इंजीनियरिंग फिट: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Geometric dimensioning and tolerance in engineering}} | {{Short description|Geometric dimensioning and tolerance in engineering}} | ||
जब किसी भाग या असेंबली को डिज़ाइन किया जाता है तो '''इंजीनियरिंग फिट''' का उपयोग सामान्यतः [[ज्यामितीय आयाम और सहनशीलता]] के भाग के रूप में किया जाता है। इंजीनियरिंग के शब्दों में, फिट दो संभोग भागों के बीच की निकासी है, और इस मंजूरी का आकार यह निर्धारित करता है कि स्पेक्ट्रम के | जब किसी भाग या असेंबली को डिज़ाइन किया जाता है तो '''इंजीनियरिंग फिट''' का उपयोग सामान्यतः [[ज्यामितीय आयाम और सहनशीलता]] के भाग के रूप में किया जाता है। इंजीनियरिंग के शब्दों में, "फिट" दो संभोग भागों के बीच की निकासी होती है, और इस मंजूरी का आकार यह निर्धारित करता है कि स्पेक्ट्रम के अंत पर अलग-अलग हो सकते है , जहां ओर पर, वे आपस में स्वतंत्र रूप से या घूम सकते हैं या, दूसरी ओर, तात्कालिक या स्थायी रूप से जुड़े रह सकते हैं। इंजीनियरिंग फिट को सामान्यतः "शाफ्ट और होल" का मेल दिया जाता है, किन्तु यह केवल गोल घटकों से ही सीमित नहीं होता है। अंतर्राष्ट्रीय मानकीकरण संगठन इंजीनियरिंग फिट को परिभाषित करने के लिए अंतरराष्ट्रीय स्तर पर स्वीकृत मानक है, किन्तु अमेरिकी राष्ट्रीय मानक संस्थान का उपयोग अधिकांशतः उत्तरी अमेरिका में अभी भी किया जाता है। | ||
आईएसओ और एएनएसआई दोनों समूह तीन श्रेणियों में फिट होते हैं: निकासी, स्थान या संक्रमण, और हस्तक्षेप। प्रत्येक श्रेणी में छेद या शाफ्ट की आकार सीमा को परिभाषित करने के लिए कई कोड होते हैं - जिनका संयोजन फिट के प्रकार को | आईएसओ और एएनएसआई दोनों समूह तीन श्रेणियों में फिट होते हैं: निकासी, स्थान या संक्रमण, और हस्तक्षेप। प्रत्येक श्रेणी में छेद या शाफ्ट की आकार सीमा को परिभाषित करने के लिए कई कोड होते हैं - जिनका संयोजन से फिट के प्रकार को निर्धारण होता है। फिट का चयन सामान्यतः डिज़ाइन चरण में इस आधार पर किया जाता है कि क्या संभोग भागों को सटीक रूप से स्थित होना चाहिए, फिसलने या घूमने के लिए स्वतंत्र होना चाहिए, आसानी से अलग होना चाहिए, या अलग होने का विरोध करना चाहिए। फिट का चयन करने में लागत भी प्रमुख कारक है, क्योंकि अधिक सटीक फिट का उत्पादन करना अधिक महंगा होगा, और तंग फिट को असेंबल करना अधिक महंगा होगा। | ||
