नैनोस्केल वैक्यूम-चैनल ट्रांजिस्टर: Difference between revisions
(Created page with "नैनोस्केल खालीपन -चैनल ट्रांजिस्टर (एनवीसीटी) एक ट्रांजिस्टर ह...") |
No edit summary |
||
Line 1: | Line 1: | ||
नैनोस्केल [[ खालीपन ]]-चैनल [[ट्रांजिस्टर]] (एनवीसीटी) एक ट्रांजिस्टर है जिसमें इलेक्ट्रॉन परिवहन माध्यम एक [[ वेक्यूम - ट्यूब ]] की तरह एक वैक्यूम होता है। एक पारंपरिक | '''नैनोस्केल [[ खालीपन | वैक्यूम]] -चैनल [[ट्रांजिस्टर]]''' (एनवीसीटी) एक ट्रांजिस्टर है जिसमें इलेक्ट्रॉन परिवहन माध्यम एक [[ वेक्यूम - ट्यूब ]] की तरह एक वैक्यूम होता है। एक पारंपरिक सॉलिड-स्टेट ट्रांजिस्टर में, स्रोत और निकासी के बीच एक [[अर्धचालक]] चैनल उपस्थित होता है, और अर्धचालक के माध्यम से धारा प्रवाहित होती है। चूँकि, एक नैनोस्केल वैक्यूम-चैनल ट्रांजिस्टर में,<ref name="vacc" /> स्रोत और निकासी के बीच कोई पदार्थ उपस्थित नहीं है, और इसलिए, धारा निर्वात के माध्यम से बहती है। | ||
सैद्धांतिक रूप से, एक वैक्यूम-चैनल ट्रांजिस्टर से पारंपरिक सॉलिड-स्टेट ट्रांजिस्टर की तुलना में तेजी से काम करने की उम्मीद की जाती है,<ref name=":1">{{Cite journal|last1=Greene|first1=R.|last2=Gray|first2=H.|last3=Campisi|first3=G.|date=1985|title=वैक्यूम इंटीग्रेटेड सर्किट|journal=1985 International Electron Devices Meeting|volume=31|pages=172–175|doi=10.1109/IEDM.1985.190922|s2cid=11778656}}</ref> और इसमें उच्च पावर आउटपुट और कम ऑपरेशन वोल्टेज है।<ref name="vacc">{{Cite journal|last1=Nguyen|first1=H.|title=नैनोस्केल वैक्यूम ट्रांजिस्टर के लिए नैनोस्ट्रक्चर्ड टिन सेलेनाइड पर आधारित उच्च प्रदर्शन क्षेत्र उत्सर्जन|journal=Nanoscale|language=en|volume=11|issue=7|pages=3129–3137|doi=10.1039/C8NR07912A|year=2019|pmid=30706919|s2cid=73445584 }}</ref> इसके | सैद्धांतिक रूप से, एक वैक्यूम-चैनल ट्रांजिस्टर से पारंपरिक सॉलिड-स्टेट ट्रांजिस्टर की तुलना में तेजी से काम करने की उम्मीद की जाती है,<ref name=":1">{{Cite journal|last1=Greene|first1=R.|last2=Gray|first2=H.|last3=Campisi|first3=G.|date=1985|title=वैक्यूम इंटीग्रेटेड सर्किट|journal=1985 International Electron Devices Meeting|volume=31|pages=172–175|doi=10.1109/IEDM.1985.190922|s2cid=11778656}}</ref> और इसमें उच्च पावर आउटपुट और कम ऑपरेशन वोल्टेज है।<ref name="vacc">{{Cite journal|last1=Nguyen|first1=H.|title=नैनोस्केल वैक्यूम ट्रांजिस्टर के लिए नैनोस्ट्रक्चर्ड टिन सेलेनाइड पर आधारित उच्च प्रदर्शन क्षेत्र उत्सर्जन|journal=Nanoscale|language=en|volume=11|issue=7|pages=3129–3137|doi=10.1039/C8NR07912A|year=2019|pmid=30706919|s2cid=73445584 }}</ref> इसके अतिरिक्त, वैक्यूम-चैनल ट्रांजिस्टर से पारंपरिक ट्रांजिस्टर की तुलना में उच्च तापमान और विकिरण स्तर पर काम करने की उम्मीद की जाती है<ref name=":1" /> उन्हें अंतरिक्ष अनुप्रयोग के लिए उपयुक्त बनाया जाता है। | ||
