छोटे अणुओं की आवर्त सारणी: Difference between revisions

From Vigyanwiki
(Created page with "{{multiple issues| {{essay |date=October 2010}} {{primary sources |date=July 2011}} }} अणुओं की आवर्त सारणी तत्वों क...")
 
No edit summary
Line 4: Line 4:
}}
}}


[[अणु]]ओं की [[आवर्त सारणी]] तत्वों की आवर्त सारणी के समान अणुओं के चार्ट हैं। ऐसे चार्ट का निर्माण 20वीं सदी की शुरुआत में शुरू किया गया था और अभी भी जारी है।
'''[[अणु|अणुओं]] की [[आवर्त सारणी]]''' तत्वों की आवर्त सारणी के समान अणुओं के चार्ट हैं। ऐसे चार्ट का निर्माण 20वीं शताब्दी की शुरुआत में प्रारम्भ किया गया था और अभी भी प्रारम्भ है।
 
आमतौर पर यह माना जाता है कि आवधिक चार्ट द्वारा दर्शाया गया [[आवधिक कानून]], अणुओं के व्यवहार में, कम से कम छोटे अणुओं में प्रतिध्वनित होता है। उदाहरण के लिए, यदि कोई त्रिपरमाण्विक अणु में किसी एक परमाणु को एक [[दुर्लभ गैस]] परमाणु से प्रतिस्थापित करता है, तो अणु के गुणों में भारी परिवर्तन होगा। अणुओं में प्रकट होने वाले इस आवधिक कानून का एक स्पष्ट प्रतिनिधित्व बनाकर कई लक्ष्यों को पूरा किया जा सकता है: (1) शिक्षण सहायता के रूप में उपयोग के लिए, मौजूद अणुओं की विशाल संख्या के लिए एक वर्गीकरण योजना, जो कि केवल कुछ परमाणुओं वाले छोटे से शुरू होती है। और डेटा संग्रहीत करने के लिए उपकरण, (2) वर्गीकरण योजना के आधार पर आणविक गुणों के लिए डेटा का पूर्वानुमान, और (3) आवधिक चार्ट और [[प्राथमिक कण]] की आवधिक प्रणाली के साथ एक प्रकार की एकता।<ref>{{cite arXiv |author=Chung, D.-Y. |year= 2000 |title= प्राथमिक कणों की आवर्त सारणी|eprint=physics/0003023}}</ref>


आमतौर पर यह माना जाता है कि आवधिक चार्ट द्वारा दर्शाया गया [[आवधिक कानून]], अणुओं के व्यवहार में, कम से कम छोटे अणुओं में प्रतिध्वनित होता है। उदाहरण के लिए, यदि कोई त्रिपरमाण्विक अणु में किसी एक परमाणु को एक दुर्लभ गैस परमाणु से प्रतिस्थापित करता है, तो अणु के गुणों में भारी परिवर्तन होगा। अणुओं में प्रकट होने वाले इस आवधिक कानून का एक स्पष्ट प्रतिनिधित्व बनाकर कई लक्ष्यों को पूरा किया जा सकता है: (1) शिक्षण सहायता के रूप में उपयोग के लिए, मौजूद अणुओं की विशाल संख्या के लिए एक वर्गीकरण योजना, जो कि केवल कुछ परमाणुओं वाले छोटे से प्रारम्भ होती है। और डेटा संग्रहीत करने के लिए उपकरण, (2) वर्गीकरण योजना के आधार पर आणविक गुणों के लिए डेटा का पूर्वानुमान, और (3) आवधिक चार्ट और मौलिक कणों की आवधिक प्रणाली के साथ एक प्रकार की एकता।<ref>{{cite arXiv |author=Chung, D.-Y. |year= 2000 |title= प्राथमिक कणों की आवर्त सारणी|eprint=physics/0003023}}</ref>


