पी-फ़ैक्टर: Difference between revisions

From Vigyanwiki
m (Abhishek moved page पी-कारक to पी-फ़ैक्टर without leaving a redirect)
No edit summary
Line 9: Line 9:
}}
}}


पी-फैक्टर, जिसे असममित ब्लेड प्रभाव और असममित डिस्क प्रभाव के रूप में भी जाना जाता है, एक गतिशील [[प्रोपेलर (विमान)]] द्वारा अनुभव की जाने वाली एक [[वायुगतिकीय]] घटना है,<ref name="Willits">{{cite book|editor=Willits, Pat|others=Abbot, Mike Kailey, Liz|title=Guided Flight Discovery: Private Pilot|orig-year=1997|publisher=Jeppesen Sanderson, Inc.|year=2004|isbn= 0-88487-333-1|page=3-49}})</ref> जिसमें जब विमान हमले के उच्च कोण पर होता है तो प्रोपेलर का [[जोर]] केंद्र केंद्र से हट जाता है। जोर के केंद्र के स्थान में यह बदलाव विमान पर एक झटके का कारण बनेगा, जिससे यह विमान के मुख्य अक्षों को थोड़ा एक तरफ कर देगा। उबासी की प्रवृत्ति का प्रतिकार करने के लिए पतवार इनपुट की आवश्यकता होती है।
'''पी-फैक्टर''', जिसे असममित ब्लेड प्रभाव और असममित डिस्क प्रभाव के रूप में भी जाना जाता है, गतिशील [[प्रोपेलर (विमान)]] द्वारा अनुभव की जाने वाली [[वायुगतिकीय]] घटना है,<ref name="Willits">{{cite book|editor=Willits, Pat|others=Abbot, Mike Kailey, Liz|title=Guided Flight Discovery: Private Pilot|orig-year=1997|publisher=Jeppesen Sanderson, Inc.|year=2004|isbn= 0-88487-333-1|page=3-49}})</ref> जिसमें जब विमान हमले के उच्च कोण पर होता है तो प्रोपेलर का [[जोर]] केंद्र, केंद्र से हट जाता है। जोर के केंद्र के स्थान में यह परिवर्तन विमान पर झटके का कारण बनेगा, जिससे यह विमान के मुख्य अक्षों को थोड़ा एक तरफ कर देगा। उबासी की प्रवृत्ति का प्रतिकार करने के लिए पतवार इनपुट की आवश्यकता होती है।


== कारण ==
== कारण ==


[[File:Tilted propeller.png|thumb|alt=Change of forces at increasing Angle of Attack|पी-फैक्टर, हमले के बढ़ते कोण पर ऊपर और नीचे जाने वाले प्रोपेलर ब्लेड की सापेक्ष गति और जोर में परिवर्तन]]जब एक प्रोपेलर विमान समतल उड़ान में क्रूज़ गति से उड़ रहा होता है, तो प्रोपेलर डिस्क प्रोपेलर के माध्यम से सापेक्ष वायु प्रवाह के लंबवत होती है। प्रत्येक प्रोपेलर ब्लेड एक ही कोण और गति पर हवा से संपर्क करता है, और इस प्रकार उत्पन्न जोर पूरे प्रोपेलर में समान रूप से वितरित होता है।
[[File:Tilted propeller.png|thumb|alt=Change of forces at increasing Angle of Attack|पी-फैक्टर, हमले के बढ़ते कोण पर ऊपर और नीचे जाने वाले प्रोपेलर ब्लेड की सापेक्ष गति और जोर में परिवर्तन]]जब प्रोपेलर विमान समतल उड़ान में क्रूज़ गति से उड़ रहा होता है, तो प्रोपेलर डिस्क प्रोपेलर के माध्यम से सापेक्ष वायु प्रवाह के लंबवत होती है। प्रत्येक प्रोपेलर ब्लेड एक ही कोण और गति पर हवा से संपर्क करता है, और इस प्रकार उत्पन्न जोर पूरे प्रोपेलर में समान रूप से वितरित होता है।


