मैक्कार्थी 91 फ़ंक्शन: Difference between revisions
(Created page with "{{no footnotes|date=October 2015}} मैक्कार्थी 91 फ़ंक्शन एक रिकर्सन (कंप्यूटर विज्ञान)...") |
No edit summary |
||
Line 1: | Line 1: | ||
{{no footnotes|date= | {{no footnotes|date=अक्टूबर 2015}} | ||
मैक्कार्थी 91 फ़ंक्शन एक रिकर्सन ([[कंप्यूटर विज्ञान]]) है, जिसे कंप्यूटर वैज्ञानिक [[जॉन मैक्कार्थी (कंप्यूटर वैज्ञानिक)]] [[रिकर्सन (कंप्यूटर विज्ञान)]] के भीतर [[औपचारिक सत्यापन]] के लिए एक परीक्षण | मैक्कार्थी 91 फ़ंक्शन एक रिकर्सन ([[कंप्यूटर विज्ञान]]) है, जिसे कंप्यूटर वैज्ञानिक [[जॉन मैक्कार्थी (कंप्यूटर वैज्ञानिक)]] [[रिकर्सन (कंप्यूटर विज्ञान)]] के भीतर [[औपचारिक सत्यापन]] के लिए एक परीक्षण घटना के रूप में परिभाषित किया है। | ||
मैक्कार्थी 91 फ़ंक्शन को इस प्रकार परिभाषित किया गया है | मैक्कार्थी 91 फ़ंक्शन को इस प्रकार परिभाषित किया गया है | ||
Line 8: | Line 8: | ||
M(M(n+11)), & \mbox{if }n \le 100\mbox{ } | M(M(n+11)), & \mbox{if }n \le 100\mbox{ } | ||
\end{cases}</math> | \end{cases}</math> | ||
फ़ंक्शन के मूल्यांकन के परिणाम सभी पूर्णांक | फ़ंक्शन के मूल्यांकन के परिणाम सभी पूर्णांक तर्कों n ≤ 100 के लिए M(n) = 91, और n > 100 के लिए M(n) = n − 10 द्वारा दिए गए हैं। वास्तव में, M(101) का परिणाम भी 91 (101 - 10 = 91) है। n = 101 के बाद M(n) के सभी परिणाम लगातार 1 से बढ़ रहे हैं, उदाहरण के लिए एम(102) = 92, एम(103) = 93। | ||
==इतिहास== | ==इतिहास== | ||
91 फ़ंक्शन को 1970 में [[जोहार मन्ना]], [[अमीर पनुएली]] और जॉन मैक्कार्थी (कंप्यूटर वैज्ञानिक) द्वारा प्रकाशित पत्रों में | 91 फ़ंक्शन को 1970 में [[जोहार मन्ना]], [[अमीर पनुएली]] और जॉन मैक्कार्थी (कंप्यूटर वैज्ञानिक) द्वारा प्रकाशित पत्रों में प्रस्तुत किया गया था। ये कागजात औपचारिक सत्यापन के लिए औपचारिक विधियों के आवेदन की दिशा में प्रारंभिक विकास का प्रतिनिधित्व करते थे। 91 फ़ंक्शन को नेस्टेड-रिकर्सिव ([[एकल प्रत्यावर्तन]] के विपरीत, जैसे कि परिभाषित करना) के लिए चुना गया था <math>f(n)</math> के माध्यम से <math>f(n-1)</math>). यह उदाहरण मन्ना की पुस्तक, मैथमैटिकल थ्योरी ऑफ कंप्यूटेशन (1974) द्वारा लोकप्रिय हुआ। जैसे-जैसे औपचारिक विधियों का क्षेत्र आगे बढ़ा, यह उदाहरण शोध साहित्य में बार-बार सामने आया। | ||
विशेष रूप से, इसे स्वचालित प्रोग्राम सत्यापन के लिए एक चुनौती समस्या के रूप में देखा जाता है। | विशेष रूप से, इसे स्वचालित प्रोग्राम सत्यापन के लिए एक चुनौती समस्या के रूप में देखा जाता है। | ||
Line 22: | Line 22: | ||
\end{cases} | \end{cases} | ||
</math> | </math> | ||