वैक्यूम-चैनल ट्रांजिस्टर का विकास अभी भी बहुत प्रारंभिक अनुसंधान चरण में है, और | वैक्यूम-चैनल ट्रांजिस्टर का विकास अभी भी बहुत प्रारंभिक अनुसंधान चरण में है, और वर्तमान के साहित्य में केवल ऊर्ध्वाधर क्षेत्र-उत्सर्जक वैक्यूम-चैनल ट्रांजिस्टर जैसे सीमित अध्ययन हैं,<ref name="vacc" /><ref name=":2">{{Cite journal|last1=Gray|first1=H. F.|last2=Campisi|first2=G. J.|last3=Greene|first3=R. F.|date=1986|title=सिलिकॉन क्षेत्र उत्सर्जक सरणियों का उपयोग करते हुए एक निर्वात क्षेत्र प्रभाव ट्रांजिस्टर|journal=1986 International Electron Devices Meeting|volume=32|pages=776–779|doi=10.1109/IEDM.1986.191310|s2cid=26572635}}</ref><ref>{{Cite journal|last1=Campisi|first1=G. J.|last2=Gray|first2=H. F.|date=1986-01-01|title=ओरिएंटेशन डिपेंडेंट एचिंग का उपयोग करके वैक्यूम इंटीग्रेटेड सर्किट के लिए फील्ड उत्सर्जन उपकरणों का माइक्रोफैब्रिकेशन|journal=MRS Online Proceedings Library Archive|volume=76|doi=10.1557/PROC-76-67|issn=1946-4274}}</ref> जिससे इस गेट-इंसुलेटेड प्लानर इलेक्ट्रोड वैक्यूम-चैनल ट्रांजिस्टर, ऊर्ध्वाधर वैक्यूम-चैनल ट्रांजिस्टर,<ref name=":3" /> और ऑल-अराउंड गेट वैक्यूम-चैनल ट्रांजिस्टर है।<ref>{{Cite journal|last1=Han|first1=Jin-Woo|last2=Moon|first2=Dong-Il|last3=Meyyappan|first3=M.|date=2017-04-12|title=नैनोस्केल वैक्यूम चैनल ट्रांजिस्टर|journal=Nano Letters|volume=17|issue=4|pages=2146–2151|doi=10.1021/acs.nanolett.6b04363|pmid=28334531|issn=1530-6984|bibcode=2017NanoL..17.2146H|s2cid=439350}}</ref> | ||
== इतिहास == | == इतिहास == | ||
डायोड में पारंपरिक क्षेत्र-उत्सर्जित इलेक्ट्रॉन बीम का उपयोग करने की अवधारणा का उल्लेख पहली बार केनेथ शोल्डर्स के 1961 के एक लेख में किया गया था।<ref>{{Cite book|title=इलेक्ट्रॉन-बीम-सक्रिय मशीनिंग तकनीकों का उपयोग कर माइक्रोइलेक्ट्रॉनिक्स* - साइंसडायरेक्ट|language=en|doi=10.1016/S0065-2458(08)60142-4|journal=Advances in Computers|volume=2|pages=135–293 | last1 = Shoulders | first1 = Kenneth R.|year=1961|isbn=9780120121021}}</ref> | डायोड में पारंपरिक क्षेत्र-उत्सर्जित इलेक्ट्रॉन बीम का उपयोग करने की अवधारणा का उल्लेख पहली बार केनेथ शोल्डर्स के 1961 के एक लेख में किया गया था।<ref>{{Cite book|title=इलेक्ट्रॉन-बीम-सक्रिय मशीनिंग तकनीकों का उपयोग कर माइक्रोइलेक्ट्रॉनिक्स* - साइंसडायरेक्ट|language=en|doi=10.1016/S0065-2458(08)60142-4|journal=Advances in Computers|volume=2|pages=135–293 | last1 = Shoulders | first1 = Kenneth R.|year=1961|isbn=9780120121021}}</ref> चूँकि क्षेत्र-उत्सर्जक इलेक्ट्रॉन स्रोत के निर्माण की तकनीकी कठिनाई के कारण ऐसे डायोड को प्रयुक्त नहीं किया गया था। | ||