[[ ब्रोचिंग (धातुकर्म) ]], [[ बांट |बांट]] , [[मिलिंग (मशीनिंग)]] के माध्यम से व्यापक सहनशीलता के लिए [[कास्टिंग]], [[ लोहारी |लोहारी]] और [[ड्रिलिंग]] से लेकर सबसे सख्त सहनशीलता पर [[लैपिंग]] और ऑनिंग (मेटलवर्किंग) तक वांछित फिट रेंज प्राप्त करने के लिए आवश्यक सहनशीलता के लिए काम का उत्पादन करने की विधियां।<ref name="roymech">{{Cite web| url= https://roymech.org/Useful_Tables/ISO_Tolerances/ISO_LIMITS.html |title=आईएसओ शाफ्ट और होल सीमा सहनशीलता का सूचकांक| website=www.roymech.co.uk| language=en| access-date=2020-03-01}}</ref> | [[ ब्रोचिंग (धातुकर्म) ]], [[ बांट |बांट]] , [[मिलिंग (मशीनिंग)]] के माध्यम से व्यापक सहनशीलता के लिए [[कास्टिंग]], [[ लोहारी |लोहारी]] और [[ड्रिलिंग]] से लेकर सबसे सख्त सहनशीलता पर [[लैपिंग]] और ऑनिंग (मेटलवर्किंग) तक वांछित फिट रेंज प्राप्त करने के लिए आवश्यक सहनशीलता के लिए काम का उत्पादन करने की विधियां।<ref name="roymech">{{Cite web| url= https://roymech.org/Useful_Tables/ISO_Tolerances/ISO_LIMITS.html |title=आईएसओ शाफ्ट और होल सीमा सहनशीलता का सूचकांक| website=www.roymech.co.uk| language=en| access-date=2020-03-01}}</ref> | ||
Line 678: | Line 678: | ||
==== आरसी2: स्लाइडिंग फिट ==== | ==== आरसी2: स्लाइडिंग फिट ==== | ||
इस प्रकार के फिट सटीक स्थान के लिए होते हैं किन्तु कक्षा आरसी1 की समानता में अधिक अधिकतम निकासी के साथ होते हैं। इस फिट से बने भाग आसानी से मुड़ते और चलते हैं। यह प्रकार निःशुल्क चलाने के लिए डिज़ाइन नहीं किया गया है। | इस प्रकार के फिट सटीक स्थान के लिए होते हैं किन्तु कक्षा आरसी1 की समानता में अधिक अधिकतम निकासी के साथ होते हैं। इस फिट से बने भाग आसानी से मुड़ते और चलते हैं। यह प्रकार निःशुल्क चलाने के लिए डिज़ाइन नहीं किया गया है। तापीय विस्तार या संकुचन के लिए कम अनुमति के कारण बड़े आकार में स्लाइडिंग फिट छोटे तापमान परिवर्तन के साथ जब्त हो सकते हैं। | ||
==== आरसी3: सटीक रनिंग फिट ==== | ==== आरसी3: सटीक रनिंग फिट ==== | ||
Line 694: | Line 694: | ||
==== आरसी7: फ्री रनिंग फिट ==== | ==== आरसी7: फ्री रनिंग फिट ==== | ||
इस प्रकार के फिट | इस प्रकार के फिट का उपयोग वहाँ किया जाता है जहाँ सटीकता महत्वपूर्ण नहीं है। इसका उपयोग बड़ी तापमान विभिन्नताओं के लिए उपयुक्त है। यह फिट कुछ छेदों में शाफ्ट के सटीक मार्गदर्शन के लिए किसी विशेष आवश्यकता के बिना उपयोग करने के लिए उपयुक्त है। | ||
==== आरसी8 और आरसी9: ढीला रनिंग फिट ==== | ==== आरसी8 और आरसी9: ढीला रनिंग फिट ==== | ||
इस प्रकार के फिट | इस प्रकार के फिट का उपयोग वहाँ किया जाता है जहाँ शाफ्ट पर व्यापक व्यावसायिक सहनशीलता की आवश्यकता हो सकती है। इन फिटों के साथ, भागों के साथ बड़ी मंजूरी होती है जिसमें बड़ी सहनशीलता होती हैं। ढीले चलने वाले फिट जंग, धूल से संदूषण और तापीय या यांत्रिक विकृतियों के प्रभाव के संपर्क में आ सकते हैं। | ||
==यह भी देखें== | ==यह भी देखें== |
Revision as of 21:55, 20 September 2023
