लैटिस मॉडल (भौतिकी): Difference between revisions
No edit summary |
No edit summary |
||
Line 55: | Line 55: | ||
=== संघनित पदार्थ भौतिकी === | === संघनित पदार्थ भौतिकी === | ||
< | </ul> | ||
आइज़िंग आदर्श | |||
<li>[[पॉट्स मॉडल|पॉट्स आदर्श]] | <li>[[पॉट्स मॉडल|पॉट्स आदर्श]] | ||
<li>[[चिरल पॉट्स मॉडल|चिरल पॉट्स आदर्श]] | <li>[[चिरल पॉट्स मॉडल|चिरल पॉट्स आदर्श]] | ||
<li> | <li>एक्सवाए आदर्श | ||
<li>[[शास्त्रीय हाइजेनबर्ग मॉडल|शास्त्रीय हाइजेनबर्ग आदर्श]] | <li>[[शास्त्रीय हाइजेनबर्ग मॉडल|शास्त्रीय हाइजेनबर्ग आदर्श]] | ||
<li>[[एन-वेक्टर मॉडल|एन-संवाहक आदर्श]] | <li>[[एन-वेक्टर मॉडल|एन-संवाहक आदर्श]] | ||
<li>[[वर्टेक्स मॉडल| | <li>[[वर्टेक्स मॉडल|शीर्ष आदर्श]] | ||
<li>टोडा जालक < | <li>टोडा जालक | ||
<li> | |||
=== पॉलिमर भौतिकी === | === पॉलिमर भौतिकी === | ||
< | </ul> | ||
अनुबंध अस्थिरता आदर्श | |||
<li> | <li>द्वितीय आदर्श | ||
<li> | <li>'''उच्च ऊर्जा भौतिकी''' | ||
</ul> | |||
< | क्यूसीडी जालक आदर्श | ||
</ul> | |||
== यह भी देखें == | == यह भी देखें == | ||
* [[क्रिस्टल की संरचना]] | * [[क्रिस्टल की संरचना]] | ||
* [[स्केलिंग सीमा]] | * [[स्केलिंग सीमा|प्रवर्धन सीमा]] | ||
* [[क्यूसीडी मामला]] | * [[क्यूसीडी मामला]] | ||
* [[जालीदार गैस|जालक | * [[जालीदार गैस|जालक गैस]] | ||
==संदर्भ== | ==संदर्भ== | ||
*{{Citation | last1=Baxter | first1=Rodney J. | authorlink1=Rodney_Baxter | title=Exactly solved models in statistical mechanics | url=https://physics.anu.edu.au/theophys/_files/Exactly.pdf | publisher=Academic Press Inc. [Harcourt Brace Jovanovich Publishers] | location=London | isbn=978-0-12-083180-7 | mr=690578 | year=1982}} | *{{Citation | last1=Baxter | first1=Rodney J. | authorlink1=Rodney_Baxter | title=Exactly solved models in statistical mechanics | url=https://physics.anu.edu.au/theophys/_files/Exactly.pdf | publisher=Academic Press Inc. [Harcourt Brace Jovanovich Publishers] | location=London | isbn=978-0-12-083180-7 | mr=690578 | year=1982}} | ||
{{DEFAULTSORT:Lattice Model (Physics)}}[[Category: जाली मॉडल| जाली मॉडल]] [[Category: सैद्धांतिक भौतिकी]] | {{DEFAULTSORT:Lattice Model (Physics)}} | ||
[[index.php?title=Category:जाली मॉडल| जाली मॉडल]] | |||
[[Category: सैद्धांतिक भौतिकी]] | |||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 20/06/2023]] | [[Category:Created On 20/06/2023]] |
Revision as of 12:44, 7 July 2023
गणितीय भौतिकी में एक जालक आदर्श एक भौतिक प्रणाली का एक गणितीय मॉडल है जिसे अंतराल या अंतराल अवधि की निरंतरता जैसे कॉन्टिन्यूम(सिद्धांत) के विपरीत एक जालक (समूह) पर परिभाषित किया जाता है। जालक आदर्श मूल रूप से संघनित पदार्थ भौतिकी के संदर्भ में उत्पन्न हुए, जिस स्थान पर एक क्रिस्टल के परमाणु स्वचालित रूप से एक जालक बनाते हैं। वर्तमान में, अनेक कारणों से जालक आदर्श सैद्धांतिक भौतिकी में काफी लोकप्रिय हैं। कुछ आदर्श