जैसे-जैसे माइक्रोफैब्रिकेशन का क्षेत्र उन्नत हुआ | जैसे-जैसे माइक्रोफैब्रिकेशन का क्षेत्र उन्नत हुआ जिससे क्षेत्र-उत्सर्जित इलेक्ट्रॉन स्रोतों का निर्माण संभव हो गया था, जिससे वैक्यूम-चैनल ट्रांजिस्टर का मार्ग प्रशस्त हुआ। पहला सफल कार्यान्वयन गैरी एट अल द्वारा रिपोर्ट किया गया था। जो कि 1986 में.<ref name=":2" /> चूँकि प्रारंभिक वैक्यूम-चैनल ट्रांजिस्टर उच्च गेट [[सीमा वोल्टेज]] से पीड़ित थे और ठोस-अवस्था ट्रांजिस्टर के साथ प्रतिस्पर्धा नहीं कर सकता है। | ||
माइक्रोफैब्रिकेशन में | माइक्रोफैब्रिकेशन में आधुनिक प्रगति ने स्रोत और निकासी के बीच वैक्यूम-चैनल की लंबाई को कम करने की अनुमति दी है, जिससे गेट थ्रेशोल्ड वोल्टेज 0.5V से अधिक कम हो गया है,<ref name="vacc" /><ref name=":3">{{Cite journal|last1=Srisonphan|first1=Siwapon|last2=Jung|first2=Yun Suk|last3=Kim|first3=Hong Koo|title=Metal–oxide–semiconductor field-effect transistor with a vacuum channel|journal=Nature Nanotechnology|volume=7|issue=8|pages=504–508|doi=10.1038/nnano.2012.107|pmid=22751220|bibcode=2012NatNa...7..504S|year=2012}}</ref> जो वर्तमान सॉलिड-स्टेट ट्रांजिस्टर के गेट थ्रेशोल्ड वोल्टेज के समान है। | ||
जैसे-जैसे सॉलिड-स्टेट ट्रांजिस्टर का संकुचन अपनी सैद्धांतिक सीमा तक पहुँच रहा है,<ref>{{Cite journal|last=Waldrop|first=M. Mitchell|date=2016-02-11|title=मूर के नियम के लिए चिप्स नीचे हैं|journal=Nature|language=en|volume=530|issue=7589|pages=144–147|doi=10.1038/530144a|pmid=26863965|bibcode=2016Natur.530..144W|doi-access=free}}</ref> वैक्यूम-चैनल ट्रांजिस्टर एक विकल्प प्रदान कर सकते हैं। | जैसे-जैसे सॉलिड-स्टेट ट्रांजिस्टर का संकुचन अपनी सैद्धांतिक सीमा तक पहुँच रहा है,<ref>{{Cite journal|last=Waldrop|first=M. Mitchell|date=2016-02-11|title=मूर के नियम के लिए चिप्स नीचे हैं|journal=Nature|language=en|volume=530|issue=7589|pages=144–147|doi=10.1038/530144a|pmid=26863965|bibcode=2016Natur.530..144W|doi-access=free}}</ref> वैक्यूम-चैनल ट्रांजिस्टर एक विकल्प प्रदान कर सकते हैं। | ||
== सरलीकृत ऑपरेशन == | == सरलीकृत ऑपरेशन == | ||
एक नैनोस्केल वैक्यूम-चैनल ट्रांजिस्टर मूलतः एक वैक्यूम ट्यूब का एक लघु संस्करण है। इसमें एक क्षेत्र-उत्सर्जक इलेक्ट्रॉन स्रोत, एक कलेक्टर इलेक्ट्रोड और एक गेट इलेक्ट्रोड होता है। इलेक्ट्रॉन स्रोत और कलेक्टर इलेक्ट्रोड एक छोटी दूरी से अलग होते हैं, | एक नैनोस्केल वैक्यूम-चैनल ट्रांजिस्टर मूलतः एक वैक्यूम ट्यूब का एक लघु संस्करण है। इसमें एक क्षेत्र-उत्सर्जक इलेक्ट्रॉन