जब किसी भाग या असेंबली को डिज़ाइन किया जाता है तो इंजीनियरिंग फिट का उपयोग सामान्यतः ज्यामितीय आयाम और सहनशीलता के भाग के रूप में किया जाता है। इंजीनियरिंग के शब्दों में, "फिट" दो संभोग भागों के बीच की निकासी होती है, और इस मंजूरी का आकार यह निर्धारित करता है कि स्पेक्ट्रम के अंत पर अलग-अलग हो सकते है , जहां ओर पर, वे आपस में स्वतंत्र रूप से या घूम सकते हैं या, दूसरी ओर, तात्कालिक या स्थायी रूप से जुड़े रह सकते हैं। इंजीनियरिंग फिट को सामान्यतः "शाफ्ट और होल" का मेल दिया जाता है, किन्तु यह केवल गोल घटकों से ही सीमित नहीं होता है। अंतर्राष्ट्रीय मानकीकरण संगठन इंजीनियरिंग फिट को परिभाषित करने के लिए अंतरराष्ट्रीय स्तर पर स्वीकृत मानक है, किन्तु अमेरिकी राष्ट्रीय मानक संस्थान का उपयोग अधिकांशतः उत्तरी अमेरिका में अभी भी किया जाता है।
आईएसओ और एएनएसआई दोनों समूह तीन श्रेणियों में फिट होते हैं: निकासी, स्थान या संक्रमण, और हस्तक्षेप। प्रत्येक श्रेणी में छेद या शाफ्ट की आकार सीमा को परिभाषित करने के लिए कई कोड होते हैं - जिनका संयोजन से फिट के प्रकार को निर्धारण होता है। फिट का चयन सामान्यतः डिज़ाइन चरण में इस आधार पर किया जाता है कि क्या संभोग भागों को सटीक रूप से स्थित होना चाहिए, फिसलने या घूमने के लिए स्वतंत्र होना चाहिए, आसानी से अलग होना चाहिए, या अलग होने का विरोध करना चाहिए। फिट का चयन करने में लागत भी प्रमुख कारक है, क्योंकि अधिक सटीक फिट का उत्पादन करना अधिक महंगा होगा, और तंग फिट को असेंबल करना अधिक महंगा होगा।
ब्रोचिंग (धातुकर्म) , बांट , मिलिंग (मशीनिंग) के माध्यम से व्यापक सहनशीलता के लिए कास्टिंग, लोहारी और ड्रिलिंग से लेकर सबसे सख्त सहनशीलता पर लैपिंग और ऑनिंग (मेटलवर्किंग) तक वांछित फिट रेंज प्राप्त करने के लिए आवश्यक सहनशीलता के लिए काम का उत्पादन करने की विधियां।[1]
सीमा और फिट की आईएसओ प्रणाली
अवलोकन
मानकीकरण प्रणाली के लिए अंतर्राष्ट्रीय संगठन छेद और शाफ्ट आकार के लिए स्वीकार्य सीमा के आधार पर तीन मुख्य श्रेणियों को कई अलग-अलग फिट में विभाजित करता है। प्रत्येक फिट को कोड आवंटित किया जाता है, जो संख्या और अक्षर से बना होता है, जिसका उपयोग विस्तृत क्षेत्रों में अव्यवस्था को कम करने के लिए ऊपरी और निचले आकार की सीमाओं के स्थान पर इंजीनियरिंग ड्राइंग पर किया जाता है।
छेद और शाफ़्ट आधार
फिट को या तो शाफ्ट-आधार या छेद-आधार के रूप में निर्दिष्ट किया जाता है, यह इस बात पर निर्भर करता है कि फिट निर्धारित करने के लिए किस भाग का आकार नियंत्रित किया गया है। छेद-आधारित प्रणाली में, छेद का आकार स्थिर रहता है और फिट निर्धारित करने के लिए शाफ्ट का व्यास भिन्न होता है; इसके विपरीत, शाफ्ट-आधार प्रणाली में शाफ्ट का आकार स्थिर रहता है और फिट निर्धारित करने के लिए छेद का व्यास भिन्न होता है।