==अणुओं की भौतिक आवर्त प्रणालियाँ==
==अणुओं की भौतिक आवर्त प्रणालियाँ==
अणुओं की आवधिक प्रणालियाँ (या चार्ट या तालिकाएँ) दो समीक्षाओं का विषय हैं।<ref name=r2>Hefferlin, R. and Burdick, G.W. 1994. Fizicheskie i khimicheskie periodicheskie sistemy Molekul, Zhurnal Obshchei Xhimii, vol. 64, pp. 1870–1885. English translation: {{cite journal |title=Periodic Systems of Molecules: Physical and Chemical |journal= Russ. J. Gen. Chem. |volume=64 |pages=1659–1674}}</ref><ref name=r3>Hefferlin, R. 2006. The Periodic Systems of Molecules [https://books.google.com/books?id=gDSg9VQNIPcC&pg=PA221 pp. 221 ff], in Baird, D., Scerri, E., and McIntyre, L. (Eds.) “The Philosophy of Chemistry, Synthesis of a New Discipline,” Springer, Dordrecht {{ISBN|1-4020-3256-0}}.</ref> [[द्विपरमाणुक अणु]]ओं की प्रणालियों में (1) एच.डी.डब्ल्यू. क्लार्क,<ref>{{cite journal |author=Clark, C. H. D. |year= 1935 |title= गैर-हाइड्राइड डाइ-परमाणुओं के आवधिक समूह|journal= Trans. Faraday Soc. |volume=31 |pages=1017–1036 |doi=10.1039/tf9353101017}}</ref><ref>{{cite journal |author=Clark, C. H. D |year= 1940 |title= बैंड-स्पेक्ट्रल स्थिरांक की व्यवस्था। भाग V. पृथक्करण ऊर्जा और जमीनी अवस्थाओं में डाय-परमाणुओं की संतुलन आंतरिक परमाणु दूरी के अंतर्संबंध|journal= Trans. Faraday Soc. |volume=36 |pages= 370–376|doi= 10.1039/tf9403500370 }}</ref> और (2) एफ.-ए. कोंग,<ref>{{cite journal |author=Kong, F |year= 1982 |title= द्विपरमाणुक अणुओं की आवधिकता|journal= J. Mol. Struct. |volume=90 |pages=17–28 |doi=10.1016/0022-2860(82)90199-5|bibcode = 1982JMoSt..90...17K }}</ref><ref name=r7>Kong, F. and Wu, W. 2010. Periodicity of Diatomic and Triatomic Molecules, Conference Proceedings of the 2010 Workshop on Mathematical Chemistry of the Americas.</ref> जो कुछ हद तक परमाणु चार्ट से मिलता जुलता है। आर. हेफ़रलिन एट अल की प्रणाली।<ref>{{cite journal |author=Hefferlin, R., Campbell, D. Gimbel, H. Kuhlman, and T. Cayton |year=1979 |doi=10.1016/0022-4073(79)90063-3 |journal= Quant. Spectrosc. Radiat. Transfer |volume=21 |pages=315–336 |title=The periodic table of diatomic molecules—I an algorithm for retrieval and prediction of spectrophysical properties |issue=4|bibcode = 1979JQSRT..21..315H }}</ref><ref name=r9>{{cite journal |author=Hefferlin, R |year= 2008 |title= क्रोनेकर-उत्पाद छोटे गैस-चरण अणुओं की आवधिक प्रणाली और किसी भी चरण के परमाणु संयोजनों में ऑर्डर की खोज|journal= Comb. Chem. High Throughput Screen. |volume=11 |issue= 9 |pages=690–706|doi= 10.2174/138620708786306041 |pmid= 18991573 }}</ref> (3) त्रि-आयामी से (4) चार-आयामी प्रणाली क्रोनकर तत्व चार्ट के उत्पाद को स्वयं के साथ विकसित किया गया था।
अणुओं की आवधिक प्रणालियाँ (या चार्ट या तालिकाएँ) दो समीक्षाओं का विषय हैं।<ref name="r2">Hefferlin, R. and Burdick, G.W. 1994. Fizicheskie i khimicheskie periodicheskie sistemy Molekul, Zhurnal Obshchei Xhimii, vol. 64, pp. 1870–1885. English translation: {{cite journal |title=Periodic Systems of Molecules: Physical and Chemical |journal= Russ. J. Gen. Chem. |volume=64 |pages=1659–1674}}</ref><ref name="r3">Hefferlin, R. 2006. The Periodic Systems of Molecules [https://books.google.com/books?id=gDSg9VQNIPcC&pg=PA221 pp. 221 ff], in Baird, D., Scerri, E., and McIntyre, L. (Eds.) “The Philosophy of Chemistry, Synthesis of a New Discipline,” Springer, Dordrecht {{ISBN|1-4020-3256-0}}.</ref> [[द्विपरमाणुक अणु|द्विपरमाणुक]] अणुओं की प्रणालियों में (1) एच.डी.डब्ल्यू. क्लार्क,<ref>{{cite journal |author=Clark, C. H. D. |year= 1935 |title= गैर-हाइड्राइड डाइ-परमाणुओं के आवधिक समूह|journal= Trans. Faraday Soc. |volume=31 |pages=1017–1036 |doi=10.1039/tf9353101017}}</ref><ref>{{cite journal |author=Clark, C. H. D |year= 1940 |title= बैंड-स्पेक्ट्रल स्थिरांक की व्यवस्था। भाग V. पृथक्करण ऊर्जा और जमीनी अवस्थाओं में डाय-परमाणुओं की संतुलन आंतरिक परमाणु दूरी के अंतर्संबंध|journal= Trans. Faraday Soc. |volume=36 |pages= 370–376|doi= 10.1039/tf9403500370 }}</ref> और (2) एफ.-ए. सम्मिलित हैं। कोंग,,<ref>{{cite journal |author=Kong, F |year= 1982 |title= द्विपरमाणुक अणुओं की आवधिकता|journal= J. Mol. Struct. |volume=90 |pages=17–28 |doi=10.1016/0022-2860(82)90199-5|bibcode = 1982JMoSt..90...17K }}</ref><ref name="r7">Kong, F. and Wu, W. 2010. Periodicity of Diatomic and Triatomic Molecules, Conference Proceedings of the 2010 Workshop on Mathematical Chemistry of the Americas.</ref> जो कुछ हद तक परमाणु चार्ट जैसा दिखता है। आर. हेफ़रलिन एट अल की प्रणाली।।<ref>{{cite journal |author=Hefferlin, R., Campbell, D. Gimbel, H. Kuhlman, and T. Cayton |year=1979 |doi=10.1016/0022-4073(79)90063-3 |journal= Quant. Spectrosc. Radiat. Transfer |volume=21 |pages=315–336 |title=The periodic table of diatomic molecules—I an algorithm for retrieval and prediction of spectrophysical properties |issue=4|bibcode = 1979JQSRT..21..315H }}</ref><ref name="r9">{{cite journal |author=Hefferlin, R |year= 2008 |title= क्रोनेकर-उत्पाद छोटे गैस-चरण अणुओं की आवधिक प्रणाली और किसी भी चरण के परमाणु संयोजनों में ऑर्डर की खोज|journal= Comb. Chem. High Throughput Screen. |volume=11 |issue= 9 |pages=690–706|doi= 10.2174/138620708786306041 |pmid= 18991573 }}</ref> (3) त्रि-आयामी से (4) चार-आयामी प्रणाली क्रोनकर तत्व चार्ट के उत्पाद को स्वयं के साथ विकसित किया गया था।