स्रोत, एक कलेक्टर इलेक्ट्रोड और एक गेट इलेक्ट्रोड होता है। इलेक्ट्रॉन स्रोत और कलेक्टर इलेक्ट्रोड एक छोटी दूरी से अलग होते हैं, जो कि समान्यत: अनेक नैनोमीटर के क्रम की जब स्रोत और कलेक्टर इलेक्ट्रोड पर वोल्टेज प्रयुक्त किया जाता है, तो फ़ील्ड उत्सर्जन | फ़ील्ड-उत्सर्जन के कारण, इलेक्ट्रॉन स्रोत इलेक्ट्रोड से उत्सर्जित होते हैं, अंतराल के माध्यम से यात्रा करते हैं और कलेक्टर इलेक्ट्रोड द्वारा एकत्र किए जाते हैं। जिससे वैक्यूम-चैनल के माध्यम से वर्तमान प्रवाह को नियंत्रित करने के लिए एक गेट इलेक्ट्रोड का उपयोग किया जाता है। | ||
नाम के | नाम के अतिरिक्त वैक्यूम-चैनल ट्रांजिस्टर को खाली करने की आवश्यकता नहीं है। जिसमे इलेक्ट्रॉनों द्वारा तय किया गया जिससे इसका अंतर इतना छोटा है कि वायुमंडलीय दबाव पर गैस के अणुओं के साथ टकराव इतना कम होता है कि कोई असर नहीं पड़ता है। | ||
== लाभ == | == लाभ == | ||
पारंपरिक सॉलिड-स्टेट ट्रांजिस्टर की तुलना में नैनोस्केल वैक्यूम-चैनल ट्रांजिस्टर के | पारंपरिक सॉलिड-स्टेट ट्रांजिस्टर की तुलना में नैनोस्केल वैक्यूम-चैनल ट्रांजिस्टर के अनेक लाभ हैं जैसे उच्च गति, उच्च आउटपुट पावर, और उच्च तापमान पर संचालन और सशक्त विकिरणों के प्रति प्रतिरोधक क्षमता है। सॉलिड-स्टेट ट्रांजिस्टर की तुलना में वैक्यूम-चैनल ट्रांजिस्टर के लाभ पर नीचे विस्तार से विचार किया गया है: | ||
=== उच्च गति === | === उच्च गति === | ||
एक ठोस-अवस्था ट्रांजिस्टर में, इलेक्ट्रॉन अर्धचालक | एक ठोस-अवस्था ट्रांजिस्टर में, इलेक्ट्रॉन अर्धचालक जालक से टकराते हैं और बिखरने से पीड़ित होते हैं जो इलेक्ट्रॉनों की गति को धीमा कर देता है। वास्तव में, सिलिकॉन में इलेक्ट्रॉनों का वेग 1.4×10<sup>7</sup> सेमी/सेकेंड तक सीमित होता है <ref>{{Cite book|title=अर्धचालक उपकरणों का भौतिकी।|last=Sze|first=S. M.|publisher=John wiley & sons|year=1981|isbn=978-0-471-05661-4|location=USA|pages=[https://archive.org/details/physicsofsemicon00szes/page/46 46]|url-access=registration|url=https://archive.org/details/physicsofsemicon00szes/page/46}}</ref> चूँकि निर्वात में इलेक्ट्रॉन बिखरने से प्रभावित नहीं होते हैं और [[प्रकाश की गति]] (3×10)<sup>10</sup> सेमी/सेकेंड). के समीप वेग तक पहुँच सकते हैं इसलिए, एक वैक्यूम-चैनल ट्रांजिस्टर सिलिकॉन सॉलिड-स्टेट ट्रांजिस्टर की तुलना में तेज गति से काम कर सकता है। | ||
=== उच्च तापमान पर संचालन === | === उच्च तापमान पर संचालन === | ||