हालाँकि, कम गति पर, विमान आम तौर पर नाक-ऊँचे रवैये में होगा, प्रोपेलर डिस्क क्षैतिज की ओर थोड़ा घुमाया जाएगा। इसके दो प्रभाव हैं. सबसे पहले, प्रोपेलर ब्लेड नीचे की स्थिति में अधिक आगे की ओर होंगे, और ऊपर की स्थिति में अधिक पीछे की ओर होंगे। प्रोपेलर ब्लेड नीचे और आगे की ओर (घड़ी की दिशा में घूमने के लिए, कॉकपिट से देखने पर एक बजे से छह बजे की स्थिति तक) आगे बढ़ने की गति अधिक होगी। इससे ब्लेड की हवा की गति बढ़ जाएगी, जिससे नीचे की ओर जाने वाला ब्लेड अधिक जोर पैदा करेगा। प्रोपेलर ब्लेड ऊपर और पीछे (सात बजे से 12 बजे की स्थिति तक) चलने पर आगे की गति कम हो जाएगी, इसलिए नीचे जाने वाले ब्लेड की तुलना में हवा की गति कम होगी और जोर कम होगा। यह विषमता बढ़े हुए जोर के साथ प्रोपेलर डिस्क के जोर के केंद्र को ब्लेड की ओर विस्थापित कर देती है।<ref>{{Cite web|url=http://www.av8n.com/how/htm/yaw.html#sec-p-factor|title = 8 Yaw-Wise Torque Budget}}</ref>
चूँकि, कम गति पर, विमान सामान्यतः नाक-ऊँचे रवैये में होगा, प्रोपेलर डिस्क क्षैतिज की ओर थोड़ा घुमाया जाएगा। इसके दो प्रभाव हैं. सबसे पहले, प्रोपेलर ब्लेड नीचे की स्थिति में अधिक आगे की ओर होंगे, और ऊपर की स्थिति में अधिक पीछे की ओर होंगे। प्रोपेलर ब्लेड नीचे और आगे की ओर (घड़ी की दिशा में घूमने के लिए, कॉकपिट से देखने पर एक बजे से छह बजे की स्थिति तक) आगे बढ़ने की गति अधिक होगी। इससे ब्लेड की हवा की गति बढ़ जाएगी, जिससे नीचे की ओर जाने वाला ब्लेड अधिक जोर पैदा करेगा। प्रोपेलर ब्लेड ऊपर और पीछे (सात बजे से 12 बजे की स्थिति तक) चलने पर आगे की गति कम हो जाएगी, इसलिए नीचे जाने वाले ब्लेड की तुलना में हवा की गति कम होगी और जोर कम होगा। यह विषमता बढ़े हुए जोर के साथ प्रोपेलर डिस्क के जोर के केंद्र को ब्लेड की ओर विस्थापित कर देती है।<ref>{{Cite web|url=http://www.av8n.com/how/htm/yaw.html#sec-p-factor|title = 8 Yaw-Wise Torque Budget}}</ref>
दूसरे, प्रोपेलर डिस्क के झुकाव के कारण, नीचे की ओर जाने वाले ब्लेड के हमले का कोण बढ़ जाएगा, और ऊपर की ओर जाने वाले ब्लेड के हमले का कोण कम हो जाएगा। नीचे की ओर जाने वाले ब्लेड के हमले का बड़ा कोण अधिक जोर पैदा करेगा।<ref>{{cite book|last=Stowell|first=Rich|title=आपातकालीन पैंतरेबाज़ी प्रशिक्षण|year=1996|publisher=Rich Stowell Consulting|isbn=1-879425-92-0|pages=26–28}}</ref>
दूसरे, प्रोपेलर डिस्क के झुकाव के कारण, नीचे की ओर जाने वाले ब्लेड के हमले का कोण बढ़ जाएगा, और ऊपर की ओर जाने वाले ब्लेड के हमले का कोण कम हो जाएगा। नीचे की ओर जाने वाले ब्लेड के हमले का बड़ा कोण अधिक जोर पैदा करेगा।<ref>{{cite book|last=Stowell|first=Rich|title=आपातकालीन पैंतरेबाज़ी प्रशिक्षण|year=1996|publisher=Rich Stowell Consulting|isbn=1-879425-92-0|pages=26–28}}</ref>
ध्यान दें कि नीचे की ओर जाने वाले ब्लेड की बढ़ी हुई आगे की गति वास्तव में इसके हमले के कोण को कम कर देती है, लेकिन प्रोपेलर डिस्क के झुकाव के कारण हमले के कोण में वृद्धि से इस पर काबू पा लिया जाता है। कुल मिलाकर, नीचे की ओर जाने वाले ब्लेड में अधिक वायुगति और अधिक हमले का कोण होता है।<ref>{{Cite web|url=http://www.meretrix.com/~harry/flying/notes/pfactor.html|title = P Factor?}}</ref>
ध्यान दें कि नीचे की ओर जाने वाले ब्लेड की बढ़ी हुई आगे की गति वास्तव में इसके हमले के कोण को कम कर देती है, लेकिन प्रोपेलर डिस्क के झुकाव के कारण हमले के कोण में वृद्धि से इस पर काबू पा लिया जाता है। कुल मिलाकर, नीचे की ओर जाने वाले ब्लेड में अधिक वायुगति और अधिक हमले का कोण होता है।<ref>{{Cite web|url=http://www.meretrix.com/~harry/flying/notes/pfactor.html|title = P Factor?}}</ref>
Line 26: Line 26:
===एकल इंजन प्रोपेलर विमान===
===एकल इंजन प्रोपेलर विमान===


