कण विकिरण: Difference between revisions
(Created page with "{{Short description|Fast-moving particles with energy}} {{Use dmy dates|date=June 2016}} कण विकिरण तेजी से चलने वाले उप-पर...") |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Fast-moving particles with energy}} | {{Short description|Fast-moving particles with energy}}कण विकिरण तेज गति से चलने वाले उपपरमाण्विक कणों के माध्यम से ऊर्जा का विकिरण है। कण विकिरण को कण किरण कहा जाता है यदि सभी कण प्रकाश किरण के समान एक ही दिशा में आगे बढ़ रहे हों। | ||
कण | तरंग-कण द्वैत के कारण, सभी गतिमान कणों में भी तरंग व्यवहार होता है। उच्च ऊर्जा कण अधिक आसानी से कण की विशेषताओं को प्रदर्शित करते हैं, जबकि कम ऊर्जा वाले कण अधिक आसानी से तरंग विशेषताओं को प्रदर्शित करते हैं। | ||
=== प्रकार और उत्पादन === | |||
कण विद्युत आवेशित या अनावेशित हो सकते हैं: | |||
== प्रकार और उत्पादन == | |||
कण विकिरण एक अस्थिर परमाणु नाभिक (रेडियोधर्मी क्षय के माध्यम से) द्वारा उत्सर्जित किया जा सकता है, या इसे किसी अन्य प्रकार की परमाणु अभिक्रिया से उत्पन्न किया जा सकता है।जिससे कई प्रकार के कण उत्सर्जित हो सकते हैं: | |||
*[[प्रोटॉन]] और अन्य [[हाइड्रोजन]] नाभिक अपने इलेक्ट्रॉनों को छीन लेते हैं | *[[प्रोटॉन]] और अन्य [[हाइड्रोजन]] नाभिक अपने इलेक्ट्रॉनों को छीन लेते हैं | ||
* | *धनात्मक रूप से आवेशित [[अल्फा कण]] (α), [[हीलियम]]-4 नाभिक के समतुल्य | ||
*उच्च ऊर्जा स्तरों पर हीलियम आयन | *उच्च ऊर्जा स्तरों पर हीलियम आयन | ||
* HZE आयन, जो हीलियम से भारी नाभिक होते हैं | * HZE आयन, जो हीलियम से भारी नाभिक होते हैं | ||
Line 18: | Line 14: | ||
*उच्च गति वाले इलेक्ट्रॉन जो [[बीटा क्षय]] प्रक्रिया से नहीं हैं, लेकिन अन्य जैसे [[आंतरिक रूपांतरण]] और [[बरमा प्रभाव]] | *उच्च गति वाले इलेक्ट्रॉन जो [[बीटा क्षय]] प्रक्रिया से नहीं हैं, लेकिन अन्य जैसे [[आंतरिक रूपांतरण]] और [[बरमा प्रभाव]] | ||
*[[न्यूट्रॉन]], उपपरमाण्विक कण जिनमें कोई आवेश नहीं होता; [[न्यूट्रॉन विकिरण]] | *[[न्यूट्रॉन]], उपपरमाण्विक कण जिनमें कोई आवेश नहीं होता; [[न्यूट्रॉन विकिरण]] | ||
*[[ न्युट्रीनो ]] | *[[ न्युट्रीनो | न्युट्रीनो]] | ||
*[[मेसन]] | *[[मेसन]] | ||
*मुऑन्स | *मुऑन्स | ||
तंत्र जो कण विकिरण उत्पन्न करते हैं उनमें | तंत्र जो कण विकिरण उत्पन्न करते हैं उनमें सम्मिलित हैं: | ||
* [[अल्फा क्षय]] | * [[अल्फा क्षय]] | ||
* बरमा प्रभाव | * बरमा प्रभाव | ||
Line 36: | Line 32: | ||
* [[सौर कण घटनाएँ]] | * [[सौर कण घटनाएँ]] | ||
* [[सुपरनोवा]] विस्फोट | * [[सुपरनोवा]] विस्फोट | ||
