बिल्कुल निरंतर कार्य के लिए कहीं भी व्युत्पन्न होने की आवश्यकता नहीं है। इसके अलावा, अधिकांश बनच रिक्त स्थान सेटिंग में कोई ऑर्थोनॉर्मल बेस नहीं हैं।
यह भी देखें
- समन्वय वेक्टर
- वेक्टर क्षेत्र
- वक्र
- बहुमूल्य समारोह
- पैरामीट्रिक सतह
- स्थिति वेक्टर
- पैरामेट्राइज़ेशन (ज्यामिति)
टिप्पणियाँ
संदर्भ
- Kane, Thomas R.; Levinson, David A. (1996), "1–9 Differentiation of Vector Functions", Dynamics Online, Sunnyvale, California: OnLine Dynamics, Inc., pp. 29–37
- Hu, Chuang-Gan; Yang, Chung-Chun (2013), Vector-Valued Functions and their Applications, Springer Science & Business Media, ISBN 978-94-015-8030-4