यदि दक्षिणावर्त घूमने वाले प्रोपेलर का उपयोग किया जाता है (जैसा कि पायलट ने देखा) तो विमान चढ़ते समय बाईं ओर और उतरते समय दाईं ओर मुड़ने की प्रवृत्ति रखता है। इसका मुकाबला विपरीत पतवार से किया जाना चाहिए। दक्षिणावर्त घूमने वाला प्रोपेलर अब तक सबसे आम है। पावर जोड़ते समय यॉ ध्यान देने योग्य है, हालांकि इसमें स्लिपस्ट्रीम#स्पाइरल स्लिपस्ट्रीम प्रभाव सहित अतिरिक्त कारण हैं। फिक्स्ड-विंग विमान में, प्रोपेलर के व्यक्तिगत ब्लेड के हमले के कोण को समायोजित करने का आमतौर पर कोई तरीका नहीं होता है, इसलिए पायलट को पी-फैक्टर के साथ संघर्ष करना होगा और जोर के बदलाव का प्रतिकार करने के लिए पतवार का उपयोग करना होगा। जब हवाई जहाज़ नीचे उतर रहा होता है तो ये बल उलट जाते हैं। प्रोप का उतरता हुआ दाहिना भाग अब आक्रमण के कम कोण के साथ थोड़ा पीछे की ओर बढ़ रहा है और प्रोप का आरोही बायाँ भाग अधिक आक्रमण कोण के साथ थोड़ा आगे की ओर बढ़ रहा है। यह असममित जोर हवाई जहाज को दाईं ओर खींचने का कारण बनता है और पायलट क्षतिपूर्ति के लिए बाएं पतवार का उपयोग करता है। तथ्य यह है कि उतरते समय बाएँ-दाएँ खींचने की प्रवृत्ति उलट जाती है, यह दर्शाता है कि प्रोप के बाएँ और दाएँ पक्षों पर हमले के कोण में अंतर सर्पिल स्लिपस्ट्रीम जैसे अन्य प्रभावों को प्रभावित करता है। अलग ढंग से कहें तो, यदि सर्पिल स्लिपस्ट्रीम प्रमुख कारक होता, तो हवाई जहाज हमेशा बाईं ओर खींचता और उतरते समय दाईं ओर नहीं खींचता।
यदि दक्षिणावर्त घूमने वाले प्रोपेलर का उपयोग किया जाता है (जैसा कि पायलट ने देखा) तो विमान चढ़ते समय बाईं ओर और उतरते समय दाईं ओर मुड़ने की प्रवृत्ति रखता है। इसका मुकाबला विपरीत पतवार से किया जाना चाहिए। दक्षिणावर्त घूमने वाला प्रोपेलर अब तक सबसे आम है। पावर जोड़ते समय यॉ ध्यान देने योग्य है, चूँकि इसमें स्लिपस्ट्रीम#स्पाइरल स्लिपस्ट्रीम प्रभाव सहित अतिरिक्त कारण हैं। फिक्स्ड-विंग विमान में, प्रोपेलर के व्यक्तिगत ब्लेड के हमले के कोण को समायोजित करने का आमतौर पर कोई तरीका नहीं होता है, इसलिए पायलट को पी-फैक्टर के साथ संघर्ष करना होगा और जोर के परिवर्तन का प्रतिकार करने के लिए पतवार का उपयोग करना होगा। जब हवाई जहाज़ नीचे उतर रहा होता है तो ये बल उलट जाते हैं। प्रोप का उतरता हुआ दाहिना भाग अब आक्रमण के कम कोण के साथ थोड़ा पीछे की ओर बढ़ रहा है और प्रोप का आरोही बायाँ भाग अधिक आक्रमण कोण के साथ थोड़ा आगे की ओर बढ़ रहा है। यह असममित जोर हवाई जहाज को दाईं ओर खींचने का कारण बनता है और पायलट क्षतिपूर्ति के लिए बाएं पतवार का उपयोग करता है। तथ्य यह है कि उतरते समय बाएँ-दाएँ खींचने की प्रवृत्ति उलट जाती है, यह दर्शाता है कि प्रोप के बाएँ और दाएँ पक्षों पर हमले के कोण में अंतर सर्पिल स्लिपस्ट्रीम जैसे अन्य प्रभावों को प्रभावित करता है। अलग ढंग से कहें तो, यदि सर्पिल स्लिपस्ट्रीम प्रमुख कारक होता, तो हवाई जहाज हमेशा बाईं ओर खींचता और उतरते समय दाईं ओर नहीं खींचता।