[[सिलिकॉन]] का [[ऊर्जा अंतराल]] | [[सिलिकॉन]] का [[ऊर्जा अंतराल]] या बैंड-गैप 1.11eV है, और सिलिकॉन के अर्धचालक गुणों को बनाए रखने के लिए इलेक्ट्रॉनों की तापीय ऊर्जा इस मान से कम रहनी चाहिए। यह सिलिकॉन ट्रांजिस्टर के ऑपरेटिंग तापमान पर एक सीमा लगाता है। चूँकि, शून्य में ऐसी कोई सीमा उपस्थित नहीं है। इसलिए, एक वैक्यूम-चैनल ट्रांजिस्टर बहुत अधिक तापमान पर काम कर सकता है, जो केवल इसके निर्माण के लिए उपयोग की जाने वाली सामग्रियों के पिघलने के तापमान से सीमित होता है। वैक्यूम-ट्रांजिस्टर का उपयोग उन अनुप्रयोगों में किया जा सकता है जहां उच्च तापमान के प्रति सहनशीलता की आवश्यकता होती है। | ||
=== विकिरण के प्रति प्रतिरक्षा === | === विकिरण के प्रति प्रतिरक्षा === | ||
विकिरण एक ठोस-अवस्था ट्रांजिस्टर में परमाणुओं को आयनित कर सकता है। ये आयनित परमाणु और संबंधित इलेक्ट्रॉन स्रोत और संग्राहक के बीच इलेक्ट्रॉन परिवहन में हस्तक्षेप कर सकते हैं। | विकिरण एक ठोस-अवस्था ट्रांजिस्टर में परमाणुओं को आयनित कर सकता है। ये आयनित परमाणु और संबंधित इलेक्ट्रॉन स्रोत और संग्राहक के बीच इलेक्ट्रॉन परिवहन में हस्तक्षेप कर सकते हैं। चूँकि वैक्यूम-चैनल ट्रांजिस्टर में कोई आयनीकरण नहीं होता है। इसलिए, वैक्यूम-चैनल ट्रांजिस्टर का उपयोग उच्च विकिरण वाले वातावरण जैसे बाहरी अंतरिक्ष या परमाणु रिएक्टर के अंदर किया जा सकता है। | ||
== | ==हानि == | ||
वैक्यूम-चैनल ट्रांजिस्टर का प्रदर्शन स्रोत इलेक्ट्रोड से इलेक्ट्रॉनों के क्षेत्र उत्सर्जन पर निर्भर करता है। | वैक्यूम-चैनल ट्रांजिस्टर का प्रदर्शन स्रोत इलेक्ट्रोड से इलेक्ट्रॉनों के क्षेत्र उत्सर्जन पर निर्भर करता है। चूँकि उच्च विद्युत क्षेत्र के कारण, स्रोत इलेक्ट्रोड समय के साथ व्यर्थ हो जाते हैं, जिससे उत्सर्जन धारा कम हो जाती है।<ref name=":0">{{Cite journal|date=2012-05-21|title=Vacuum nanoelectronics: Back to the future?—Gate insulated nanoscale vacuum channel transistor|journal=Applied Physics Letters|volume=100|issue=21|pages=213505|doi=10.1063/1.4717751|issn=0003-6951 | last1 = Han | first1 = Jin-Woo|bibcode=2012ApPhL.100u3505H|url=https://zenodo.org/record/1232105}}</ref> और इलेक्ट्रॉन स्रोत इलेक्ट्रोड के क्षरण के कारण, वैक्यूम-चैनल ट्रांजिस्टर खराब विश्वसनीयता से ग्रस्त हैं।<ref name=":0" /> | ||
== संदर्भ == | == संदर्भ == | ||
{{Reflist}} | {{Reflist}} | ||
Revision as of 20:55, 10 August 2023
नैनोस्केल वैक्यूम -चैनल ट्रांजिस्टर (एनवीसीटी) एक ट्रांजिस्टर है जिसमें इलेक्ट्रॉन परिवहन माध्यम एक वेक्यूम - ट्यूब की तरह एक वैक्यूम होता है। एक पारंपरिक सॉलिड-स्टेट ट्रांजिस्टर में, स्रोत और निकासी के बीच एक अर्धचालक चैनल उपस्थित होता है, और अर्धचालक के माध्यम से धारा प्रवाहित होती है। चूँकि, एक नैनोस्केल वैक्यूम-चैनल ट्रांजिस्टर में,[1] स्रोत और निकासी के बीच कोई पदार्थ उपस्थित नहीं है, और इसलिए, धारा निर्वात के माध्यम से बहती है।