{| align=right style="margin-left:1em"
{| align=right style="margin-left:1em"
Line 26: Line 25:
</math>
</math>
  |-
  |-
  | width=60em style="font-size:90%" |The Kronecker product of a hypothetical four-element periodic chart. The sixteen molecules, some of which are redundant, suggest a hypercube, which in turn suggests that the molecules exist in a four-dimensional space; the coordinates are the period numbers and group numbers of the two constituent atoms.<ref>Gary W. Burdick and Ray Hefferlin, "Chapter 7. Data Location in a Four-Dimensional Periodic System of Diatomic Molecules", in Mihai V Putz, Ed., Chemical Information and Computational Challenges in the 21st Century, NOVA, 2011, {{ISBN|978-1-61209-712-1}}</ref>
  | width=60em style="font-size:90%" |एक काल्पनिक चार-तत्व आवधिक चार्ट का क्रोनकर उत्पाद। सोलह अणु, जिनमें से कुछ अनावश्यक हैं, एक हाइपरक्यूब का सुझाव देते हैं, जो बदले में बताता है कि अणु चार-आयामी अंतरिक्ष में मौजूद हैं; निर्देशांक दो घटक परमाणुओं की अवधि संख्या और समूह संख्या हैं<ref>Gary W. Burdick and Ray Hefferlin, "Chapter 7. Data Location in a Four-Dimensional Periodic System of Diatomic Molecules", in Mihai V Putz, Ed., Chemical Information and Computational Challenges in the 21st Century, NOVA, 2011, {{ISBN|978-1-61209-712-1}}</ref>
  |}
  |}
एक बिल्कुल अलग तरह की आवधिक प्रणाली है (5) जी. वी. ज़ुविकिन की,<ref>{{cite journal |author1=Zhuvikin, G.V.  |author2=R. Hefferlin  |name-list-style=amp |year= 1983 |title= Periodicheskaya Sistema Dvukhatomnykh Molekul: Teoretiko-gruppovoi Podkhod, Vestnik Leningradskovo Universiteta |issue =16 |pages=10–16}}</ref><ref name=r11>{{cite journal |author=Carlson, C.M., Cavanaugh, R.J, Hefferlin, R.A, and of Zhuvikin, G.V. |year=1996 |title= Periodic Systems of Molecular States from the Boson Group Dynamics of SO(3)xSU(2)s |journal= Chem. Inf. Comput. Sci. |volume=36 |pages=396–398 |doi=10.1021/ci9500748}}</ref> जो [[समूह की गतिशीलता]] पर आधारित है। इनमें से पहले मामले को छोड़कर सभी में, अन्य शोधकर्ताओं ने अमूल्य योगदान दिया और उनमें से कुछ सह-लेखक हैं। इन प्रणालियों की वास्तुकला को कोंग द्वारा समायोजित किया गया है<ref name=r7/>और हेफ़रलिन <ref>{{cite journal |author=Hefferlin, R.|year=1984 |title=एन-परमाणु अणुओं की आवधिक प्रणाली|journal= J. Quant. Spectrosc. Radiat. Transfer |volume= 32 |pages=257–268 |doi=10.1016/0022-4073(84)90098-0 |issue=4|bibcode = 1984JQSRT..32..257H |display-authors=etal}}</ref> आयनित प्रजातियों को शामिल करने के लिए, और कोंग द्वारा विस्तारित किया गया,<ref name=r7/>हेफ़रलिन,<ref name=r9/>और ज़ुविकिन और हेफ़रलिन<ref name=r11/>त्रिपरमाणुक अणुओं के स्थान तक। ये आर्किटेक्चर गणितीय रूप से तत्वों के चार्ट से संबंधित हैं। उन्हें पहले "भौतिक" आवधिक प्रणाली कहा जाता था।<ref name=r2/>
एक पूरी तरह से अलग प्रकार की आवधिक प्रणाली (5) जी. वी. ज़ुविकिन की है,<ref>{{cite journal |author1=Zhuvikin, G.V.  |author2=R. Hefferlin  |name-list-style=amp |year= 1983 |title= Periodicheskaya Sistema Dvukhatomnykh Molekul: Teoretiko-gruppovoi Podkhod, Vestnik Leningradskovo Universiteta |issue =16 |pages=10–16}}</ref><ref name="r11">{{cite journal |author=Carlson, C.M., Cavanaugh, R.J, Hefferlin, R.A, and of Zhuvikin, G.V. |year=1996 |title= Periodic Systems of Molecular States from the Boson Group Dynamics of SO(3)xSU(2)s |journal= Chem. Inf. Comput. Sci. |volume=36 |pages=396–398 |doi=10.1021/ci9500748}}</ref> जो [[समूह की गतिशीलता]] पर आधारित है। इनमें से पहले मामले को छोड़कर सभी में, अन्य शोधकर्ताओं ने अमूल्य योगदान दिया और उनमें से कुछ सह-लेखक हैं। इन प्रणालियों की वास्तुकला को आयनित प्रजातियों को सम्मिलित करने के लिए कोंग<ref name=r7/> और हेफ़रलिन<ref name=r11/> द्वारा समायोजित किया गया है<ref name="r7" /> और कोंग, [7] हेफ़रलिन<ref name="r7" /> और ज़ुविकिन और हेफ़रलिन<ref name="r11" /> द्वारा त्रिपरमाण्विक अणुओं के स्थान तक विस्तारित किया गया है। ये आर्किटेक्चर गणितीय रूप से तत्वों के चार्ट से संबंधित हैं। उन्हें पहले "भौतिक" आवधिक प्रणाली कहा जाता था।<ref name=r2/>
 
 
==अणुओं की रासायनिक आवधिक प्रणाली==
==अणुओं की रासायनिक आवधिक प्रणाली==
अन्य जांचकर्ताओं ने ऐसी संरचनाओं के निर्माण पर ध्यान केंद्रित किया है जो विशिष्ट प्रकार के अणुओं जैसे [[ एल्केन ]]्स (मोरोज़ोव) को संबोधित करते हैं;<ref>Morozov, N. 1907. Stroeniya Veshchestva, I. D. Sytina Publication, Moscow.</ref> बेंजीनोइड्स (डायस);<ref>{{cite journal |author=Dias, J.R. |year=1982 |title= पॉलीसाइक्लिक एरोमैटिक हाइड्रोकार्बन की एक आवर्त सारणी। फ़्यूज्ड पॉलीसाइक्लिक एरोमैटिक हाइड्रोकार्बन की आइसोमर गणना|journal= Chem. Inf. Comput. Sci. |volume=22 |pages=15–22 |doi=10.1021/ci00033a004}}</ref><ref>{{cite journal |author=Dias, J. R. |year=1994 |title= बेंजीनोइड्स से फुलरीन और सर्कमस्क्राइबिंग और लीपफ्रॉग एल्गोरिदम|journal= New J. Chem. |volume=18 |pages=667–673}}</ref> [[एक अधातु तत्त्व]], [[ऑक्सीजन]], [[नाइट्रोजन]] और [[ गंधक ]] (हास) युक्त [[कार्यात्मक समूह]];<ref>{{cite journal |author=Haas, A. |year= 1982 |title= A new classification principle: the periodic system of functional groups |journal= Chemiker-Zeitung |volume=106 |pages=239–248}}</ref><ref>{{cite journal |author=Haas, A. |year=1988 |title= तत्व विस्थापन सिद्धांत और पी-ब्लॉक तत्वों के रसायन विज्ञान के लिए इसका महत्व|journal= Kontakte (Darmstadt) |volume=3 |pages=3–11}}</ref> या [[ कोर प्रभारी ]], कोशों की संख्या, [[ रिडॉक्स ]] क्षमता और एसिड-बेस प्रवृत्तियों (गोर्स्की) का संयोजन।<ref>{{cite journal |author=Gorski, A |year=1971 |title= सरल प्रजातियों का रूपात्मक वर्गीकरण। भाग I. रासायनिक संरचना के मौलिक घटक|volume=45 |pages=1981–1989 |journal= Roczniki Chemii}}</ref><ref>{{cite journal |author=Gorski, A |year= 1973 |title= सरल प्रजातियों का रूपात्मक वर्गीकरण। भाग V. प्रजातियों के संरचनात्मक मापदंडों का मूल्यांकन|journal= Roczniki Chemii |volume=47 |pages=211–216}}</ref> ये संरचनाएँ परमाणुओं की दी गई संख्या वाले अणुओं तक ही सीमित नहीं हैं और वे तत्व चार्ट से बहुत कम समानता रखते हैं; उन्हें "रासायनिक" प्रणालियाँ कहा जाता है। रासायनिक प्रणालियाँ तत्व चार्ट से शुरू नहीं होती हैं, बल्कि उदाहरण के लिए, [[सूत्र गणना]] (डायस), ग्रिम के हाइड्राइड विस्थापन कानून (हास), [[कम संभावित वक्र]] (जेनज़), से शुरू होती हैं।<ref>{{cite journal |author=Jenz, F |year= 1996 |title= कम संभावित वक्र (आरपीसी) विधि और उसके अनुप्रयोग|journal= Int. Rev. Phys. Chem. |volume=15 |pages=467–523 |doi=10.1080/01442359609353191 |issue=2|bibcode = 1996IRPC...15..467J }}</ref> आणविक विवरणकों (गोर्स्की) का एक सेट, और समान रणनीतियाँ।
अन्य जांचकर्ताओं ने संरचनाओं के निर्माण पर ध्यान केंद्रित किया है जो विशिष्ट प्रकार के अणुओं जैसे [[ एल्केन |एल्केन]] (मोरोज़ोव)<ref>Morozov, N. 1907. Stroeniya Veshchestva, I. D. Sytina Publication, Moscow.</ref> या कोर चार्ज, कोशों की संख्या, [[ रिडॉक्स |रिडॉक्स]] क्षमता और एसिड-बेस प्रवृत्तियों (गोर्स्की) का संयोजन।<ref>{{cite journal |author=Dias, J.R. |year=1982 |title= पॉलीसाइक्लिक एरोमैटिक हाइड्रोकार्बन की एक आवर्त सारणी। फ़्यूज्ड पॉलीसाइक्लिक एरोमैटिक हाइड्रोकार्बन की आइसोमर गणना|journal= Chem. Inf. Comput. Sci. |volume=22 |pages=15–22 |doi=10.1021/ci00033a004}}</ref><ref>{{cite journal |author=Dias, J. R. |year=1994 |title= बेंजीनोइड्स से फुलरीन और सर्कमस्क्राइबिंग और लीपफ्रॉग एल्गोरिदम|journal= New J. Chem. |volume=18 |pages=667–673}}</ref> ये संरचनाएं किसी निश्चित संख्या में परमाणुओं वाले अणुओं तक ही सीमित नहीं हैं और वे तत्व चार्ट से बहुत कम समानता रखते हैं, उन्हें "रासायनिक" सिस्टम कहा जाता है। रासायनिक प्रणालियाँ तत्व चार्ट से प्रारम्भ नहीं होती हैं, बल्कि उदाहरण के लिए, [[सूत्र गणना]] (डायस), ग्रिम के हाइड्राइड विस्थापन कानून (हास), कम संभावित वक्र (जेनज़), आणविक विवरणकों का एक सेट (गोर्स्की) और इसी तरह की रणनीतियों से प्रारम्भ होती हैं।<ref>{{cite journal |author=Gorski, A |year=1971 |title= सरल प्रजातियों का रूपात्मक वर्गीकरण। भाग I. रासायनिक संरचना के मौलिक घटक|volume=45 |pages=1981–1989 |journal= Roczniki Chemii}}</ref><ref>{{cite journal |author=Gorski, A |year= 1973 |title= सरल प्रजातियों का रूपात्मक वर्गीकरण। भाग V. प्रजातियों के संरचनात्मक मापदंडों का मूल्यांकन|journal= Roczniki Chemii |volume=47 |pages=211–216}}</ref>