पायलट इंजन की शक्ति या पिच कोण (हमले के कोण) को बदलते समय पतवार की आवश्यकता का अनुमान लगाते हैं, और आवश्यकतानुसार बाएँ या दाएँ पतवार का उपयोग करके क्षतिपूर्ति करते हैं।
पायलट इंजन की शक्ति या पिच कोण (हमले के कोण) को बदलते समय पतवार की आवश्यकता का अनुमान लगाते हैं, और आवश्यकतानुसार बाएँ या दाएँ पतवार का उपयोग करके क्षतिपूर्ति करते हैं।


[[पारंपरिक लैंडिंग गियर]] | टेल-व्हील विमान ग्राउंड-रोल के दौरान [[ तिपहिया लैंडिंग गियर ]] वाले विमान की तुलना में अधिक पी-फैक्टर प्रदर्शित करते हैं, क्योंकि ऊर्ध्वाधर में प्रोपेलर डिस्क का कोण अधिक होता है। प्रारंभिक ग्राउंड रोल के दौरान पी-फैक्टर नगण्य है, लेकिन आगे की गति बढ़ने पर ग्राउंड रोल के बाद के चरणों के दौरान एक स्पष्ट नाक-बाएं प्रवृत्ति देगा, खासकर यदि थ्रस्ट अक्ष को उड़ान पथ वेक्टर (उदाहरण के लिए पूंछ) पर झुका रखा जाता है। पहिया रनवे के संपर्क में)। अपेक्षाकृत कम पावर सेटिंग (प्रोपेलर आरपीएम) को देखते हुए, लैंडिंग, फ्लेयर और रोलआउट के दौरान प्रभाव इतना स्पष्ट नहीं होता है। हालाँकि, यदि रनवे के संपर्क में टेल-व्हील के साथ थ्रोटल को अचानक आगे बढ़ाया जाना चाहिए, तो इस नाक-बाएँ प्रवृत्ति की प्रत्याशा विवेकपूर्ण है।
[[पारंपरिक लैंडिंग गियर]] | टेल-व्हील विमान ग्राउंड-रोल के दौरान [[ तिपहिया लैंडिंग गियर ]] वाले विमान की तुलना में अधिक पी-फैक्टर प्रदर्शित करते हैं, क्योंकि ऊर्ध्वाधर में प्रोपेलर डिस्क का कोण अधिक होता है। प्रारंभिक ग्राउंड रोल के दौरान पी-फैक्टर नगण्य है, लेकिन आगे की गति बढ़ने पर ग्राउंड रोल के बाद के चरणों के दौरान एक स्पष्ट नाक-बाएं प्रवृत्ति देगा, खासकर यदि थ्रस्ट अक्ष को उड़ान पथ वेक्टर (उदाहरण के लिए पूंछ) पर झुका रखा जाता है। पहिया रनवे के संपर्क में)। अपेक्षाकृत कम पावर सेटिंग (प्रोपेलर आरपीएम) को देखते हुए, लैंडिंग, फ्लेयर और रोलआउट के दौरान प्रभाव इतना स्पष्ट नहीं होता है। चूँकि, यदि रनवे के संपर्क में टेल-व्हील के साथ थ्रोटल को अचानक आगे बढ़ाया जाना चाहिए, तो इस नाक-बाएँ प्रवृत्ति की प्रत्याशा विवेकपूर्ण है।