वास्तव मे समाधेय हैं, और इस प्रकार गड़बड़ी सिद्धांत से जो व्यक्त किया जा सकता है उससे प्रथक भौतिकी में अंतर्दृष्टि प्रदान करते हैं। जालक आदर्श संगणनात्मक भौतिकी के तरीकों से अध्ययन के लिए भी आदर्श हैं, क्योंकि किसी भी कॉन्टिन्यूम आदर्श का विवेकीकरण स्वचालित रूप से इसे जालक आदर्श में परिवर्तन कर देता है। इनमें से अनेक आदर्शों के सटीक समाधान (जब वे व्याख्या करने योग्य होते हैं) में सॉलिटन की उपस्थिति शामिल होती है। इन्हें व्याख्या करने की तकनीकों में व्युत्क्रम प्रकीर्णन रूपांतरण और लैक्स पेयर की विधि, यांग-बैक्सटर समीकरण और क्वांटम समूह शामिल हैं। इन आदर्शों के समाधान ने चरण परिवर्तन , चुंबकीयकरण और प्रवर्धन गतिविधि की प्रकृति के साथ-साथ क्वांटम क्षेत्र सिद्धांत की प्रकृति में अंतर्दृष्टि प्रदान की है।
भौतिक जालक आदर्श अक्सर एक निरंतरता सिद्धांत के अनुमान के रूप में या तो विचलन को रोकने या संख्यात्मक विश्लेषण करने के लिए सिद्धांत को एक पराबैंगनी विच्छेदन देने के लिए होते हैं। कॉन्टिन्यूम सिद्धांत का एक उदाहरण जिसका व्यापक रूप से जालक आदर्श के माध्यम से अध्ययन किया जाता है, क्यूसीडी जालक आदर्श है जो क्वांटम क्रोमोडायनामिक्स की विचारशीलता है। हालांकि, अंकीय भौतिकी प्रकृति को मौलिक रूप से प्लांक नियम पर असतत मानती है, जो सूचना के घनत्व एवं होलोग्राफिक (स्वलिखित) सिद्धांत की उच्च सीमांत लगाती है। आम तौर पर, जालक मापक सिद्धांत और जालक क्षेत्र सिद्धांत अध्ययन के क्षेत्र हैं। जालक आदर्श का उपयोग बहुलक की संरचना और गतिशीलता का अनुकरण करने के लिए भी किया जाता है।
गणितीय विवरण
निम्नलिखित आँकड़े के माध्यम से अनेक जालक आदर्श का वर्णन किया जा सकता है:
एक जालक (समूह) को अक्सर -आयामी यूक्लिडियन अंतराल या - आयामी स्थूलक में एक जाली माना जाता है यदि जालक आवधिक है। वस्तुतः अक्सर पूर्णांक जालक होती है। यदि जालक पर दो बिंदुओं को 'निकटतम पड़ोसी' माना जाता है, तो उन्हें एक सीमा से सम्बद्ध किया जा सकता है, जिससे जालक एक जालक लेखाचित्र में परिवर्तित हो जाती है। के शीर्षों को कभी-कभी स्थल भी कहा जाता है।
एक चक्र-परिवर्तनीय अंतराल है। संभावित सिस्टम स्थितियों का विन्यास स्थान है, तब फ़ंक्शंस का स्थान होता है।कुछ आदर्शों के लिए हम फ़ंक्शंस के स्थान पर विचार कर सकते हैं जहाँ उपरोक्त परिभाषित आरेखीय का सीमा सेट है।
एक ऊर्जा कार्यात्मक है, जो अतिरिक्त मापदंडों या 'युग्मन स्थिरांक' के एक सेट पर निर्भर हो सकता है।
उदाहरण
आइसिंग आदर्श सामान्य घन जाली आरेखीय के माध्यम से दिया गया है जिस स्थान पर और में एक अनंत घन जाली है या में एक अवधि घन जाली है, और निकटतम पड़ोसियों का सीमा का सेट है (उसी अक्षर का उपयोग ऊर्जा कार्यात्मक के लिए किया जाता है लेकिन संदर्भ के आधार पर विभिन्न उपयोगों को अलग-अलग विशेषणीय किया जा सकता है)। चक्र परिवर्तनीय अंतराल है।
ऊर्जा कार्यात्मक है
व्याख्या करने योग्य आदर्श
हम अंकों की एक सीमित संख्या और एक परिमित चक्र -परिवर्तनीय अंतराल के साथ जालक के विशेषज्ञ हैं। इसे आयामों में आवर्त के साथ जालक को आवर्त बनाकर प्राप्त किया जा सकता है। तब विन्यास अंतराल स्थान भी परिमित है। हम विभाजन कार्य (सांख्यिकीय यांत्रिकी) को परिभाषित कर सकते हैं