==अतिआवधिकता==
==अतिआवधिकता==
ई. वी. बाबेव<ref>Babaev, E.V. and R. Hefferlin 1996. The Concepts of Periodicity and Hyper-
ई. वी. बाबाएव ने एक [[अतिआवधिक प्रणाली|हाइपरपेरियोडिक प्रणाली]] बनाई है जिसमें सिद्धांत रूप में डायस, गोर्स्की और जेन्ज़ को छोड़कर ऊपर वर्णित सभी प्रणालियाँ सम्मिलित हैं।<ref>Babaev, E.V. and R. Hefferlin 1996. The Concepts of Periodicity and Hyper-
periodicity: from Atoms to Molecules, in Rouvray, D.H. and Kirby, E.C., “Concepts in Chemistry,” Research Studies Press Limited, Taunton, Somerset, England.</ref> ने एक [[अतिआवधिक प्रणाली]] बनाया है जिसमें सिद्धांत रूप में डायस, गोर्स्की और जेनज़ को छोड़कर ऊपर वर्णित सभी सिस्टम शामिल हैं।
periodicity: from Atoms to Molecules, in Rouvray, D.H. and Kirby, E.C., “Concepts in Chemistry,” Research Studies Press Limited, Taunton, Somerset, England.</ref>


==तत्व चार्ट के आधार और अणुओं की आवधिक प्रणाली==
==तत्व चार्ट के आधार और अणुओं की आवधिक प्रणाली==
तत्वों का आवधिक चार्ट, एक छोटे स्टूल की तरह, तीन पैरों द्वारा समर्थित है: (ए) [[नील्स बोह्र]]-[[अर्नोल्ड सोमरफेल्ड]] "सौर मंडल" [[परमाणु मॉडल]] ([[इलेक्ट्रॉन स्पिन]] और औफबाउ सिद्धांत के साथ), जो जादू-संख्या तत्व प्रदान करता है जो तालिका की प्रत्येक पंक्ति को समाप्त करता है और प्रत्येक पंक्ति में तत्वों की संख्या देता है, (बी)
तत्वों का आवधिक चार्ट, एक छोटे स्टूल की तरह, तीन पैरों द्वारा समर्थित है: (ए) [[नील्स बोह्र]]-[[अर्नोल्ड सोमरफेल्ड]] "सौर मंडल" [[परमाणु मॉडल]] ([[इलेक्ट्रॉन स्पिन]] और मैडेलुंग सिद्धांत के साथ), जो जादू-संख्या तत्वों को समाप्त करता है तालिका की प्रत्येक पंक्ति और प्रत्येक पंक्ति में तत्वों की संख्या देती है, (बी) श्रोडिंगर समीकरण के समाधान, जो समान जानकारी प्रदान करते हैं, और (सी) प्रयोग द्वारा, सौर मंडल मॉडल द्वारा, और समाधान द्वारा प्रदान किया गया डेटा श्रोडिंगर समीकरण. बोह्र-सोमरफेल्ड मॉडल को नजरअंदाज नहीं किया जाना चाहिए: इसने स्पेक्ट्रोस्कोपिक डेटा की समृद्धि के लिए स्पष्टीकरण दिया जो तरंग यांत्रिकी के आगमन से पहले से ही अस्तित्व में था।
श्रोडिंगर समीकरण के समाधान, जो समान जानकारी प्रदान करते हैं, और (सी) प्रयोग द्वारा प्रदान किया गया डेटा, सौर मंडल मॉडल द्वारा, और श्रोडिंगर समीकरण के समाधान द्वारा। बोह्र मॉडल#रिफाइनमेंट्स|बोह्र-सोमरफेल्ड मॉडल को नजरअंदाज नहीं किया जाना चाहिए: इसने स्पेक्ट्रोस्कोपिक डेटा की समृद्धि के लिए स्पष्टीकरण दिया जो तरंग फ़ंक्शन यांत्रिकी के आगमन से पहले से ही अस्तित्व में था।
 
ऊपर सूचीबद्ध प्रत्येक आणविक प्रणाली, और जिनका उल्लेख नहीं किया गया है, वे भी तीन पैरों द्वारा समर्थित हैं: (ए)
भौतिक और रासायनिक डेटा ग्राफिकल या सारणीबद्ध पैटर्न में व्यवस्थित होते हैं (जो कम से कम भौतिक आवधिक प्रणालियों के लिए, तत्व चार्ट की उपस्थिति को प्रतिबिंबित करते हैं), (बी) समूह गतिशील, वैलेंस-बंधन, आणविक-कक्षीय, और अन्य मौलिक सिद्धांत, और ( सी) परमाणु अवधि और समूह संख्याओं का योग (कोंग), क्रोनकर उत्पाद और उच्च आयामों का शोषण (हेफ़रलिन), सूत्र गणना (डायस), हाइड्रोजन-विस्थापन सिद्धांत (हास), कम संभावित वक्र (जेनज़), और इसी तरह की रणनीतियाँ .
 