===मल्टी इंजन प्रोपेलर विमान===
===मल्टी इंजन प्रोपेलर विमान===


[[काउंटर-रोटेटिंग प्रोपेलर]] वाले बहु-इंजन विमानों के लिए, दोनों इंजनों के पी-कारक रद्द हो जाएंगे। हालाँकि, यदि दोनों इंजन एक ही दिशा में घूमते हैं, या यदि एक इंजन विफल हो जाता है, तो पी-फैक्टर एक यॉ का कारण बनेगा। एकल-इंजन विमान की तरह, यह प्रभाव उन स्थितियों में सबसे अधिक होता है जहां विमान उच्च शक्ति पर होता है और हमले का कोण उच्च होता है (जैसे कि चढ़ाई)। विंगटिप की ओर नीचे की ओर बढ़ने वाले ब्लेड वाला इंजन अन्य इंजन की तुलना में अधिक यॉ और रोल उत्पन्न करता है, क्योंकि विमान के गुरुत्वाकर्षण के केंद्र के बारे में उस इंजन के जोर केंद्र का क्षण (हाथ) अधिक होता है। इस प्रकार, धड़ के करीब नीचे की ओर बढ़ने वाले ब्लेड वाला इंजन [[महत्वपूर्ण इंजन]] होगा, क्योंकि इसकी विफलता और दूसरे इंजन पर संबंधित निर्भरता के लिए पायलट द्वारा सीधी उड़ान बनाए रखने के लिए दूसरे इंजन की तुलना में काफी बड़े पतवार विक्षेपण की आवश्यकता होगी। असफल। इसलिए पी-फैक्टर यह निर्धारित करता है कि कौन सा इंजन महत्वपूर्ण इंजन है।<ref>{{cite book|title=Airplane Flying Handbook FAA-H-8083-3|year=2016|publisher=Federal Aviation Administration|url=https://www.faa.gov/regulations_policies/handbooks_manuals/aviation/airplane_handbook/ | page=Chapter 12 Addendum}}</ref> अधिकांश विमानों के लिए (जिनमें दक्षिणावर्त घूमने वाले प्रोपेलर होते हैं), बायां इंजन महत्वपूर्ण इंजन होता है। काउंटर-रोटेटिंग प्रोपेलर वाले विमान के लिए (यानी एक ही दिशा में नहीं घूमने वाले) पी-फैक्टर क्षण बराबर होते हैं और दोनों इंजन समान रूप से महत्वपूर्ण माने जाते हैं।
[[काउंटर-रोटेटिंग प्रोपेलर]] वाले बहु-इंजन विमानों के लिए, दोनों इंजनों के पी-कारक रद्द हो जाएंगे। चूँकि, यदि दोनों इंजन एक ही दिशा में घूमते हैं, या यदि एक इंजन विफल हो जाता है, तो पी-फैक्टर एक यॉ का कारण बनेगा। एकल-इंजन विमान की तरह, यह प्रभाव उन स्थितियों में सबसे अधिक होता है जहां विमान उच्च शक्ति पर होता है और हमले का कोण उच्च होता है (जैसे कि चढ़ाई)। विंगटिप की ओर नीचे की ओर बढ़ने वाले ब्लेड वाला इंजन अन्य इंजन की तुलना में अधिक यॉ और रोल उत्पन्न करता है, क्योंकि विमान के गुरुत्वाकर्षण के केंद्र के बारे में उस इंजन के जोर केंद्र का क्षण (हाथ) अधिक होता है। इस प्रकार, धड़ के करीब नीचे की ओर बढ़ने वाले ब्लेड वाला इंजन [[महत्वपूर्ण इंजन]] होगा, क्योंकि इसकी विफलता और दूसरे इंजन पर संबंधित निर्भरता के लिए पायलट द्वारा सीधी उड़ान बनाए रखने के लिए दूसरे इंजन की तुलना में काफी बड़े पतवार विक्षेपण की आवश्यकता होगी। असफल। इसलिए पी-फैक्टर यह निर्धारित करता है कि कौन सा इंजन महत्वपूर्ण इंजन है।<ref>{{cite book|title=Airplane Flying Handbook FAA-H-8083-3|year=2016|publisher=Federal Aviation Administration|url=https://www.faa.gov/regulations_policies/handbooks_manuals/aviation/airplane_handbook/ | page=Chapter 12 Addendum}}</ref> अधिकांश विमानों के लिए (जिनमें दक्षिणावर्त घूमने वाले प्रोपेलर होते हैं), बायां इंजन महत्वपूर्ण इंजन होता है। काउंटर-रोटेटिंग प्रोपेलर वाले विमान के लिए (यानी एक ही दिशा में नहीं घूमने वाले) पी-फैक्टर क्षण बराबर होते हैं और दोनों इंजन समान रूप से महत्वपूर्ण माने जाते हैं।


[[File:criticalengine1.jpg|frame|none|चित्र 1. चालू दाहिने हाथ का इंजन मृत इंजन की ओर अधिक तीव्र गति उत्पन्न करेगा, जिससे बाएं हाथ के इंजन की विफलता गंभीर हो जाएगी।]]इंजनों के एक ही दिशा में घूमने से, पी-फैक्टर [[न्यूनतम नियंत्रण गति]] (वी गति|वी) को प्रभावित करेगा<sub>MC</sub>) असममित संचालित उड़ान में विमान का। प्रकाशित गति महत्वपूर्ण इंजन की विफलता के आधार पर निर्धारित की जाती है। किसी अन्य इंजन की विफलता के बाद वास्तविक न्यूनतम नियंत्रण गति कम (सुरक्षित) होगी।
[[File:criticalengine1.jpg|frame|none|चित्र 1. चालू दाहिने हाथ का इंजन मृत इंजन की ओर अधिक तीव्र गति उत्पन्न करेगा, जिससे बाएं हाथ के इंजन की विफलता गंभीर हो जाएगी।]]इंजनों के एक ही दिशा में घूमने से, पी-फैक्टर [[न्यूनतम नियंत्रण गति]] (वी गति|वी) को प्रभावित करेगा<sub>MC</sub>) असममित संचालित उड़ान में विमान का। प्रकाशित गति महत्वपूर्ण इंजन की विफलता के आधार पर निर्धारित की जाती है। किसी अन्य इंजन की विफलता के बाद वास्तविक न्यूनतम नियंत्रण गति कम (सुरक्षित) होगी।