सैद्धांतिक रूप से, एक वैक्यूम-चैनल ट्रांजिस्टर से पारंपरिक सॉलिड-स्टेट ट्रांजिस्टर की तुलना में तेजी से काम करने की उम्मीद की जाती है,[2] और इसमें उच्च पावर आउटपुट और कम ऑपरेशन वोल्टेज है।[1] इसके अतिरिक्त, वैक्यूम-चैनल ट्रांजिस्टर से पारंपरिक ट्रांजिस्टर की तुलना में उच्च तापमान और विकिरण स्तर पर काम करने की उम्मीद की जाती है[2] उन्हें अंतरिक्ष अनुप्रयोग के लिए उपयुक्त बनाया जाता है।
वैक्यूम-चैनल ट्रांजिस्टर का विकास अभी भी बहुत प्रारंभिक अनुसंधान चरण में है, और वर्तमान के साहित्य में केवल ऊर्ध्वाधर क्षेत्र-उत्सर्जक वैक्यूम-चैनल ट्रांजिस्टर जैसे सीमित अध्ययन हैं,[1][3][4] जिससे इस गेट-इंसुलेटेड प्लानर इलेक्ट्रोड वैक्यूम-चैनल ट्रांजिस्टर, ऊर्ध्वाधर वैक्यूम-चैनल ट्रांजिस्टर,[5] और ऑल-अराउंड गेट वैक्यूम-चैनल ट्रांजिस्टर है।[6]
इतिहास
डायोड में पारंपरिक क्षेत्र-उत्सर्जित इलेक्ट्रॉन बीम का उपयोग करने की अवधारणा का उल्लेख पहली बार केनेथ शोल्डर्स के 1961 के एक लेख में किया गया था।[7] चूँकि क्षेत्र-उत्सर्जक इलेक्ट्रॉन स्रोत के निर्माण की तकनीकी कठिनाई के कारण ऐसे डायोड को प्रयुक्त नहीं किया गया था।
जैसे-जैसे माइक्रोफैब्रिकेशन का क्षेत्र उन्नत हुआ जिससे क्षेत्र-उत्सर्जित इलेक्ट्रॉन स्रोतों का निर्माण संभव हो गया था, जिससे वैक्यूम-चैनल ट्रांजिस्टर का मार्ग प्रशस्त हुआ। पहला सफल कार्यान्वयन गैरी एट अल द्वारा रिपोर्ट किया गया था। जो कि 1986 में.[3] चूँकि प्रारंभिक वैक्यूम-चैनल ट्रांजिस्टर उच्च गेट सीमा वोल्टेज से पीड़ित थे और ठोस-अवस्था ट्रांजिस्टर के साथ प्रतिस्पर्धा नहीं कर सकता है।
माइक्रोफैब्रिकेशन में आधुनिक प्रगति ने स्रोत और निकासी के बीच वैक्यूम-चैनल की लंबाई को कम करने की अनुमति दी है, जिससे गेट थ्रेशोल्ड वोल्टेज 0.5V से अधिक कम हो गया है,[1][5] जो वर्तमान सॉलिड-स्टेट ट्रांजिस्टर के गेट थ्रेशोल्ड वोल्टेज के समान है।
जैसे-जैसे सॉलिड-स्टेट ट्रांजिस्टर का संकुचन अपनी सैद्धांतिक सीमा तक पहुँच रहा है,[8] वैक्यूम-चैनल ट्रांजिस्टर एक विकल्प प्रदान कर सकते हैं।
सरलीकृत ऑपरेशन
एक नैनोस्केल वैक्यूम-चैनल ट्रांजिस्टर मूलतः एक वैक्यूम ट्यूब का एक लघु संस्करण है। इसमें एक क्षेत्र-उत्सर्जक इलेक्ट्रॉन स्रोत, एक कलेक्टर इलेक्ट्रोड और एक गेट इलेक्ट्रोड होता है। इलेक्ट्रॉन स्रोत और कलेक्टर इलेक्ट्रोड एक छोटी दूरी से अलग होते हैं, जो कि समान्यत: अनेक नैनोमीटर के क्रम की जब स्रोत और कलेक्टर इलेक्ट्रोड पर वोल्टेज प्रयुक्त किया जाता है, तो फ़ील्ड उत्सर्जन | फ़ील्ड-उत्सर्जन के कारण, इलेक्ट्रॉन स्रोत इलेक्ट्रोड से उत्सर्जित होते हैं, अंतराल के माध्यम से यात्रा करते हैं और कलेक्टर इलेक्ट्रोड द्वारा एकत्र किए जाते हैं। जिससे वैक्यूम-चैनल के माध्यम से वर्तमान प्रवाह को नियंत्रित करने के लिए एक गेट इलेक्ट्रोड का उपयोग किया जाता है।
नाम के अतिरिक्त वैक्यूम-चैनल ट्रांजिस्टर को खाली करने की आवश्यकता नहीं है। जिसमे इलेक्ट्रॉनों द्वारा तय किया गया जिससे इसका अंतर इतना छोटा है कि वायुमंडलीय दबाव पर गैस के अणुओं के साथ टकराव इतना कम होता है कि कोई असर नहीं पड़ता है।