आईएसओ प्रणाली फिट के लिए सहिष्णुता सीमाओं को चित्रित करने के लिए अल्फा-न्यूमेरिक कोड का उपयोग करती है, जिसमें ऊपरी-केस छेद सहिष्णुता का प्रतिनिधित्व करता है और निचला-केस शाफ्ट का प्रतिनिधित्व करता है। उदाहरण के लिए, H7/h6 (सामान्यतः उपयोग किया जाने वाला फिट) में H7 छेद की सहनशीलता सीमा का प्रतिनिधित्व करता है और h6 शाफ्ट की सहनशीलता सीमा का प्रतिनिधित्व करता है। इन कोडों का उपयोग मशीनिस्टों या इंजीनियरों द्वारा छेद या शाफ्ट के लिए ऊपरी और निचले आकार की सीमाओं को तुरंत पहचानने के लिए किया जा सकता है। निकासी या हस्तक्षेप की संभावित सीमा सबसे बड़े छेद से सबसे छोटे शाफ्ट व्यास और सबसे छोटे छेद से सबसे बड़े शाफ्ट को घटाकर पाई जा सकती है।
फिट के प्रकार
फिट के तीन प्रकार हैं:
- क्लीयरेंस: छेद शाफ्ट से बड़ा होता है, जो इकट्ठे होने पर दो भागों को स्लाइड करने और/या घूमने में सक्षम बनाता है, उदाहरण के लिए, पिस्टन और वाल्व
- स्थान/संक्रमण: छेद शाफ्ट से आंशिक रूप से छोटा है और संयोजन/विघटन के लिए हल्के बल की आवश्यकता होती है, उदाहरण के लिए, शाफ्ट कुंजी
- हस्तक्षेप: छेद शाफ्ट से छोटा है और संयोजन/विघटन के लिए उच्च बल और/या गर्मी की आवश्यकता होती है, उदाहरण के लिए, बियरिंग बुश
क्लीयरेंस फिट बैठता है
वर्ग | विवरण और उपयोग | छेद का आधार | शाफ़्ट आधार |
---|---|---|---|
ढीला चल रहा है | बड़ी निकासी जहां सटीकता आवश्यक नहीं है, उदाहरण के लिए, धुरी, कुंडी, जंग, गर्मी या संदूषण से प्रभावित भाग | H11/c11 | C11/h11 |
फ्री रनिंग | बड़ी निकासी जहां सटीकता आवश्यक नहीं है और इसमें उच्च चलने की गति, बड़े तापमान भिन्नता या भारी जर्नल दबाव सम्मिलित हैं | H9/d9 | D9/h9 |
चलना बंद करें | सटीकता के लिए मध्यम आवश्यकताओं के साथ छोटी मंजूरी, जैसे, मध्यम चलने की गति और जर्नल दबाव, शाफ्ट, स्पिंडल, स्लाइडिंग छड़ें | H8/f7 | F8/h7 |
रपट | उच्च सटीकता आवश्यकताओं के लिए न्यूनतम मंजूरी, जिसे आसानी से इकट्ठा किया जा सकता है और घुमाया जा सकता है | H7/g6 | G7/h6 |
स्थान | सटीक सटीकता आवश्यकताओं के लिए बहुत करीबी क्लीयरेंस, जिसे बिना बल के इकट्ठा किया जा सकता है और मुड़ जाएगा | H7/h6 | H7/h6 |
उदाहरण के लिए, 50 पर H8/f7 क्लोज-रनिंग फिट का उपयोग करना मिमी व्यास:[1]*
- H8 (छेद) सहनशीलता सीमा = +0.000 मिमी से +0.039 मिमी
- f7 (शाफ़्ट) सहनशीलता सीमा = −0.050 मिमी से −0.025 मिमी
- संभावित निकासी +0.025 मिमी और +0.08 मिमी के बीच होगी।
संक्रमण फिट बैठता है
वर्ग | विवरण और उपयोग | छेद का आधार | शाफ़्ट आधार |
---|---|---|---|
समान फिट | नगण्य निकासी या हस्तक्षेप फिट जिसे रबर मैलेट के साथ इकट्ठा या अलग किया जा सकता है, जैसे, हब, गियर, पुली, झाड़ियाँ, बीयरिंग | H7/k6 | K7/h6 |