Revision as of 22:31, 19 September 2023

Propeller blade angle of attack (left) and propeller blade angle of attack change with aircraft pitch change, demonstrating asymmetrical load (right)

पी-फैक्टर, जिसे असममित ब्लेड प्रभाव और असममित डिस्क प्रभाव के रूप में भी जाना जाता है, गतिशील प्रोपेलर (विमान) द्वारा अनुभव की जाने वाली वायुगतिकीय घटना है,[1] जिसमें जब विमान हमले के उच्च कोण पर होता है तो प्रोपेलर का जोर केंद्र, केंद्र से हट जाता है। जोर के केंद्र के स्थान में यह परिवर्तन विमान पर झटके का कारण बनेगा, जिससे यह विमान के मुख्य अक्षों को थोड़ा एक तरफ कर देगा। उबासी की प्रवृत्ति का प्रतिकार करने के लिए पतवार इनपुट की आवश्यकता होती है।

कारण

Change of forces at increasing Angle of Attack
पी-फैक्टर, हमले के बढ़ते कोण पर ऊपर और नीचे जाने वाले प्रोपेलर ब्लेड की सापेक्ष गति और जोर में परिवर्तन

जब प्रोपेलर विमान समतल उड़ान में क्रूज़ गति से उड़ रहा होता है, तो प्रोपेलर डिस्क प्रोपेलर के माध्यम से सापेक्ष वायु प्रवाह के लंबवत होती है। प्रत्येक प्रोपेलर ब्लेड एक ही कोण और गति पर हवा से संपर्क करता है, और इस प्रकार उत्पन्न जोर पूरे प्रोपेलर में समान रूप से वितरित होता है।

चूँकि, कम गति पर, विमान सामान्यतः नाक-ऊँचे रवैये में होगा, प्रोपेलर डिस्क क्षैतिज की ओर थोड़ा घुमाया जाएगा। इसके दो प्रभाव हैं. सबसे पहले, प्रोपेलर ब्लेड नीचे की स्थिति में अधिक आगे की ओर होंगे, और ऊपर की स्थिति में अधिक पीछे की ओर होंगे। प्रोपेलर ब्लेड नीचे और आगे की ओर (घड़ी की दिशा में घूमने के लिए, कॉकपिट से देखने पर एक बजे से छह बजे की स्थिति तक) आगे बढ़ने की गति अधिक होगी। इससे ब्लेड की हवा की गति बढ़ जाएगी, जिससे नीचे की ओर जाने वाला ब्लेड अधिक जोर पैदा करेगा। प्रोपेलर ब्लेड ऊपर और पीछे (सात बजे से 12 बजे की स्थिति तक) चलने पर आगे की गति कम हो जाएगी, इसलिए नीचे जाने वाले ब्लेड की तुलना में हवा की गति कम होगी और जोर कम होगा। यह विषमता बढ़े हुए जोर के साथ प्रोपेलर डिस्क के जोर के केंद्र को ब्लेड की ओर विस्थापित कर देती है।[2] दूसरे, प्रोपेलर डिस्क के झुकाव के कारण, नीचे की ओर जाने वाले ब्लेड के हमले का कोण बढ़ जाएगा, और ऊपर की ओर जाने वाले ब्लेड के हमले का कोण कम हो जाएगा। नीचे की ओर जाने वाले ब्लेड के हमले का बड़ा कोण अधिक जोर पैदा करेगा।[3] ध्यान दें कि नीचे की ओर जाने वाले ब्लेड की बढ़ी हुई आगे की गति वास्तव में इसके हमले के कोण को कम कर देती है, लेकिन प्रोपेलर डिस्क के झुकाव के कारण हमले के कोण में वृद्धि से इस पर काबू पा लिया जाता है। कुल मिलाकर, नीचे की ओर जाने वाले ब्लेड में अधिक वायुगति और अधिक हमले का कोण होता है।[4] पी-फैक्टर हमले के उच्च कोणों और उच्च शक्ति पर सबसे बड़ा होता है, उदाहरण के लिए टेक-ऑफ के दौरान या धीमी उड़ान में।[1][5]