इस क्षेत्र में योगदान की एक कालानुक्रमिक सूची<ref name=r3/>इसमें 1862, 1907, 1929, 1935 और 1936 की लगभग तीस प्रविष्टियाँ शामिल हैं; फिर, एक विराम के बाद, 1969 में मेंडेलीव के तत्व चार्ट के प्रकाशन की 100वीं वर्षगांठ के साथ उच्च स्तर की गतिविधि शुरू हुई। अणुओं की आवधिक प्रणालियों पर कई प्रकाशनों में आणविक गुणों की कुछ भविष्यवाणियां शामिल हैं, लेकिन सदी के अंत से शुरू होने वाली गतिविधियां विभिन्न अणुओं की संख्या के लिए उत्तरोत्तर अधिक सटीक डेटा की भविष्यवाणी के लिए आवधिक प्रणालियों का उपयोग करने के गंभीर प्रयास किए गए हैं। इन प्रयासों में कोंग के प्रयास भी शामिल हैं,<ref name=r7/>और हेफ़रलिन<ref>{{cite journal |author=Hefferlin, R. |year=2010 |title= Vibration Frequencies using Least squares and Neural Networks for 50 new s and p Electron Diatomics |journal= Quant. Spectr. Radiat. Transf. |volume=111 |issue=1 |pages=71–77 |doi=10.1016/j.jqsrt.2009.08.004|bibcode = 2010JQSRT.111...71H }}</ref><ref>{{cite journal |author=Hefferlin, R. |year=2010 |title=Internuclear Separations using Least squares and Neural Networks for 46 new s and p Electron Diatomics}}</ref>


ऊपर सूचीबद्ध प्रत्येक आणविक प्रणाली, और जिनका उल्लेख नहीं किया गया है, को भी तीन चरणों द्वारा समर्थित किया गया है: (ए) ग्राफिकल या सारणीबद्ध पैटर्न में व्यवस्थित भौतिक और रासायनिक डेटा (जो, कम से कम भौतिक आवधिक प्रणालियों के लिए, तत्व चार्ट की उपस्थिति को प्रतिध्वनित करता है) ), (बी) समूह गतिशील, वैलेंस-बंध, आणविक-कक्षीय, और अन्य मौलिक सिद्धांत, और (सी) परमाणु अवधि और समूह संख्याओं का योग (कोंग), क्रोनकर उत्पाद और उच्च आयामों का शोषण (हेफ़र्लिन), सूत्र गणना (डायस), हाइड्रोजन-विस्थापन सिद्धांत (हास), कम संभावित वक्र (जेनज़), और इसी तरह की रणनीतियाँ।


इस क्षेत्र में योगदान की कालानुक्रमिक सूची में 1862, 1907, 1929, 1935 और 1936 की लगभग तीस प्रविष्टियाँ सम्मिलित हैं<ref name=r3/> फिर, एक विराम के बाद, 1969 में मेंडेलीव के तत्व चार्ट के प्रकाशन की 100वीं वर्षगांठ के साथ उच्च स्तर की गतिविधि प्रारम्भ हुई। अणुओं की आवधिक प्रणालियों पर कई प्रकाशनों में आणविक गुणों की कुछ भविष्यवाणियां सम्मिलित हैं, लेकिन शताब्दी के अंत से प्रारम्भ होने वाली गतिविधियां विभिन्न अणुओं की संख्या के लिए उत्तरोत्तर अधिक सटीक डेटा की भविष्यवाणी के लिए आवधिक प्रणालियों का उपयोग करने के गंभीर प्रयास किए गए हैं। इन प्रयासों में कोंग<ref name=r7/> और हेफ़रलिन के प्रयास सम्मिलित हैंन<ref>{{cite journal |author=Hefferlin, R. |year=2010 |title= Vibration Frequencies using Least squares and Neural Networks for 50 new s and p Electron Diatomics |journal= Quant. Spectr. Radiat. Transf. |volume=111 |issue=1 |pages=71–77 |doi=10.1016/j.jqsrt.2009.08.004|bibcode = 2010JQSRT.111...71H }}</ref><ref>{{cite journal |author=Hefferlin, R. |year=2010 |title=Internuclear Separations using Least squares and Neural Networks for 46 new s and p Electron Diatomics}}</ref>
==त्रिकोणीय अणुओं के लिए एक संक्षिप्त-समन्वय प्रणाली==
==त्रिकोणीय अणुओं के लिए एक संक्षिप्त-समन्वय प्रणाली==
क्रोनकर-उत्पाद प्रणाली द्वारा मांगे गए छह के बजाय ढह-समन्वय प्रणाली में तीन स्वतंत्र चर हैं। स्वतंत्र चरों की कमी से गैस-चरण, जमीनी-अवस्था, त्रिपरमाण्विक अणुओं के तीन गुणों का उपयोग होता है। (1) सामान्य तौर पर, घटक परमाणु वैलेंस इलेक्ट्रॉनों की कुल संख्या जो भी हो, [[आइसोइलेक्ट्रॉनिकिटी]] के लिए डेटा आसन्न अणुओं की तुलना में अधिक समान होता है जिनमें अधिक या कम वैलेंस इलेक्ट्रॉन होते हैं; त्रिपरमाण्विक अणुओं के लिए, इलेक्ट्रॉन गणना आवर्त सारणी का योग है (तत्वों के आवर्त चार्ट के [[पी-ब्लॉक]] में स्तंभ संख्या 1 से 8 का योग, C1+C2+C3)। (2) यदि कार्बन केंद्रीय परमाणु है तो रैखिक/मुड़े हुए त्रिपरमाणुक अणु थोड़े अधिक स्थिर प्रतीत होते हैं, अन्य पैरामीटर समान होते हैं। (3) द्विपरमाणुक अणुओं के अधिकांश भौतिक गुण (विशेषकर स्पेक्ट्रोस्कोपिक स्थिरांक) दो आवर्त सारणी|परमाणु काल (या पंक्ति) संख्याओं, आर1 और आर2 के उत्पाद के संबंध में बारीकी से एकरस हैं; त्रिपरमाण्विक अणुओं के लिए, एकस्वरता R1R2+R2R3 के संबंध में करीब है (जो द्विपरमाणुक अणुओं के लिए R1R2 तक कम हो जाती है)। इसलिए, संक्षिप्त-समन्वय प्रणाली के निर्देशांक x, y, और z C1+C2+C3, C2, और R1R2+R2R3 हैं। सारणीबद्ध डेटा वाले अणुओं के लिए चार संपत्ति मूल्यों की बहु-प्रतिगमन भविष्यवाणियां सारणीबद्ध डेटा के साथ बहुत अच्छी तरह से मेल खाती हैं (भविष्यवाणियों के त्रुटि उपायों में कुछ मामलों को छोड़कर सभी में सारणीबद्ध डेटा शामिल है)।<ref>{{cite journal |author=Carlson, C., Gilkeson, J., Linderman, K., LeBlanc, S. Hefferlin, R., and Davis, B |year= 1997 |title= न्यूनतम-वर्ग फिटिंग का उपयोग करके सारणीबद्ध डेटा से त्रिपरमाण्विक अणुओं के गुणों का अनुमान|journal= Croatica Chemica Acta |volume=70 |pages=479–508}}</ref>
क्रोनकर-उत्पाद प्रणाली द्वारा मांगे गए छह के बजाय ढह-समन्वय प्रणाली में तीन स्वतंत्र चर हैं। स्वतंत्र चरों की कमी से गैस-चरण, जमीनी-अवस्था, त्रिपरमाण्विक अणुओं के तीन गुणों का उपयोग होता है। (1) सामान्य तौर पर, घटक परमाणु वैलेंस इलेक्ट्रॉनों की कुल संख्या जो भी हो, [[आइसोइलेक्ट्रॉनिकिटी]] अणुओं का डेटा आसन्न अणुओं की तुलना में अधिक समान होता है जिनमें अधिक या कम वैलेंस इलेक्ट्रॉन होते हैं; त्रिपरमाण्विक अणुओं के लिए, इलेक्ट्रॉन गणना परमाणु समूह संख्याओं का योग है (तत्वों के आवधिक चार्ट के पी-ब्लॉक में कॉलम संख्या 1 से 8 का योग, C1+C2+C3)। (2) यदि कार्बन केंद्रीय परमाणु है तो रैखिक/मुड़े हुए त्रिपरमाणुक अणु थोड़े अधिक स्थिर प्रतीत होते हैं, अन्य पैरामीटर समान होते हैं। (3) डायटोमिक अणुओं (विशेष रूप से स्पेक्ट्रोस्कोपिक स्थिरांक) के अधिकांश भौतिक गुण दो परमाणु अवधि (या पंक्ति) संख्याओं, आर1 और आर2 के उत्पाद के संबंध में बारीकी से मोनोटोनिक हैं; त्रिपरमाण्विक अणुओं के लिए, एकस्वरता R1R2+R2R3 के संबंध में करीब है (जो द्विपरमाणुक अणुओं के लिए R1R2 तक कम हो जाती है)। इसलिए, संक्षिप्त-समन्वय प्रणाली के निर्देशांक x, y, और z C1+C2+C3, C2, और R1R2+R2R3 हैं। सारणीबद्ध डेटा वाले अणुओं के लिए चार संपत्ति मूल्यों की बहु-प्रतिगमन भविष्यवाणियां सारणीबद्ध डेटा के साथ बहुत अच्छी तरह से मेल खाती हैं (भविष्यवाणियों के त्रुटि उपायों में कुछ मामलों को छोड़कर सभी में सारणीबद्ध डेटा सम्मिलित है)।<ref>{{cite journal |author=Carlson, C., Gilkeson, J., Linderman, K., LeBlanc, S. Hefferlin, R., and Davis, B |year= 1997 |title= न्यूनतम-वर्ग फिटिंग का उपयोग करके सारणीबद्ध डेटा से त्रिपरमाण्विक अणुओं के गुणों का अनुमान|journal= Croatica Chemica Acta |volume=70 |pages=479–508}}</ref>
 