*इसके अतिरिक्त, गांगेय ब्रह्मांडीय किरणों में ये कण | *इसके अतिरिक्त, गांगेय ब्रह्मांडीय किरणों में ये कण सम्मिलित हैं, लेकिन कई अज्ञात तंत्र हैं | ||
कण त्वरक | आवेशित कण (इलेक्ट्रॉन, मेसॉन, प्रोटॉन, अल्फा कण, भारी HZE आयन, आदि) कण त्वरक द्वारा उत्पादित किए जा सकते हैं। सामग्री में डोपेंट डालने के लिए अर्धचालक उद्योग में आयन विकिरण का व्यापक रूप से उपयोग किया जाता है, इस विधि को आयन आरोपण के रूप में जाना जाता है। | ||
कण त्वरक न्यूट्रिनो बीम भी उत्पन्न कर सकते हैं। न्यूट्रॉन किरणें अधिकतर परमाणु रिएक्टरों द्वारा उत्पादित की जाती हैं। | |||
[[ | === पदार्थ से गुजरना === | ||
[[File:Radioactivity and radiation.png|thumb|ग्राफिक रेडियोधर्मिता और पता लगाए गए आयनीकरण विकिरण के बीच संबंधों को दर्शाता है]]विकिरण सुरक्षा में, मनुष्यों के लिए उत्पन्न खतरे के स्तर को दर्शाने के लिए विकिरण को प्रायः दो श्रेणियों में विभाजित किया जाता है, आयनीकरण और गैर-आयनीकरण। आयनीकरण परमाणुओं से इलेक्ट्रॉनों को हटाने की प्रक्रिया है, जिससे दो विद्युत आवेशित कण (एक इलेक्ट्रॉन और एक धनात्मक आवेशित आयन) पीछे रह जाते हैं।<ref name=":0">{{Cite web|title=ionizing radiation {{!}} Definition, Sources, Types, Effects, & Facts|url=https://www.britannica.com/science/ionizing-radiation|access-date=2021-02-27|website=Encyclopedia Britannica|language=en}}</ref> आयनीकरण विकिरण द्वारा निर्मित ऋणात्मक रूप से आवेशित किए गए इलेक्ट्रॉन और धनात्मक रूप से आवेशित किए गए आयन जीवित ऊतकों में क्षति का कारण बन सकते हैं। मूल रूप से, एक कण आयनित होता है यदि उसकी ऊर्जा i से अधिक है,अर्थात यह कुछ [[इलेक्ट्रॉनवोल्ट]], और इलेक्ट्रॉनों के साथ महत्वपूर्ण रूप से संपर्क करता है। | |||
गैर-आयनीकरण विकिरण संरक्षण पर अंतर्राष्ट्रीय आयोग के अनुसार, पराबैंगनी से अवरक्त तक विद्युत चुम्बकीय विकिरण, रेडियोआवृत्ति (माइक्रोवेव सहित) विकिरण, स्थैतिक और समय-भिन्न विद्युत और चुंबकीय क्षेत्र, और अल्ट्रासाउंड गैर-आयनीकरण विकिरण से संबंधित हैं।<ref>{{Cite web|title=ICNIRP {{!}} Frequencies|url=https://www.icnirp.org/en/frequencies/index.html|access-date=2021-02-27|website=www.icnirp.org}}</ref>ऊपर उल्लिखित सभी आवेशित कण आयनकारी विकिरणों से संबंधित हैं। पदार्थ से गुजरते समय, वे आयनित हो जाते हैं और इस प्रकार कई छोटे चरणों में ऊर्जा खो देते हैं। उस बिंदु की दूरी जहां आवेशित कण अपनी सारी ऊर्जा खो देता है, कण की सीमा कहलाती है। सीमा कण के प्रकार, उसकी प्रारंभिक ऊर्जा और उसके द्वारा पार किए गए पदार्थ पर निर्भर करती है।इसी प्रकार, प्रति यूनिट पथ लंबाई में ऊर्जा हानि, 'रोकने की शक्ति', आवेशित कण के प्रकार और ऊर्जा और सामग्री पर निर्भर करती है। रोकने की शक्ति और इस प्रकार आयनीकरण का घनत्व, प्रायः सीमा के अंत की ओर बढ़ता है और ऊर्जा के शून्य तक गिरने से कुछ समय पहले अधिकतम, ब्रैग पीक तक पहुंच जाता है।<ref name=":0" /> | |||