लाभ
पारंपरिक सॉलिड-स्टेट ट्रांजिस्टर की तुलना में नैनोस्केल वैक्यूम-चैनल ट्रांजिस्टर के अनेक लाभ हैं जैसे उच्च गति, उच्च आउटपुट पावर, और उच्च तापमान पर संचालन और सशक्त विकिरणों के प्रति प्रतिरोधक क्षमता है। सॉलिड-स्टेट ट्रांजिस्टर की तुलना में वैक्यूम-चैनल ट्रांजिस्टर के लाभ पर नीचे विस्तार से विचार किया गया है:
उच्च गति
एक ठोस-अवस्था ट्रांजिस्टर में, इलेक्ट्रॉन अर्धचालक जालक से टकराते हैं और बिखरने से पीड़ित होते हैं जो इलेक्ट्रॉनों की गति को धीमा कर देता है। वास्तव में, सिलिकॉन में इलेक्ट्रॉनों का वेग 1.4×107 सेमी/सेकेंड तक सीमित होता है [9] चूँकि निर्वात में इलेक्ट्रॉन बिखरने से प्रभावित नहीं होते हैं और प्रकाश की गति (3×10)10 सेमी/सेकेंड). के समीप वेग तक पहुँच सकते हैं इसलिए, एक वैक्यूम-चैनल ट्रांजिस्टर सिलिकॉन सॉलिड-स्टेट ट्रांजिस्टर की तुलना में तेज गति से काम कर सकता है।
उच्च तापमान पर संचालन
सिलिकॉन का ऊर्जा अंतराल या बैंड-गैप 1.11eV है, और सिलिकॉन के अर्धचालक गुणों को बनाए रखने के लिए इलेक्ट्रॉनों की तापीय ऊर्जा इस मान से कम रहनी चाहिए। यह सिलिकॉन ट्रांजिस्टर के ऑपरेटिंग तापमान पर एक सीमा लगाता है। चूँकि, शून्य में ऐसी कोई सीमा उपस्थित नहीं है। इसलिए, एक वैक्यूम-चैनल ट्रांजिस्टर बहुत अधिक तापमान पर काम कर सकता है, जो केवल इसके निर्माण के लिए उपयोग की जाने वाली सामग्रियों के पिघलने के तापमान से सीमित होता है। वैक्यूम-ट्रांजिस्टर का उपयोग उन अनुप्रयोगों में किया जा सकता है जहां उच्च तापमान के प्रति सहनशीलता की आवश्यकता होती है।
विकिरण के प्रति प्रतिरक्षा
विकिरण एक ठोस-अवस्था ट्रांजिस्टर में परमाणुओं को आयनित कर सकता है। ये आयनित परमाणु और संबंधित इलेक्ट्रॉन स्रोत और संग्राहक के बीच इलेक्ट्रॉन परिवहन में हस्तक्षेप कर सकते हैं। चूँकि वैक्यूम-चैनल ट्रांजिस्टर में कोई आयनीकरण नहीं होता है। इसलिए, वैक्यूम-चैनल ट्रांजिस्टर का उपयोग उच्च विकिरण वाले वातावरण जैसे बाहरी अंतरिक्ष या परमाणु रिएक्टर के अंदर किया जा सकता है।
हानि
वैक्यूम-चैनल ट्रांजिस्टर का प्रदर्शन स्रोत इलेक्ट्रोड से इलेक्ट्रॉनों के क्षेत्र उत्सर्जन पर निर्भर करता है। चूँकि उच्च विद्युत क्षेत्र के कारण, स्रोत इलेक्ट्रोड समय के साथ व्यर्थ हो जाते हैं, जिससे उत्सर्जन धारा कम हो जाती है।[10] और इलेक्ट्रॉन स्रोत इलेक्ट्रोड के क्षरण के कारण, वैक्यूम-चैनल ट्रांजिस्टर खराब विश्वसनीयता से ग्रस्त हैं।[10]
संदर्भ
- ↑ 1.0 1.1 1.2 1.3 Nguyen, H. (2019). "नैनोस्केल वैक्यूम ट्रांजिस्टर के लिए नैनोस्ट्रक्चर्ड टिन सेलेनाइड पर आधारित उच्च प्रदर्शन क्षेत्र उत्सर्जन". Nanoscale (in English). 11 (7): 3129–3137. doi:10.1039/C8NR07912A. PMID 30706919. S2CID 73445584.
