मैक्सवेल-वैगनर-सिलर्स ध्रुवीकरण: Difference between revisions
m (added Category:Vigyan Ready using HotCat) |
m (4 revisions imported from alpha:मैक्सवेल-वैगनर-सिलर्स_ध्रुवीकरण) |
(No difference)
|
Latest revision as of 07:09, 28 September 2023
परावैद्युत स्पेक्ट्रोस्कोपी में, परावैद्युत प्रतिक्रिया में बड़ी आवृत्ति पर, विशेष रूप से कम आवृत्तियों पर, चार्ज का निर्माण करता है। यह मैक्सवेल-वैगनर-सिलर्स ध्रुवीकरण (या अधिकांशतः सिर्फ मैक्सवेल-वैगनर ध्रुवीकरण), मेसोस्कोपिक के आधार पर आंतरिक परावैद्युत सीमा परतों पर होता है, या मैक्रोस्कोपिक के आधार पर बाहरी इलेक्ट्रोड-नमूना इंटरफफेस पर होता है। दोनों ही स्थितियों में इनमें से चार्ज अलग हो जाते है। यह अधिकांशतःअधिक दूरी (परमाणु और आणविक आकार के सापेक्ष) में अलग हो जाते है, और इसलिए परावैद्युत नुकसान में आणविक समस्याओं के कारण परावैद्युत प्रतिक्रिया का बड़ा परिमाण का हो सकता है।[1]
पुनरावृत्तियां
मैक्सवेल-वैगनर ध्रुवीकरण प्रक्रियाओं को निलंबन या कोलाइड्स, जैविक सामग्री, चरण से अलग पॉलिमर, मिश्रण, और क्रिस्टलीय या तरल क्रिस्टलीय पॉलिमर जैसे अमानवीय सामग्रियों की जांच के समय ध्यान में रखा जाता है।[2]
मॉडल
एक विषम संरचना का वर्णन करने के लिए सबसे सरल मॉडल एक दोहरी परत व्यवस्था होती है, जहां प्रत्येक परत इसकी पारगम्यता विशेषता है और इसकी चालकता है ऐसी व्यवस्था के लिए समय दिया जाता है महत्वपूर्ण रूप से, चूंकि सामग्रियों की चालकता सामान्य आवृत्ति पर निर्भर होती है, इससे पता चलता है कि दोहरी परत कंपोजिट में सामान्यतः आवृत्ति पर निर्भर अधिक समय होता है, यदि अलग-अलग परतों को आवृत्ति स्वतंत्र परमिटिटिव्स द्वारा चित्रित किया गया होता है।
मैक्सवेल द्वारा इंटरफेसियल ध्रुवीकरण के सुधार के लिए एक अधिक परिष्कृत मॉडल विकसित किया गया था, और बाद में वैगनर और सिलर्स द्वारा सामान्यीकृत किया गया था।[3][4] मैक्सवेल का परावैद्युत पारगम्यता वाला एक गोलाकार कण मान और त्रिज्या एक अनंत माध्यम में निलंबित होता है कुछ यूरोपीय पाठ्य पुस्तकें इसका प्रतिनिधित्व करती है ग्रीक अक्षर ω (ओमेगा) के साथ स्थिरांक, जिसे कभी-कभी डॉयल का स्थिरांक कहा जाता है।[5]
संदर्भ
<संदर्भ/>
यह भी देखें
- डिबाई विश्राम
- ढांकता हुआ फैलाव
- ढांकता हुआ कार्य
- डाइइलेक्ट्रोफोरेसिस
- डिपोल
- परावैद्युतांक
- इलिप्सोमेट्री
- रैखिक प्रतिक्रिया समारोह
- क्रेमर्स-क्रोनिग संबंध
- ग्रीन-कुबो संबंध
श्रेणी:स्पेक्ट्रोस्कोपी
श्रेणी:पदार्थ में विद्युत और चुंबकीय क्षेत्र
- ↑ Kremer F., & Schönhals A. (eds.): Broadband Dielectric Spectroscopy. – Springer-Verlag, 2003, ISBN 978-3-540-43407-8.
- ↑ Kremer F., & Schönhals A. (eds.): Broadband Dielectric Spectroscopy. – Springer-Verlag, 2003, ISBN 978-3-540-43407-8.
- ↑ Wagner KW (1914) Arch Elektrotech 2:371; doi:10.1007/BF01657322
- ↑ Sillars RW (1937) J Inst Elect Eng 80:378
- ↑ G.McGuinness, Polymer Physics, Oxford University Press, p211