=== यह भी देखें === | |||
== | === [[गीगर काउंटर]] === | ||
* [[आयन कक्ष]] | * [[आयन कक्ष]] | ||
*[[नाभिकीय अभियांत्रिकी]] | *[[नाभिकीय अभियांत्रिकी]] | ||
Line 64: | Line 57: | ||
* रोकने की शक्ति (कण विकिरण) | * रोकने की शक्ति (कण विकिरण) | ||
==संदर्भ== | ===संदर्भ=== | ||
{{Reflist}} | {{Reflist}} | ||
===बाहरी संबंध=== | |||
==बाहरी संबंध== | |||
*[http://bohr.inf.um.es/MELF-GOS.html Stopping power and energy loss straggling calculations of ion beams in solids by MELF-GOS model] | *[http://bohr.inf.um.es/MELF-GOS.html Stopping power and energy loss straggling calculations of ion beams in solids by MELF-GOS model] | ||
Revision as of 23:06, 11 August 2023
कण विकिरण तेज गति से चलने वाले उपपरमाण्विक कणों के माध्यम से ऊर्जा का विकिरण है। कण विकिरण को कण किरण कहा जाता है यदि सभी कण प्रकाश किरण के समान एक ही दिशा में आगे बढ़ रहे हों।
तरंग-कण द्वैत के कारण, सभी गतिमान कणों में भी तरंग व्यवहार होता है। उच्च ऊर्जा कण अधिक आसानी से कण की विशेषताओं को प्रदर्शित करते हैं, जबकि कम ऊर्जा वाले कण अधिक आसानी से तरंग विशेषताओं को प्रदर्शित करते हैं।
प्रकार और उत्पादन
कण विद्युत आवेशित या अनावेशित हो सकते हैं:
कण विकिरण एक अस्थिर परमाणु नाभिक (रेडियोधर्मी क्षय के माध्यम से) द्वारा उत्सर्जित किया जा सकता है, या इसे किसी अन्य प्रकार की परमाणु अभिक्रिया से उत्पन्न किया जा सकता है।जिससे कई प्रकार के कण उत्सर्जित हो सकते हैं:
- प्रोटॉन और अन्य हाइड्रोजन नाभिक अपने इलेक्ट्रॉनों को छीन लेते हैं
- धनात्मक रूप से आवेशित अल्फा कण (α), हीलियम-4 नाभिक के समतुल्य
- उच्च ऊर्जा स्तरों पर हीलियम आयन
- HZE आयन, जो हीलियम से भारी नाभिक होते हैं
- धनात्मक या ऋणात्मक रूप से आवेशित बीटा कण (उच्च-ऊर्जा पॉज़िट्रॉन β+ या इलेक्ट्रॉन β-; बाद वाला अधिक सामान्य है)
- उच्च गति वाले इलेक्ट्रॉन जो बीटा क्षय प्रक्रिया से नहीं हैं, लेकिन अन्य जैसे आंतरिक रूपांतरण और बरमा प्रभाव
- न्यूट्रॉन, उपपरमाण्विक कण जिनमें कोई आवेश नहीं होता; न्यूट्रॉन विकिरण
- न्युट्रीनो
- मेसन
- मुऑन्स
तंत्र जो कण विकिरण उत्पन्न करते हैं उनमें सम्मिलित हैं:
- अल्फा क्षय
- बरमा प्रभाव
- बीटा क्षय
- क्लस्टर क्षय
- आंतरिक रूपांतरण
- न्यूट्रॉन उत्सर्जन
- परमाणु विखंडन और सहज विखंडन
- परमाणु संलयन
- कण कोलाइडर जिसमें उच्च ऊर्जा वाले कणों की धाराएं टूट जाती हैं
- प्रोटॉन उत्सर्जन
- सौर फ्लेयर्स
- सौर कण घटनाएँ
- सुपरनोवा विस्फोट