इस तरह के तर्क को प्रदर्शित करने के लिए उपयोग किए गए उदाहरणों में से एक के रूप में, मन्ना की पुस्तक में नेस्टेड-रिकर्सिव 91 फ़ंक्शन के बराबर एक टेल-रिकर्सिव एल्गोरिदम | इस तरह के तर्क को प्रदर्शित करने के लिए उपयोग किए गए उदाहरणों में से एक के रूप में, मन्ना की पुस्तक में नेस्टेड-रिकर्सिव 91 फ़ंक्शन के बराबर एक टेल-रिकर्सिव एल्गोरिदम सम्मिलित है। 91 फ़ंक्शन के स्वचालित सत्यापन (या [[समाप्ति प्रमाण]]) की रिपोर्ट करने वाले कई दस्तावेज़ केवल टेल-रिकर्सिव संस्करण को संभालते हैं। | ||
यह एक समतुल्य पारस्परिक पुनरावर्तन पूँछ-पुनरावर्ती परिभाषा है: | यह एक समतुल्य पारस्परिक पुनरावर्तन पूँछ-पुनरावर्ती परिभाषा है: | ||
Line 78: | Line 78: | ||
| otherwise = mc91 $ mc91 $ n + 11 | | otherwise = mc91 $ mc91 $ n + 11 | ||
</syntaxhighlight> | </syntaxhighlight> | ||
यहां [[ | यहां [[Index.php?title=ओकैमल (प्रोग्रामिंग भाषा)|ओकैमल (प्रोग्रामिंग भाषा)]] में नेस्टेड-रिकर्सिव एल्गोरिदम का कार्यान्वयन है: | ||
<syntaxhighlight lang="ocaml"> | <syntaxhighlight lang="ocaml"> | ||
Line 85: | Line 85: | ||
else mc91 (mc91 (n + 11)) | else mc91 (mc91 (n + 11)) | ||
</syntaxhighlight> | </syntaxhighlight> | ||
यहां | यहां ओकैमल (प्रोग्रामिंग भाषा) में टेल-रिकर्सिव एल्गोरिदम का कार्यान्वयन है: | ||
<syntaxhighlight lang="ocaml"> | <syntaxhighlight lang="ocaml"> | ||
Line 106: | Line 106: | ||
return mc91(mc91(n + 11)) | return mc91(mc91(n + 11)) | ||
</syntaxhighlight> | </syntaxhighlight> | ||
यहां | यहां सी (प्रोग्रामिंग भाषा) में नेस्टेड-रिकर्सिव एल्गोरिदम का कार्यान्वयन है: | ||
<syntaxhighlight lang="c"> | <syntaxhighlight lang="c"> | ||
Line 118: | Line 118: | ||
} | } | ||
</syntaxhighlight> | </syntaxhighlight> | ||
यहां | यहां सी (प्रोग्रामिंग भाषा) में टेल-रिकर्सिव एल्गोरिदम का कार्यान्वयन दिया गया है: | ||
<syntaxhighlight lang="c"> | <syntaxhighlight lang="c"> | ||
Line 139: | Line 139: | ||
} | } | ||
</syntaxhighlight> | </syntaxhighlight> | ||
==प्रमाण== | ==प्रमाण== | ||
यहाँ इसका प्रमाण है | यहाँ इसका प्रमाण है | ||
Line 147: | Line 145: | ||
91, & \mbox{if }n \le 100\mbox{ } | 91, & \mbox{if }n \le 100\mbox{ } | ||
\end{cases}</math> | \end{cases}</math> | ||
जो गणना करने के लिए एक समतुल्य गैर-पुनरावर्ती एल्गोरिदम प्रदान करता है | जो <math>M</math> गणना करने के लिए एक समतुल्य गैर-पुनरावर्ती एल्गोरिदम प्रदान करता है . | ||
n > 100 के लिए, समानता | n > 100 के लिए, समानता <math>M</math> की परिभाषा से अनुसरण करती है। n ≤ 100 के लिए, 100 से नीचे की ओर एक [[मजबूत प्रेरण]] का उपयोग किया जा सकता है। | ||
90 ≤ एन ≤ 100 के लिए, | 90 ≤ एन ≤ 100 के लिए, | ||
Line 157: | Line 155: | ||