- ↑ 2.0 2.1 Greene, R.; Gray, H.; Campisi, G. (1985). "वैक्यूम इंटीग्रेटेड सर्किट". 1985 International Electron Devices Meeting. 31: 172–175. doi:10.1109/IEDM.1985.190922. S2CID 11778656.
- ↑ 3.0 3.1 Gray, H. F.; Campisi, G. J.; Greene, R. F. (1986). "सिलिकॉन क्षेत्र उत्सर्जक सरणियों का उपयोग करते हुए एक निर्वात क्षेत्र प्रभाव ट्रांजिस्टर". 1986 International Electron Devices Meeting. 32: 776–779. doi:10.1109/IEDM.1986.191310. S2CID 26572635.
- ↑ Campisi, G. J.; Gray, H. F. (1986-01-01). "ओरिएंटेशन डिपेंडेंट एचिंग का उपयोग करके वैक्यूम इंटीग्रेटेड सर्किट के लिए फील्ड उत्सर्जन उपकरणों का माइक्रोफैब्रिकेशन". MRS Online Proceedings Library Archive. 76. doi:10.1557/PROC-76-67. ISSN 1946-4274.
- ↑ 5.0 5.1 Srisonphan, Siwapon; Jung, Yun Suk; Kim, Hong Koo (2012). "Metal–oxide–semiconductor field-effect transistor with a vacuum channel". Nature Nanotechnology. 7 (8): 504–508. Bibcode:2012NatNa...7..504S. doi:10.1038/nnano.2012.107. PMID 22751220.
- ↑ Han, Jin-Woo; Moon, Dong-Il; Meyyappan, M. (2017-04-12). "नैनोस्केल वैक्यूम चैनल ट्रांजिस्टर". Nano Letters. 17 (4): 2146–2151. Bibcode:2017NanoL..17.2146H. doi:10.1021/acs.nanolett.6b04363. ISSN 1530-6984. PMID 28334531. S2CID 439350.
- ↑ Shoulders, Kenneth R. (1961). इलेक्ट्रॉन-बीम-सक्रिय मशीनिंग तकनीकों का उपयोग कर माइक्रोइलेक्ट्रॉनिक्स* - साइंसडायरेक्ट. pp. 135–293. doi:10.1016/S0065-2458(08)60142-4. ISBN 9780120121021.
{{cite book}}
:|journal=
ignored (help) - ↑ Waldrop, M. Mitchell (2016-02-11). "मूर के नियम के लिए चिप्स नीचे हैं". Nature (in English). 530 (7589): 144–147. Bibcode:2016Natur.530..144W. doi:10.1038/530144a. PMID 26863965.
- ↑ Sze, S. M. (1981). अर्धचालक उपकरणों का भौतिकी।. USA: John wiley & sons. pp. 46. ISBN 978-0-471-05661-4.
- ↑ 10.0 10.1 Han, Jin-Woo (2012-05-21). "Vacuum nanoelectronics: Back to the future?—Gate insulated nanoscale vacuum channel transistor". Applied Physics Letters. 100 (21): 213505. Bibcode:2012ApPhL.100u3505H. doi:10.1063/1.4717751. ISSN 0003-6951.