 
== यह भी देखें ==
== यह भी देखें ==
* [[आवर्त सारणी का इतिहास]]
* [[आवर्त सारणी का इतिहास]]

Revision as of 17:27, 22 September 2023

अणुओं की आवर्त सारणी तत्वों की आवर्त सारणी के समान अणुओं के चार्ट हैं। ऐसे चार्ट का निर्माण 20वीं शताब्दी की शुरुआत में प्रारम्भ किया गया था और अभी भी प्रारम्भ है।

आमतौर पर यह माना जाता है कि आवधिक चार्ट द्वारा दर्शाया गया आवधिक कानून, अणुओं के व्यवहार में, कम से कम छोटे अणुओं में प्रतिध्वनित होता है। उदाहरण के लिए, यदि कोई त्रिपरमाण्विक अणु में किसी एक परमाणु को एक दुर्लभ गैस परमाणु से प्रतिस्थापित करता है, तो अणु के गुणों में भारी परिवर्तन होगा। अणुओं में प्रकट होने वाले इस आवधिक कानून का एक स्पष्ट प्रतिनिधित्व बनाकर कई लक्ष्यों को पूरा किया जा सकता है: (1) शिक्षण सहायता के रूप में उपयोग के लिए, मौजूद अणुओं की विशाल संख्या के लिए एक वर्गीकरण योजना, जो कि केवल कुछ परमाणुओं वाले छोटे से प्रारम्भ होती है। और डेटा संग्रहीत करने के लिए उपकरण, (2) वर्गीकरण योजना के आधार पर आणविक गुणों के लिए डेटा का पूर्वानुमान, और (3) आवधिक चार्ट और मौलिक कणों की आवधिक प्रणाली के साथ एक प्रकार की एकता।[1]

अणुओं की भौतिक आवर्त प्रणालियाँ

अणुओं की आवधिक प्रणालियाँ (या चार्ट या तालिकाएँ) दो समीक्षाओं का विषय हैं।[2][3] द्विपरमाणुक अणुओं की प्रणालियों में (1) एच.डी.डब्ल्यू. क्लार्क,[4][5] और (2) एफ.-ए. सम्मिलित हैं। कोंग,,[6][7] जो कुछ हद तक परमाणु चार्ट जैसा दिखता है। आर. हेफ़रलिन एट अल की प्रणाली।।[8][9] (3) त्रि-आयामी से (4) चार-आयामी प्रणाली क्रोनकर तत्व चार्ट के उत्पाद को स्वयं के साथ विकसित किया गया था।

एक काल्पनिक चार-तत्व आवधिक चार्ट का क्रोनकर उत्पाद। सोलह अणु, जिनमें से कुछ अनावश्यक हैं, एक हाइपरक्यूब का सुझाव देते हैं, जो बदले में बताता है कि अणु चार-आयामी अंतरिक्ष में मौजूद हैं; निर्देशांक दो घटक परमाणुओं की अवधि संख्या और समूह संख्या हैं[10]