= एम(एन + 1) | = एम(एन + 1) | ||
तो M(n) = M(101) = 91 90 ≤ n ≤ 100 के | तो M(n) = M(101) = 91 90 ≤ n ≤ 100 के लिए।इसे आधार मामले के तौर पर उपयोग किया जा सकता है. | ||
प्रेरण चरण के लिए, मान लीजिए n ≤ 89 और सभी n < i ≤ 100 के लिए M(i) = 91 मान लें, तो | प्रेरण चरण के लिए, मान लीजिए n ≤ 89 और सभी n < i ≤ 100 के लिए M(i) = 91 मान लें, तो | ||
Line 170: | Line 167: | ||
== नुथ का सामान्यीकरण == | == नुथ का सामान्यीकरण == | ||
[[डोनाल्ड नुथ]] ने अतिरिक्त मापदंडों को | [[डोनाल्ड नुथ]] ने अतिरिक्त मापदंडों को सम्मिलित करने के लिए 91 फ़ंक्शन को सामान्यीकृत किया।<ref>{{cite journal |first=Donald E. |last=Knuth | title = पुनरावृत्ति के पाठ्यपुस्तक उदाहरण| year = 1991 | journal = Artificial Intelligence and Mathematical Theory of Computation |pages=207–229 |doi=10.1016/B978-0-12-450010-5.50018-9 | arxiv = cs/9301113| bibcode = 1993cs........1113K |isbn=9780124500105 |s2cid=6411737 }}</ref> [[जॉन काउल्स (गणितज्ञ)]] ने [[Index.php?title=एसीएल2|एसीएल2]] प्रमेय कहावत का उपयोग करते हुए एक औपचारिक प्रमाण विकसित किया कि नुथ का सामान्यीकृत कार्य संपूर्ण था।<ref>{{cite book |first=John |last=Cowles | chapter = Knuth's generalization of McCarthy's 91 function |editor-first=M. |editor-last=Kaufmann |editor2-first=P. |editor2-last=Manolios |editor3-first=J |editor3-last=Strother Moore | title = Computer-Aided reasoning: ACL2 case studies | publisher = Kluwer Academic |isbn=9781475731880 |year=2013 |orig-year = 2000 | pages = 283–299 |chapter-url = http://www.cs.utexas.edu/users/moore/acl2/workshop-1999/Cowles-abstract.html}}</ref> | ||
== संदर्भ == | == संदर्भ == | ||
{{Reflist}} | {{Reflist}} | ||
* {{cite journal |first1= | * {{cite journal |first1=ज़ोहर |last1=मन्ना |first2=अमीर |last2=पनुएलि |title=कार्यात्मक कार्यक्रमों के गुणों का औपचारिकीकरण |journal=एसीएम का जर्नल |date=जुलाई 1970 |volume=17 |issue=3 |pages=555–569 |doi=10.1145/321592.321606|s2cid=5924829 }} | ||
* {{cite journal |first1= | * {{cite journal |first1=ज़ोहर |last1=मन्ना |first2=जॉन |last2=मैकार्थी |title=प्रोग्राम के गुण और आंशिक फ़ंक्शन तर्क |journal=मशीन इंटेलिजेंस |year=1970 |volume=5 |oclc=35422131}} | ||
* {{cite book |first= | * {{cite book |first=ज़ोहर |last=मन्ना |title=संगणना का गणितीय सिद्धांत |publisher=मैकग्रा-हिल |year=1974 |edition=4th |isbn=9780070399105}} | ||
* {{cite journal |first= | * {{cite journal |first=मिशेल |last=छड़ी |title=निरंतरता-आधारित कार्यक्रम परिवर्तन रणनीतियाँ |journal=एसीएम का जर्नल |date=जनवरी 1980 |volume=27 |issue=1 |pages=164–180 |doi=10.1145/322169.322183|s2cid=16015891 }} | ||