निश्चित फिट | नगण्य निकासी या छोटा हस्तक्षेप फिट जिसे हल्के दबाव बल के साथ इकट्ठा या अलग किया जा सकता है, जैसे, प्लग, संचालित झाड़ियाँ, शाफ्ट पर आर्मेचर | H7/n6 | N7/h6 |
उदाहरण के लिए, 50 पर समान फिट H7/k6 का उपयोग करना मिमी व्यास:[1]*
- H7 (छेद) सहनशीलता सीमा = +0.000 मिमी से +0.025 मिमी
- k6 (शाफ्ट) सहनशीलता सीमा = +0.002 मिमी से +0.018 मिमी
- संभावित निकासी/हस्तक्षेप +0.023 मिमी और −0.018 मिमी के बीच होगा।
हस्तक्षेप फिट बैठता है
वर्ग | विवरण और उपयोग | छेद का आधार | शाफ़्ट आधार |
---|---|---|---|
दबाव फिट | प्रकाश हस्तक्षेप जिसे ठंडे दबाव से इकट्ठा या अलग किया जा सकता है, उदाहरण के लिए, हब, बीयरिंग, बुशिंग, रिटेनर | H7/p6 | P7/h6 |
ड्राइविंग फिट | मध्यम हस्तक्षेप जिसे बड़ी ताकतों के साथ गर्म दबाव या ठंडे दबाव के साथ इकट्ठा किया जा सकता है, उदाहरण के लिए, गियर, शाफ्ट, झाड़ियों की स्थायी स्थापना (कच्चे लोहे के साथ सबसे कसकर संभव) | H7/s6 | S7/h6 |
बलपूर्वक फिट | उच्च हस्तक्षेप सिकुड़न फिट के लिए भागों को जोड़ने के लिए बड़े तापमान अंतर की आवश्यकता होती है, गियर और शाफ्ट की स्थायी युग्मन जिन्हें विनाश के जोखिम के बिना अलग नहीं किया जा सकता है | H7/u6 | U7/h6 |
उदाहरण के लिए, 50 मिमी व्यास पर H7/p6 प्रेस फिट का उपयोग करना:[1]*
- H7 (छेद) सहनशीलता सीमा = +0.000 मिमी से +0.025 मिमी
- पी6 (शाफ्ट) सहनशीलता सीमा = +0.042 मिमी से +0.026 मिमी
- संभावित हस्तक्षेप -0.001 के बीच होगा मिमी और −0.042 मिमी।
उपयोगी सहनशीलता
0 से 120 मिमी तक के आकार के लिए सामान्य सहनशीलता [2]
नाममात्र व्यास (मिमी) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
सहनशीलता | 0 से 3 से अधिक | 3 से 6 से अधिक | 6 से 10 से अधिक | 10 से 18 से अधिक | 18 से 24 से अधिक | 24 से 30 से अधिक | 30 से 40 से अधिक | 40 से 50 से अधिक | 50 से 65 से अधिक | 65 से 80 से अधिक | 80 से 100 से अधिक | 100 से 120 से अधिक | |
शाफ्ट | c11 | -0.060
-0.120 |
-0.070
-0.145 |
-0.080
-0.205 |
-0.095
-0.205 |
-0.110
-0.240 |
-0.120
-0.280 |
-0.130
-0.290 |
-0.140
-0.330 |
-0.150
-0.340 |
-0.170
-0.390 |
-0.180
-0.400 | |
d9 | -0.020
-0.045 |
-0.030
-0.060 |
-0.040
-0.076 |
-0.050
-0.093 |
-0.065
-0.117 |
-0.080
-0.142 |
-0.100
-0.174 |
-0.120
-0.207 | |||||
f7 | -0.006
-0.016 |
-0.010
-0.022 |
-0.013
-0.028 |
-0.016
-0.034 |
-0.020
-0.041 |
-0.025
-0.050 |
-0.030
-0.060 |
-0.036
-0.071 | |||||
g6 | -0.002
-0.008 |
-0.004
-0.012 |
-0.005
-0.014 |
-0.006
-0.017 |
-0.007
-0.020 |
-0.009
-0.025 |
-0.01
-0.029 |
-0.012
-0.034 | |||||
h6 | 0.000
-0.006 |
0.000
-0.008 |
0.000
-0.009 |
0.000
-0.011 |
0.000
-0.013 |
0.000
-0.016 |
0.000
-0.019 |