प्रभाव

एकल इंजन प्रोपेलर विमान

यदि दक्षिणावर्त घूमने वाले प्रोपेलर का उपयोग किया जाता है (जैसा कि पायलट ने देखा) तो विमान चढ़ते समय बाईं ओर और उतरते समय दाईं ओर मुड़ने की प्रवृत्ति रखता है। इसका मुकाबला विपरीत पतवार से किया जाना चाहिए। दक्षिणावर्त घूमने वाला प्रोपेलर अब तक सबसे आम है। पावर जोड़ते समय यॉ ध्यान देने योग्य है, चूँकि इसमें स्लिपस्ट्रीम#स्पाइरल स्लिपस्ट्रीम प्रभाव सहित अतिरिक्त कारण हैं। फिक्स्ड-विंग विमान में, प्रोपेलर के व्यक्तिगत ब्लेड के हमले के कोण को समायोजित करने का आमतौर पर कोई तरीका नहीं होता है, इसलिए पायलट को पी-फैक्टर के साथ संघर्ष करना होगा और जोर के परिवर्तन का प्रतिकार करने के लिए पतवार का उपयोग करना होगा। जब हवाई जहाज़ नीचे उतर रहा होता है तो ये बल उलट जाते हैं। प्रोप का उतरता हुआ दाहिना भाग अब आक्रमण के कम कोण के साथ थोड़ा पीछे की ओर बढ़ रहा है और प्रोप का आरोही बायाँ भाग अधिक आक्रमण कोण के साथ थोड़ा आगे की ओर बढ़ रहा है। यह असममित जोर हवाई जहाज को दाईं ओर खींचने का कारण बनता है और पायलट क्षतिपूर्ति के लिए बाएं पतवार का उपयोग करता है। तथ्य यह है कि उतरते समय बाएँ-दाएँ खींचने की प्रवृत्ति उलट जाती है, यह दर्शाता है कि प्रोप के बाएँ और दाएँ पक्षों पर हमले के कोण में अंतर सर्पिल स्लिपस्ट्रीम जैसे अन्य प्रभावों को प्रभावित करता है। अलग ढंग से कहें तो, यदि सर्पिल स्लिपस्ट्रीम प्रमुख कारक होता, तो हवाई जहाज हमेशा बाईं ओर खींचता और उतरते समय दाईं ओर नहीं खींचता।

पायलट इंजन की शक्ति या पिच कोण (हमले के कोण) को बदलते समय पतवार की आवश्यकता का अनुमान लगाते हैं, और आवश्यकतानुसार बाएँ या दाएँ पतवार का उपयोग करके क्षतिपूर्ति करते हैं।

पारंपरिक लैंडिंग गियर | टेल-व्हील विमान ग्राउंड-रोल के दौरान तिपहिया लैंडिंग गियर वाले विमान की तुलना में अधिक पी-फैक्टर प्रदर्शित करते हैं, क्योंकि ऊर्ध्वाधर में प्रोपेलर डिस्क का कोण अधिक होता है। प्रारंभिक ग्राउंड रोल के दौरान पी-फैक्टर नगण्य है, लेकिन आगे की गति बढ़ने पर ग्राउंड रोल के बाद के चरणों के दौरान एक स्पष्ट नाक-बाएं प्रवृत्ति देगा, खासकर यदि थ्रस्ट अक्ष को उड़ान पथ वेक्टर (उदाहरण के लिए पूंछ) पर झुका रखा जाता है। पहिया रनवे के संपर्क में)। अपेक्षाकृत कम पावर सेटिंग (प्रोपेलर आरपीएम) को देखते हुए, लैंडिंग, फ्लेयर और रोलआउट के दौरान प्रभाव इतना स्पष्ट नहीं होता है। चूँकि, यदि रनवे के संपर्क में टेल-व्हील के साथ थ्रोटल को अचानक आगे बढ़ाया जाना चाहिए, तो इस नाक-बाएँ प्रवृत्ति की प्रत्याशा विवेकपूर्ण है।