एक पूरी तरह से अलग प्रकार की आवधिक प्रणाली (5) जी. वी. ज़ुविकिन की है,[11][12] जो समूह की गतिशीलता पर आधारित है। इनमें से पहले मामले को छोड़कर सभी में, अन्य शोधकर्ताओं ने अमूल्य योगदान दिया और उनमें से कुछ सह-लेखक हैं। इन प्रणालियों की वास्तुकला को आयनित प्रजातियों को सम्मिलित करने के लिए कोंग[7] और हेफ़रलिन[12] द्वारा समायोजित किया गया है[7] और कोंग, [7] हेफ़रलिन[7] और ज़ुविकिन और हेफ़रलिन[12] द्वारा त्रिपरमाण्विक अणुओं के स्थान तक विस्तारित किया गया है। ये आर्किटेक्चर गणितीय रूप से तत्वों के चार्ट से संबंधित हैं। उन्हें पहले "भौतिक" आवधिक प्रणाली कहा जाता था।[2]

अणुओं की रासायनिक आवधिक प्रणाली

अन्य जांचकर्ताओं ने संरचनाओं के निर्माण पर ध्यान केंद्रित किया है जो विशिष्ट प्रकार के अणुओं जैसे एल्केन (मोरोज़ोव)[13] या कोर चार्ज, कोशों की संख्या, रिडॉक्स क्षमता और एसिड-बेस प्रवृत्तियों (गोर्स्की) का संयोजन।[14][15] ये संरचनाएं किसी निश्चित संख्या में परमाणुओं वाले अणुओं तक ही सीमित नहीं हैं और वे तत्व चार्ट से बहुत कम समानता रखते हैं, उन्हें "रासायनिक" सिस्टम कहा जाता है। रासायनिक प्रणालियाँ तत्व चार्ट से प्रारम्भ नहीं होती हैं, बल्कि उदाहरण के लिए, सूत्र गणना (डायस), ग्रिम के हाइड्राइड विस्थापन कानून (हास), कम संभावित वक्र (जेनज़), आणविक विवरणकों का एक सेट (गोर्स्की) और इसी तरह की रणनीतियों से प्रारम्भ होती हैं।[16][17]

अतिआवधिकता

ई. वी. बाबाएव ने एक हाइपरपेरियोडिक प्रणाली बनाई है जिसमें सिद्धांत रूप में डायस, गोर्स्की और जेन्ज़ को छोड़कर ऊपर वर्णित सभी प्रणालियाँ सम्मिलित हैं।[18]

तत्व चार्ट के आधार और अणुओं की आवधिक प्रणाली

तत्वों का आवधिक चार्ट, एक छोटे स्टूल की तरह, तीन पैरों द्वारा समर्थित है: (ए) नील्स बोह्र-अर्नोल्ड सोमरफेल्ड "सौर मंडल" परमाणु मॉडल (इलेक्ट्रॉन स्पिन और मैडेलुंग सिद्धांत के साथ), जो जादू-संख्या तत्वों को समाप्त करता है तालिका की प्रत्येक पंक्ति और प्रत्येक पंक्ति में तत्वों की संख्या देती है, (बी) श्रोडिंगर समीकरण के समाधान, जो समान जानकारी प्रदान करते हैं, और (सी) प्रयोग द्वारा, सौर मंडल मॉडल द्वारा, और समाधान द्वारा प्रदान किया गया डेटा श्रोडिंगर समीकरण. बोह्र-सोमरफेल्ड मॉडल को नजरअंदाज नहीं किया जाना चाहिए: इसने स्पेक्ट्रोस्कोपिक डेटा की समृद्धि के लिए स्पष्टीकरण दिया जो तरंग यांत्रिकी के आगमन से पहले से ही अस्तित्व में था।

ऊपर सूचीबद्ध प्रत्येक आणविक प्रणाली, और जिनका उल्लेख नहीं किया गया है, को भी तीन चरणों द्वारा समर्थित किया गया है: (ए) ग्राफिकल या सारणीबद्ध पैटर्न में व्यवस्थित भौतिक और रासायनिक डेटा (जो, कम से कम भौतिक आवधिक प्रणालियों के लिए, तत्व चार्ट की उपस्थिति को प्रतिध्वनित करता है) ), (बी) समूह गतिशील, वैलेंस-बंध, आणविक-कक्षीय, और अन्य मौलिक सिद्धांत, और (सी) परमाणु अवधि और समूह संख्याओं का योग (कोंग), क्रोनकर उत्पाद और उच्च आयामों का शोषण (हेफ़र्लिन), सूत्र गणना (डायस), हाइड्रोजन-विस्थापन सिद्धांत (हास), कम संभावित वक्र (जेनज़), और इसी तरह की रणनीतियाँ।

इस क्षेत्र में योगदान की कालानुक्रमिक सूची में 1862, 1907, 1929, 1935 और 1936 की लगभग तीस प्रविष्टियाँ सम्मिलित हैं[3] फिर, एक विराम के बाद, 1969 में मेंडेलीव के तत्व चार्ट के प्रकाशन की 100वीं वर्षगांठ के साथ उच्च स्तर की गतिविधि प्रारम्भ हुई। अणुओं की आवधिक प्रणालियों पर कई प्रकाशनों में आणविक गुणों की कुछ भविष्यवाणियां सम्मिलित हैं, लेकिन शताब्दी के अंत से प्रारम्भ होने वाली गतिविधियां विभिन्न अणुओं की संख्या के लिए उत्तरोत्तर अधिक सटीक डेटा की भविष्यवाणी के लिए आवधिक प्रणालियों का उपयोग करने के गंभीर प्रयास किए गए हैं। इन प्रयासों में कोंग[7] और हेफ़रलिन के प्रयास सम्मिलित हैंन[19][20]

त्रिकोणीय अणुओं के लिए एक संक्षिप्त-समन्वय प्रणाली

क्रोनकर-उत्पाद प्रणाली द्वारा मांगे गए छह के बजाय ढह-समन्वय प्रणाली में तीन स्वतंत्र चर हैं। स्वतंत्र चरों की कमी से गैस-चरण, जमीनी-अवस्था, त्रिपरमाण्विक अणुओं के तीन गुणों का उपयोग होता है। (1) सामान्य तौर पर, घटक परमाणु वैलेंस इलेक्ट्रॉनों की कुल संख्या जो भी हो, आइसोइलेक्ट्रॉनिकिटी अणुओं का डेटा आसन्न अणुओं की तुलना में अधिक समान होता है जिनमें अधिक या कम वैलेंस इलेक्ट्रॉन होते हैं; त्रिपरमाण्विक अणुओं के लिए, इलेक्ट्रॉन गणना परमाणु समूह संख्याओं का योग है (तत्वों के आवधिक चार्ट के पी-ब्लॉक में कॉलम संख्या 1 से 8 का योग, C1+C2+C3)। (2) यदि कार्बन केंद्रीय परमाणु है तो रैखिक/मुड़े हुए त्रिपरमाणुक अणु थोड़े अधिक स्थिर प्रतीत होते हैं, अन्य पैरामीटर समान होते हैं। (3) डायटोमिक अणुओं (विशेष रूप से स्पेक्ट्रोस्कोपिक स्थिरांक) के अधिकांश भौतिक गुण दो परमाणु अवधि (या पंक्ति) संख्याओं, आर1 और आर2 के उत्पाद के संबंध में बारीकी से मोनोटोनिक हैं; त्रिपरमाण्विक अणुओं के लिए, एकस्वरता R1R2+R2R3 के संबंध में करीब है (जो द्विपरमाणुक अणुओं के लिए R1R2 तक कम हो जाती है)। इसलिए, संक्षिप्त-समन्वय प्रणाली के निर्देशांक x, y, और z C1+C2+C3, C2, और R1R2+R2R3 हैं। सारणीबद्ध डेटा वाले अणुओं के लिए चार संपत्ति मूल्यों की बहु-प्रतिगमन भविष्यवाणियां सारणीबद्ध डेटा के साथ बहुत अच्छी तरह से मेल खाती हैं (भविष्यवाणियों के त्रुटि उपायों में कुछ मामलों को छोड़कर सभी में सारणीबद्ध डेटा सम्मिलित है)।[21]