0.000
-0.022 | |||||
h7 | 0.000
-0.010 |
0.000
-0.012 |
0.000
-0.015 |
0.000
-0.018 |
0.000
-0.021 |
0.000
-0.025 |
0.000
-0.030 |
0.000
-0.035 | |||||
h9 | 0.000
-0.025 |
0.000
-0.030 |
0.000
-0.036 |
0.000
-0.043 |
0.000
-0.052 |
0.000
-0.062 |
0.000
-0.074 |
0.000
-0.087 | |||||
h11 | 0.000
-0.060 |
0.000
-0.075 |
0.000
-0.090 |
0.000
-0.110 |
0.000
-0.130 |
0.000
-0.160 |
0.000
-0.190 |
0.000
-0.220 | |||||
k6 | +0.006
0.000 |
+0.009
+0.001 |
+0.010
+0.001 |
+0.012
+0.001 |
+0.015
+0.002 |
+0.018
+0.002 |
+0.021
+0.002 |
+0.025
+0.003 | |||||
n6 | +0.010
+0.004 |
+0.016
+0.008 |
+0.019
+0.010 |
+0.023
+0.012 |
+0.028
+0.015 |
+0.033
+0.017 |
+0.039
+0.020 |
+0.045
+0.023 | |||||
p6 | +0.012
+0.006 |
+0.020
+0.012 |
+0.024
+0.015 |
+0.029
+0.018 |
+0.035
+0.022 |
+0.042
+0.026 |
+0.051
+0.032 |
+0.059
+0.037 | |||||
s6 | +0.020
+0.014 |
+0.027
+0.019 |
+0.032
+0.023 |
+0.039
+0.028 |
+0.048
+0.035 |
+0.059
+0.043 |
+0.072
+0.053 |
+0.078
+0.059 |
+0.093
+0.071 |
+0.101
+0.079 | |||
u6 | +0.024
+0.018 |
+0.031
+0.023 |
+0.037
+0.028 |
+0.044
+0.033 |
+0.054
+0.041 |
+0.061
+0.048 |
+0.076
+0.060 |
+0.086
+0.070 |
+0.106
+0.087 |
+0.121
+0.102 |
+0.146
+0.124 |
+0.166
+0.144 | |
छेद | C11 | +0.120
+0.060 |
+0.145
+0.070 |
+0.170
+0.080 |
+0.205
+0.095 |
+0.240
+0.110 |
+0.280
+0.120 |
+0.290
+0.130 |
+0.330
+0.140 |
+0.340
+0.150 |
+0.390
+0.170 |
+0.400
+0.180 | |
D9 | +0.045
+0.020 |
+0.060
+0.030 |
+0.076
+0.040 |
+0.093
+0.050 |
+0.117
+0.065 |
+0.142
+0.080 |
+0.174
+0.100 |
+0.207
+0.120 | |||||
F8 | +0.020
+0.006 |
+0.028
+0.010 |
+0.035
+0.013 |
+0.043
+0.016 |
+0.053
+0.020 |
+0.064
+0.025 |
+0.076
+0.030 |
+0.090
+0.036 | |||||
G7 | +0.012
+0.002 |
+0.016
+0.004 |
+0.020
+0.005 |
+0.024
+0.006 |
+0.028
+0.007 |
+0.034
+0.009 |
+0.040
+0.010 |
+0.047
+0.012 | |||||
H7 | +0.010
0.000 |
+0.012
0.000 |
+0.015
0.000 |
+0.018
0.000 |
+0.021
0.000 |
+0.025
0.000 |
+0.030
0.000 |
+0.035
0.000 | |||||
H8 | +0.014
+0.000 |
+0.018
+0.000 |
+0.022
+0.000 |
+0.027
+0.000 |
+0.033
+0.000 |
+0.039
+0.000 |
+0.046
+0.000 |
+0.054
+0.000 | |||||
H9 | +0.025
+0.000 |
+0.030
+0.000 |
+0.036
+0.000 |
+0.043
+0.000 |
+0.052
+0.000 |
+0.062
+0.000 |
+0.074
+0.000 |
+0.087
+0.000 | |||||
H11 | +0.060
0.000 |
+0.075
0.000 |
+0.090
0.000 |
+0.110
0.000 |
+0.130
0.000 |
+0.160
0.000 |
+0.190
0.000 |
+0.220
0.000 | |||||
K7 | 0.000
-0.010 |
+0.003
-0.009 |