- इसके अतिरिक्त, गांगेय ब्रह्मांडीय किरणों में ये कण सम्मिलित हैं, लेकिन कई अज्ञात तंत्र हैं
आवेशित कण (इलेक्ट्रॉन, मेसॉन, प्रोटॉन, अल्फा कण, भारी HZE आयन, आदि) कण त्वरक द्वारा उत्पादित किए जा सकते हैं। सामग्री में डोपेंट डालने के लिए अर्धचालक उद्योग में आयन विकिरण का व्यापक रूप से उपयोग किया जाता है, इस विधि को आयन आरोपण के रूप में जाना जाता है।
कण त्वरक न्यूट्रिनो बीम भी उत्पन्न कर सकते हैं। न्यूट्रॉन किरणें अधिकतर परमाणु रिएक्टरों द्वारा उत्पादित की जाती हैं।
पदार्थ से गुजरना
विकिरण सुरक्षा में, मनुष्यों के लिए उत्पन्न खतरे के स्तर को दर्शाने के लिए विकिरण को प्रायः दो श्रेणियों में विभाजित किया जाता है, आयनीकरण और गैर-आयनीकरण। आयनीकरण परमाणुओं से इलेक्ट्रॉनों को हटाने की प्रक्रिया है, जिससे दो विद्युत आवेशित कण (एक इलेक्ट्रॉन और एक धनात्मक आवेशित आयन) पीछे रह जाते हैं।[1] आयनीकरण विकिरण द्वारा निर्मित ऋणात्मक रूप से आवेशित किए गए इलेक्ट्रॉन और धनात्मक रूप से आवेशित किए गए आयन जीवित ऊतकों में क्षति का कारण बन सकते हैं। मूल रूप से, एक कण आयनित होता है यदि उसकी ऊर्जा i से अधिक है,अर्थात यह कुछ इलेक्ट्रॉनवोल्ट, और इलेक्ट्रॉनों के साथ महत्वपूर्ण रूप से संपर्क करता है।
गैर-आयनीकरण विकिरण संरक्षण पर अंतर्राष्ट्रीय आयोग के अनुसार, पराबैंगनी से अवरक्त तक विद्युत चुम्बकीय विकिरण, रेडियोआवृत्ति (माइक्रोवेव सहित) विकिरण, स्थैतिक और समय-भिन्न विद्युत और चुंबकीय क्षेत्र, और अल्ट्रासाउंड गैर-आयनीकरण विकिरण से संबंधित हैं।[2]ऊपर उल्लिखित सभी आवेशित कण आयनकारी विकिरणों से संबंधित हैं। पदार्थ से गुजरते समय, वे आयनित हो जाते हैं और इस प्रकार कई छोटे चरणों में ऊर्जा खो देते हैं। उस बिंदु की दूरी जहां आवेशित कण अपनी सारी ऊर्जा खो देता है, कण की सीमा कहलाती है। सीमा कण के प्रकार, उसकी प्रारंभिक ऊर्जा और उसके द्वारा पार किए गए पदार्थ पर निर्भर करती है।इसी प्रकार, प्रति यूनिट पथ लंबाई में ऊर्जा हानि, 'रोकने की शक्ति', आवेशित कण के प्रकार और ऊर्जा और सामग्री पर निर्भर करती है। रोकने की शक्ति और इस प्रकार आयनीकरण का घनत्व, प्रायः सीमा के अंत की ओर बढ़ता है और ऊर्जा के शून्य तक गिरने से कुछ समय पहले अधिकतम, ब्रैग पीक तक पहुंच जाता है।[1]
यह भी देखें
गीगर काउंटर
- आयन कक्ष
- नाभिकीय अभियांत्रिकी
- परमाणु भौतिकी
- कण त्वरक
- कण क्षय
- भौतिक विज्ञान
- आनुपातिक काउंटर
- विकिरण
- विकिरण चिकित्सा
- रेडियोधर्मिता
- रोकने की शक्ति (कण विकिरण)
संदर्भ
- ↑ 1.0 1.1 "ionizing radiation | Definition, Sources, Types, Effects, & Facts". Encyclopedia Britannica (in English). Retrieved 2021-02-27.
- ↑ "ICNIRP | Frequencies". www.icnirp.org. Retrieved 2021-02-27.