और अभिसरण के कोई मुद्दे नहीं हैं (जैसे वे जो क्षेत्र सिद्धांत में प्रकट होते हैं) क्योंकि योग परिमित है। सिद्धांत रूप में, इस राशि की गणना एक अभिव्यक्ति प्राप्त करने के लिए की जा सकती है जो मात्र मापदंडों और पर निर्भर है। व्यवहार में, स्थानों के मध्य गैर-रेखीय अंतःक्रियाओं के कारण यह अक्सर कठिन होता है। विभाजन फ़ंक्शन के लिए संवृत-रूप अभिव्यक्ति वाले आदर्श को सम्पूर्ण रूप में व्याख्या करने योग्य के रूप में जाना जाता है।
सम्पूर्ण रूप में हल करने योग्य मॉडल के उदाहरण आवधिक 1डी आइसिंग आदर्श और लुप्त हो रहे बाहरी चुंबकीय क्षेत्र के साथ आवधिक 2डी आइसिंग आदर्श हैं, लेकिन आयाम , के लिए आइसिंग आदर्श समाधान के अयोग्य रहता है।
माध्य क्षेत्र सिद्धांत
सटीक समाधान प्राप्त करने में कठिनाई के कारण, विश्लेषणात्मक परिणाम प्राप्त करने के लिए हमें अक्सर माध्य क्षेत्र सिद्धांत का समर्थन प्राप्त करना पड़ता है। यह माध्य क्षेत्र स्थानिक रूप से भिन्न या वैश्विक हो सकता है।
वैश्विक माध्य क्षेत्र
फ़ंक्शन के विन्यास स्थान को चक्र अंतराल के मध्योन्नत समावरक के माध्यम से प्रतिस्थापित किया जाता है तब को के उपसमुच्चय के संदर्भ में एक प्राप्ति होती है। इसे हम से निरूपित करेंगे। यह तब उत्पन्न होता है जब क्षेत्र के माध्य मान पर जाने पर, हमारे पास . होता है।
जालक स्थानों की संख्या , के रूप में के संभावित मान के मध्योन्नत समावरक को पूर्ण करते हैं। एक उपयुक्त अनुमान लगाने से, ऊर्जा कार्यात्मकता माध्य क्षेत्र का एक फलन बन जाती है जो होता है। तब विभाजन फ़ंक्शन बन जाता है
जैसे कि थर्मोडायनामिक सीमा में, आसन बिंदु अनुमान हमें बताता है कि अभिन्न असम्बद्ध रूप से उस मान पर प्रभावी है जिस पर को न्यूनतम किया गया है:
जिस स्थान पर और . को न्यूनतम करने वाला तर्क है।
एक सरल, लेकिन गणितीय रूप से परिशुद्ध दृष्टिकोण, जो प्रासंगिक रूप से सही परिणाम देता है, माध्य क्षेत्र के बारे में सिद्धांत को रैखिक बनाने से आता है। विन्यास को के रूप में लिखना, को संक्षेप करना, तत्पश्चात विन्यास का योग विभाजन फ़ंक्शन की गणना की अनुमति देता है।
आयामों में आवधिक आइसिंग आदर्श के लिए ऐसा दृष्टिकोण आयाम चरण परिवर्तन में अंतर्दृष्टि प्रदान करता है।
स्थानिक रूप से भिन्न माध्य क्षेत्र
मान लीजिए कि जालक की कॉन्टिन्यूम सीमा है। संपूर्ण का औसत निकालने के बजाय, हम के पड़ोस का औसत निकालते हैं। यह स्थानिक रूप से भिन्न माध्य क्षेत्र देता है। हम संकेत चिन्ह को क्षेत्र सिद्धांत के निकट लाने के लिए को के साथ पुन: वर्गीकरण करते हैं। इससे विभाजन फंक्शन को पथ अभिन्न सूत्रीकरण के रूप में लिखा जा सकता है
जिस स्थान पर मुक्त ऊर्जा क्वांटम क्षेत्र सिद्धांत में क्रिया का एक वर्तिका क्रमावर्तित संस्करण है।
उदाहरण
संघनित पदार्थ भौतिकी
आइज़िंग आदर्श
पॉलिमर भौतिकी
अनुबंध अस्थिरता आदर्श
क्यूसीडी जालक आदर्श
यह भी देखें
संदर्भ
- Baxter, Rodney J. (1982), Exactly solved models in statistical mechanics (PDF), London: Academic Press Inc. [Harcourt Brace Jovanovich Publishers], ISBN 978-0-12-083180-7, MR 0690578