+0.005
-0.010 |
+0.006
-0.012 |
+0.006
-0.015 |
+0.007
-0.018 |
+0.009
-0.021 |
+0.010
-0.025 | |||||
N7 | -0.004
-0.014 |
-0.004
-0.016 |
-0.004
-0.019 |
-0.005
-0.023 |
-0.007
-0.028 |
-0.008
-0.033 |
-0.009
-0.039 |
-0.010
-0.045 | |||||
P7 | -0.006
-0.016 |
-0.008
-0.020 |
-0.009
-0.024 |
-0.011
-0.029 |
-0.014
-0.035 |
-0.017
-0.042 |
-0.021
-0.051 |
-0.024
-0.059 | |||||
S7 | -0.014
-0.024 |
-0.015
-0.027 |
-0.017
-0.032 |
-0.021
-0.039 |
-0.027
-0.048 |
-0.034
-0.059 |
-0.042
-0.072 |
-0.048
-0.078 |
-0.058
-0.093 |
-0.066
-0.101 | |||
U7 | -0.018
-0.028 |
-0.019
-0.031 |
-0.022
-0.037 |
-0.026
-0.044 |
-0.033
-0.054 |
-0.040
-0.061 |
-0.051
-0.076 |
-0.061
-0.086 |
-0.076
-0.106 |
-0.091
-0.121 |
-0.111
-0.146 |
-0.131
-0.166 |
एएनएसआई फिट कक्षाएं (केवल यूएसए)
हस्तक्षेप फिट बैठता है
इंटरफेरेंस फिट, जिसे प्रेस फिट या घर्षण फिट के रूप में भी जाना जाता है, दो भागों के बीच फास्टनिंग्स हैं जिनमें आंतरिक घटक बाहरी घटक से बड़ा होता है। हस्तक्षेप फिट प्राप्त करने के लिए असेंबली के समय बल लगाने की आवश्यकता होती है। भागों के जुड़ने के बाद, घर्षण के कारण संभोग सतहों पर दबाव महसूस होगा, और पूर्ण असेंबली में विकृति देखी जाएगी।
बल फिट
फोर्स फिट को संभोग भागों के बीच नियंत्रित दबाव बनाए रखने के लिए डिज़ाइन किया गया है, और इसका उपयोग वहां किया जाता है जहां जुड़ने वाले बिंदु के माध्यम से बल या टॉर्क संचारित हो रहे हैं। हस्तक्षेप फिट की प्रकार, घटक संयोजन के समय बल लगाने से बल फिट प्राप्त होता है।[3]
एफएन 1 से एफएन 5
श्रिंक फिट
श्रिंक फिट, फोर्स फिट के समान उद्देश्य को पूरा करता है, किन्तु इसे विस्तारित करने के लिए सदस्य को गर्म करके प्राप्त किया जाता है जबकि दूसरा ठंडा रहता है। फिर भागों को थोड़े से बल के साथ आसानी से साथ रखा जा सकता है, किन्तु ठंडा होने और सिकुड़ने के बाद, बल फिट के समान ही आयामी हस्तक्षेप उपस्थित होता है। फोर्स फिट की प्रकार, श्रिंक फिट की रेंज एफएन 1 से एफएन 5 तक होती है।[3]
स्थान फिट बैठता है
लोकेशन फ़िट उन भागों के लिए होते हैं जो सामान्यतः एक-दूसरे के सापेक्ष नहीं चलते हैं।
स्थान हस्तक्षेप फिट
एलएन 1 से एलएन 3 (या एलटी 7 से एलटी 21? )
स्थान परिवर्तन फिट
एलटी 1 से एलटी 6 लोकेशन फ़िट का उद्देश्य स्लाइड फ़िट की समानता में तुलनात्मक रूप से उत्तम फ़िट होना है।
स्थान क्लीयरेंस फ़िट
एलसी 1 से एलसी 11
आरसी फिट बैठता है
छोटे आरसी नंबरों में टाइट फिट के लिए छोटे क्लीयरेंस होते हैं, बड़े नंबरों में ढीले फिट के लिए बड़े क्लीयरेंस होते हैं।[4]
आरसी1: क्लोज स्लाइडिंग फिट
इस प्रकार के फिट भागों के सटीक स्थान के लिए अभिप्रेत हैं जिन्हें ध्यान देने योग्य खेल के बिना इकट्ठा किया जाना चाहिए।