यह भी देखें

संदर्भ

  1. Chung, D.-Y. (2000). "प्राथमिक कणों की आवर्त सारणी". arXiv:physics/0003023.
  2. 2.0 2.1 Hefferlin, R. and Burdick, G.W. 1994. Fizicheskie i khimicheskie periodicheskie sistemy Molekul, Zhurnal Obshchei Xhimii, vol. 64, pp. 1870–1885. English translation: "Periodic Systems of Molecules: Physical and Chemical". Russ. J. Gen. Chem. 64: 1659–1674.
  3. 3.0 3.1 Hefferlin, R. 2006. The Periodic Systems of Molecules pp. 221 ff, in Baird, D., Scerri, E., and McIntyre, L. (Eds.) “The Philosophy of Chemistry, Synthesis of a New Discipline,” Springer, Dordrecht ISBN 1-4020-3256-0.
  4. Clark, C. H. D. (1935). "गैर-हाइड्राइड डाइ-परमाणुओं के आवधिक समूह". Trans. Faraday Soc. 31: 1017–1036. doi:10.1039/tf9353101017.
  5. Clark, C. H. D (1940). "बैंड-स्पेक्ट्रल स्थिरांक की व्यवस्था। भाग V. पृथक्करण ऊर्जा और जमीनी अवस्थाओं में डाय-परमाणुओं की संतुलन आंतरिक परमाणु दूरी के अंतर्संबंध". Trans. Faraday Soc. 36: 370–376. doi:10.1039/tf9403500370.
  6. Kong, F (1982). "द्विपरमाणुक अणुओं की आवधिकता". J. Mol. Struct. 90: 17–28. Bibcode:1982JMoSt..90...17K. doi:10.1016/0022-2860(82)90199-5.
  7. 7.0 7.1 7.2 7.3 7.4 Kong, F. and Wu, W. 2010. Periodicity of Diatomic and Triatomic Molecules, Conference Proceedings of the 2010 Workshop on Mathematical Chemistry of the Americas.
  8. Hefferlin, R., Campbell, D. Gimbel, H. Kuhlman, and T. Cayton (1979). "The periodic table of diatomic molecules—I an algorithm for retrieval and prediction of spectrophysical properties". Quant. Spectrosc. Radiat. Transfer. 21 (4): 315–336. Bibcode:1979JQSRT..21..315H. doi:10.1016/0022-4073(79)90063-3.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  9. Hefferlin, R (2008). "क्रोनेकर-उत्पाद छोटे गैस-चरण अणुओं की आवधिक प्रणाली और किसी भी चरण के परमाणु संयोजनों में ऑर्डर की खोज". Comb. Chem. High Throughput Screen. 11 (9): 690–706. doi:10.2174/138620708786306041. PMID 18991573.
  10. Gary W. Burdick and Ray Hefferlin, "Chapter 7. Data Location in a Four-Dimensional Periodic System of Diatomic Molecules", in Mihai V Putz, Ed., Chemical Information and Computational Challenges in the 21st Century, NOVA, 2011, ISBN 978-1-61209-712-1
  11. Zhuvikin, G.V. & R. Hefferlin (1983). "Periodicheskaya Sistema Dvukhatomnykh Molekul: Teoretiko-gruppovoi Podkhod, Vestnik Leningradskovo Universiteta" (16): 10–16. {{cite journal}}: Cite journal requires |journal= (help)
  12. 12.0 12.1 12.2 Carlson, C.M., Cavanaugh, R.J, Hefferlin, R.A, and of Zhuvikin, G.V. (1996). "Periodic Systems of Molecular States from the Boson Group Dynamics of SO(3)xSU(2)s". Chem. Inf. Comput. Sci. 36: 396–398. doi:10.1021/ci9500748.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  13. Morozov, N. 1907. Stroeniya Veshchestva, I. D. Sytina Publication, Moscow.
  14. Dias, J.R. (1982). "पॉलीसाइक्लिक एरोमैटिक हाइड्रोकार्बन की एक आवर्त सारणी। फ़्यूज्ड पॉलीसाइक्लिक एरोमैटिक हाइड्रोकार्बन की आइसोमर गणना". Chem. Inf. Comput. Sci. 22: 15–22. doi:10.1021/ci00033a004.
  15. Dias, J. R. (1994). "बेंजीनोइड्स से फुलरीन और सर्कमस्क्राइबिंग और लीपफ्रॉग एल्गोरिदम". New J. Chem. 18: 667–673.
  16. Gorski, A (1971). "सरल प्रजातियों का रूपात्मक वर्गीकरण। भाग I. रासायनिक संरचना के मौलिक घटक". Roczniki Chemii. 45: 1981–1989.
  17. Gorski, A (1973). "सरल प्रजातियों का रूपात्मक वर्गीकरण। भाग V. प्रजातियों के संरचनात्मक मापदंडों का मूल्यांकन". Roczniki Chemii. 47: 211–216.
  18. Babaev, E.V. and R. Hefferlin 1996. The Concepts of Periodicity and Hyper- periodicity: from Atoms to Molecules, in Rouvray, D.H. and Kirby, E.C., “Concepts in Chemistry,” Research Studies Press Limited, Taunton, Somerset, England.
  19. Hefferlin, R. (2010). "Vibration Frequencies using Least squares and Neural Networks for 50 new s and p Electron Diatomics". Quant. Spectr. Radiat. Transf. 111 (1): 71–77. Bibcode:2010JQSRT.111...71H. doi:10.1016/j.jqsrt.2009.08.004.
  20. Hefferlin, R. (2010). "Internuclear Separations using Least squares and Neural Networks for 46 new s and p Electron Diatomics". {{cite journal}}: Cite journal requires |journal= (help)
  21. Carlson, C., Gilkeson, J., Linderman, K., LeBlanc, S. Hefferlin, R., and Davis, B (1997). "न्यूनतम-वर्ग फिटिंग का उपयोग करके सारणीबद्ध डेटा से त्रिपरमाण्विक अणुओं के गुणों का अनुमान". Croatica Chemica Acta. 70: 479–508.{{cite journal}}: CS1 maint: multiple names: authors list (link)