मल्टी इंजन प्रोपेलर विमान

काउंटर-रोटेटिंग प्रोपेलर वाले बहु-इंजन विमानों के लिए, दोनों इंजनों के पी-कारक रद्द हो जाएंगे। चूँकि, यदि दोनों इंजन एक ही दिशा में घूमते हैं, या यदि एक इंजन विफल हो जाता है, तो पी-फैक्टर एक यॉ का कारण बनेगा। एकल-इंजन विमान की तरह, यह प्रभाव उन स्थितियों में सबसे अधिक होता है जहां विमान उच्च शक्ति पर होता है और हमले का कोण उच्च होता है (जैसे कि चढ़ाई)। विंगटिप की ओर नीचे की ओर बढ़ने वाले ब्लेड वाला इंजन अन्य इंजन की तुलना में अधिक यॉ और रोल उत्पन्न करता है, क्योंकि विमान के गुरुत्वाकर्षण के केंद्र के बारे में उस इंजन के जोर केंद्र का क्षण (हाथ) अधिक होता है। इस प्रकार, धड़ के करीब नीचे की ओर बढ़ने वाले ब्लेड वाला इंजन महत्वपूर्ण इंजन होगा, क्योंकि इसकी विफलता और दूसरे इंजन पर संबंधित निर्भरता के लिए पायलट द्वारा सीधी उड़ान बनाए रखने के लिए दूसरे इंजन की तुलना में काफी बड़े पतवार विक्षेपण की आवश्यकता होगी। असफल। इसलिए पी-फैक्टर यह निर्धारित करता है कि कौन सा इंजन महत्वपूर्ण इंजन है।[6] अधिकांश विमानों के लिए (जिनमें दक्षिणावर्त घूमने वाले प्रोपेलर होते हैं), बायां इंजन महत्वपूर्ण इंजन होता है। काउंटर-रोटेटिंग प्रोपेलर वाले विमान के लिए (यानी एक ही दिशा में नहीं घूमने वाले) पी-फैक्टर क्षण बराबर होते हैं और दोनों इंजन समान रूप से महत्वपूर्ण माने जाते हैं।

चित्र 1. चालू दाहिने हाथ का इंजन मृत इंजन की ओर अधिक तीव्र गति उत्पन्न करेगा, जिससे बाएं हाथ के इंजन की विफलता गंभीर हो जाएगी।

इंजनों के एक ही दिशा में घूमने से, पी-फैक्टर न्यूनतम नियंत्रण गति (वी गति|वी) को प्रभावित करेगाMC) असममित संचालित उड़ान में विमान का। प्रकाशित गति महत्वपूर्ण इंजन की विफलता के आधार पर निर्धारित की जाती है। किसी अन्य इंजन की विफलता के बाद वास्तविक न्यूनतम नियंत्रण गति कम (सुरक्षित) होगी।

हेलीकॉप्टर

आगे की उड़ान में हेलीकॉप्टरों के लिए पी-फैक्टर बेहद महत्वपूर्ण है, क्योंकि प्रोपेलर डिस्क लगभग क्षैतिज है। आगे की ओर जाने वाले ब्लेड की वायुगति पीछे की ओर जाने वाले ब्लेड की तुलना में अधिक होती है, इसलिए यह अधिक लिफ्ट पैदा करता है, जिसे लिफ्ट की विषमता के रूप में जाना जाता है। रोटर डिस्क की लिफ्ट को संतुलित रखने के लिए हेलीकॉप्टर प्रत्येक ब्लेड के हमले के कोण को स्वतंत्र रूप से नियंत्रित कर सकते हैं (आगे बढ़ने वाले ब्लेड पर हमले के कोण को कम करते हुए, पीछे हटने वाले ब्लेड पर हमले के कोण को बढ़ाते हुए)। यदि रोटर के ब्लेड स्वतंत्र रूप से अपने हमले के कोण को बदलने में असमर्थ थे, तो रोटर डिस्क के किनारे पर बढ़ती लिफ्ट के कारण, आगे की उड़ान के दौरान वामावर्त-घूर्णन रोटर ब्लेड वाला एक हेलीकॉप्टर बाईं ओर लुढ़क जाएगा। .[7] जाइरोस्कोपिक प्रीसेशन इसे पीछे की ओर पिच में परिवर्तित करता है जिसे वापस फड़फड़ाना के रूप में जाना जाता है।[8] कभी भी अधिक न होने वाली गति (V गति|VNE) एक हेलीकाप्टर का चयन आंशिक रूप से यह सुनिश्चित करने के लिए किया जाएगा कि पीछे की ओर चलने वाला ब्लेड रुक न जाए।

यह भी देखें

संदर्भ

  1. 1.0 1.1 Willits, Pat, ed. (2004) [1997]. Guided Flight Discovery: Private Pilot. Abbot, Mike Kailey, Liz. Jeppesen Sanderson, Inc. p. 3-49. ISBN 0-88487-333-1.)
  2. "8 Yaw-Wise Torque Budget".
  3. Stowell, Rich (1996). आपातकालीन पैंतरेबाज़ी प्रशिक्षण. Rich Stowell Consulting. pp. 26–28. ISBN 1-879425-92-0.
  4. "P Factor?".
  5. Ramskill, Clay (June 2003). "प्रोप प्रभाव" (PDF). page 4. SMRCC. Retrieved 2009-04-27.
  6. Airplane Flying Handbook FAA-H-8083-3. Federal Aviation Administration. 2016. p. Chapter 12 Addendum.
  7. रोटरक्राफ्ट फ्लाइंग हैंडबुक. Federal Aviation Administration. 2019. p. 2–20.
  8. Watkinson, John: "The Art of the Helicopter" (2011), Pg 90.