आरसी2: स्लाइडिंग फिट
इस प्रकार के फिट सटीक स्थान के लिए होते हैं किन्तु कक्षा आरसी1 की समानता में अधिक अधिकतम निकासी के साथ होते हैं। इस फिट से बने भाग आसानी से मुड़ते और चलते हैं। यह प्रकार निःशुल्क चलाने के लिए डिज़ाइन नहीं किया गया है। तापीय विस्तार या संकुचन के लिए कम अनुमति के कारण बड़े आकार में स्लाइडिंग फिट छोटे तापमान परिवर्तन के साथ जब्त हो सकते हैं।
आरसी3: सटीक रनिंग फिट
इस प्रकार के फिट निकटतम फिट के बारे में होते हैं जिनसे स्वतंत्र रूप से चलने की उम्मीद की जा सकती है। सटीक फिट का उद्देश्य कम गति, कम असर वाले दबाव और हल्के जर्नल दबाव पर सटीक काम करना है। जहां ध्यान देने योग्य तापमान अंतर होता है वहां RC3 उपयुक्त नहीं है।
आरसी4: क्लोज रनिंग फिट्स
इस प्रकार के फिट ज्यादातर मध्यम सतह गति, असर दबाव और जर्नल दबाव के साथ सटीक मशीनरी पर चलने वाले फिट के लिए होते हैं जहां सटीक स्थान और न्यूनतम खेल वांछित होता है। इस प्रकार के फिट को सटीक फिट के लिए उच्च आवश्यकताओं के साथ छोटी मंजूरी के रूप में भी वर्णित किया जा सकता है।
RC5 और R6: मीडियम रनिंग फिट
इस प्रकार के फिट उच्च गति, अधिक असर दबाव और भारी जर्नल दबाव पर चलने वाली मशीनों के लिए डिज़ाइन किए गए हैं। इस प्रकार के फिट को फिट परिशुद्धता के लिए सामान्य आवश्यकताओं के साथ अधिक क्लीयरेंस के साथ भी वर्णित किया जा सकता है।
आरसी7: फ्री रनिंग फिट
इस प्रकार के फिट का उपयोग वहाँ किया जाता है जहाँ सटीकता महत्वपूर्ण नहीं है। इसका उपयोग बड़ी तापमान विभिन्नताओं के लिए उपयुक्त है। यह फिट कुछ छेदों में शाफ्ट के सटीक मार्गदर्शन के लिए किसी विशेष आवश्यकता के बिना उपयोग करने के लिए उपयुक्त है।
आरसी8 और आरसी9: ढीला रनिंग फिट
इस प्रकार के फिट का उपयोग वहाँ किया जाता है जहाँ शाफ्ट पर व्यापक व्यावसायिक सहनशीलता की आवश्यकता हो सकती है। इन फिटों के साथ, भागों के साथ बड़ी मंजूरी होती है जिसमें बड़ी सहनशीलता होती हैं। ढीले चलने वाले फिट जंग, धूल से संदूषण और तापीय या यांत्रिक विकृतियों के प्रभाव के संपर्क में आ सकते हैं।
यह भी देखें
- ज्यामितीय आयाम और सहनशीलता
- इंजीनियरिंग सहनशीलता
- विनिमेय भाग
- सांख्यिकीय हस्तक्षेप
- कुंडलित स्प्रिंग पिन
संदर्भ
- ↑ 1.0 1.1 1.2 1.3 "आईएसओ शाफ्ट और होल सीमा सहनशीलता का सूचकांक". www.roymech.co.uk (in English). Retrieved 2020-03-01.
- ↑ Rapp, Pat (July 2004). Engineers Black Book 2nd Edition. Perth - Western Australia: PAT RAPP ENTERPRISES. p. 70. ISBN 0-9580571-1-7.
- ↑ 3.0 3.1 Mott, Robert. मैकेनिकल डिज़ाइन में मशीन तत्व (Fifth ed.). Pearson. p. 495.
- ↑ "ANSI Standard Limits and Fits (ANSI B4.1-1967,R1974)". Retrieved 9 September 2013.