{{John McCarthy}} | {{John McCarthy}} |
Revision as of 10:16, 3 August 2023
This article includes a list of references, related reading or external links, but its sources remain unclear because it lacks inline citations. (अक्टूबर 2015) (Learn how and when to remove this template message) |
मैक्कार्थी 91 फ़ंक्शन एक रिकर्सन (कंप्यूटर विज्ञान) है, जिसे कंप्यूटर वैज्ञानिक जॉन मैक्कार्थी (कंप्यूटर वैज्ञानिक) रिकर्सन (कंप्यूटर विज्ञान) के भीतर औपचारिक सत्यापन के लिए एक परीक्षण घटना के रूप में परिभाषित किया है।
मैक्कार्थी 91 फ़ंक्शन को इस प्रकार परिभाषित किया गया है
फ़ंक्शन के मूल्यांकन के परिणाम सभी पूर्णांक तर्कों n ≤ 100 के लिए M(n) = 91, और n > 100 के लिए M(n) = n − 10 द्वारा दिए गए हैं। वास्तव में, M(101) का परिणाम भी 91 (101 - 10 = 91) है। n = 101 के बाद M(n) के सभी परिणाम लगातार 1 से बढ़ रहे हैं, उदाहरण के लिए एम(102) = 92, एम(103) = 93।
इतिहास
91 फ़ंक्शन को 1970 में जोहार मन्ना, अमीर पनुएली और जॉन मैक्कार्थी (कंप्यूटर वैज्ञानिक) द्वारा प्रकाशित पत्रों में प्रस्तुत किया गया था। ये कागजात औपचारिक सत्यापन के लिए औपचारिक विधियों के आवेदन की दिशा में प्रारंभिक विकास का प्रतिनिधित्व करते थे। 91 फ़ंक्शन को नेस्टेड-रिकर्सिव (एकल प्रत्यावर्तन के विपरीत, जैसे कि परिभाषित करना) के लिए चुना गया था के माध्यम से ). यह उदाहरण मन्ना की पुस्तक, मैथमैटिकल थ्योरी ऑफ कंप्यूटेशन (1974) द्वारा लोकप्रिय हुआ। जैसे-जैसे औपचारिक विधियों का क्षेत्र आगे बढ़ा, यह उदाहरण शोध साहित्य में बार-बार सामने आया। विशेष रूप से, इसे स्वचालित प्रोग्राम सत्यापन के लिए एक चुनौती समस्या के रूप में देखा जाता है।
पूँछ प्रत्यावर्तन |टेल-रिकर्सिव नियंत्रण प्रवाह के बारे में तर्क करना आसान है, यह एक समतुल्य (विस्तारकता) परिभाषा है:
इस तरह के तर्क को प्रदर्शित करने के लिए उपयोग किए गए उदाहरणों में से एक के रूप में, मन्ना की पुस्तक में नेस्टेड-रिकर्सिव 91 फ़ंक्शन के बराबर एक टेल-रिकर्सिव एल्गोरिदम सम्मिलित है। 91 फ़ंक्शन के स्वचालित सत्यापन (या समाप्ति प्रमाण) की रिपोर्ट करने वाले कई दस्तावेज़ केवल टेल-रिकर्सिव संस्करण को संभालते हैं।
यह एक समतुल्य पारस्परिक पुनरावर्तन पूँछ-पुनरावर्ती परिभाषा है:
नेस्टेड-रिकर्सिव से पारस्परिक रूप से टेल-रिकर्सिव संस्करण की औपचारिक व्युत्पत्ति 1980 के एक लेख में मिशेल वैंड द्वारा निरंतरता के उपयोग के आधार पर दी गई थी।
उदाहरण
उदाहरण ए:
एम(99) = एम(एम(110)) चूँकि 99 ≤ 100 = एम(100) चूँकि 110 > 100 = एम(एम(111)) चूँकि 100 ≤ 100 = एम(101) 111 > 100 से = 91 चूँकि 101 > 100
उदाहरण बी:
एम(87) = एम(एम(98)) = एम(एम(एम(109))) = एम(एम(99)) = एम(एम(एम(110))) = एम(एम(100)) = एम(एम(एम(111))) = एम(एम(101)) = एम(91) = एम(एम(102)) = एम(92) = एम(एम(103)) = एम(93) .... पैटर्न एम(99), एम(100) और एम(101) तक बढ़ता रहता है, बिल्कुल वैसा ही जैसा हमने उदाहरण ए में देखा था) = एम(101) 111 > 100 से = 91 चूँकि 101 > 100
कोड
यहां लिस्प (प्रोग्रामिंग भाषा) में नेस्टेड-रिकर्सिव एल्गोरिदम का कार्यान्वयन है:
(defun mc91 (n)
(cond ((<= n 100) (mc91 (mc91 (+ n 11))))
(t (- n 10))))
हास्केल (प्रोग्रामिंग भाषा) में नेस्टेड-रिकर्सिव एल्गोरिदम का कार्यान्वयन यहां दिया गया है:
mc91 n
| n > 100 = n - 10
| otherwise = mc91 $ mc91 $ n + 11
यहां ओकैमल (प्रोग्रामिंग भाषा) में नेस्टेड-रिकर्सिव एल्गोरिदम का कार्यान्वयन है:
let rec mc91 n =
if n > 100 then n - 10
else mc91 (mc91 (n + 11))
यहां ओकैमल (प्रोग्रामिंग भाषा) में टेल-रिकर्सिव एल्गोरिदम का कार्यान्वयन है:
let mc91 n =
let rec aux n c =
if c = 0 then n
else if n > 100 then aux (n - 10) (c - 1)
else aux (n + 11) (c + 1)
in
aux n 1
यहां पायथन (प्रोग्रामिंग भाषा) में नेस्टेड-रिकर्सिव एल्गोरिदम का कार्यान्वयन है:
def mc91(n: int) -> int:
"""McCarthy 91 function."""
if n > 100:
return n - 10
else:
return mc91(mc91(n + 11))
यहां सी (प्रोग्रामिंग भाषा) में नेस्टेड-रिकर्सिव एल्गोरिदम का कार्यान्वयन है:
int mc91(int n)
{
if (n > 100) {
return n - 10;
} else {
return mc91(mc91(n + 11));
}
}
यहां सी (प्रोग्रामिंग भाषा) में टेल-रिकर्सिव एल्गोरिदम का कार्यान्वयन दिया गया है:
int mc91(int n)
{
return mc91taux(n, 1);
}
int mc91taux(int n, int c)
{
if (c != 0) {
if (n > 100) {
return mc91taux(n - 10, c - 1);
} else {
return mc91taux(n + 11, c + 1);
}
} else {
return n;
}
}
प्रमाण
यहाँ इसका प्रमाण है
जो गणना करने के लिए एक समतुल्य गैर-पुनरावर्ती एल्गोरिदम प्रदान करता है .
n > 100 के लिए, समानता की परिभाषा से अनुसरण करती है। n ≤ 100 के लिए, 100 से नीचे की ओर एक मजबूत प्रेरण का उपयोग किया जा सकता है।
90 ≤ एन ≤ 100 के लिए,
एम(एन) = एम(एम(एन + 11)), परिभाषा के अनुसार = एम(एन + 11 - 10), चूँकि एन + 11 > 100 = एम(एन + 1)
तो M(n) = M(101) = 91 90 ≤ n ≤ 100 के लिए।इसे आधार मामले के तौर पर उपयोग किया जा सकता है.
प्रेरण चरण के लिए, मान लीजिए n ≤ 89 और सभी n < i ≤ 100 के लिए M(i) = 91 मान लें, तो
एम(एन) = एम(एम(एन + 11)), परिभाषा के अनुसार = एम(91), परिकल्पना के अनुसार, चूँकि n < n + 11 ≤ 100 = 91, आधार स्थिति के अनुसार।
यह नकारात्मक मानों सहित सभी n ≤ 100 के लिए M(n) = 91 साबित करता है।
नुथ का सामान्यीकरण
डोनाल्ड नुथ ने अतिरिक्त मापदंडों को सम्मिलित करने के लिए 91 फ़ंक्शन को सामान्यीकृत किया।[1] जॉन काउल्स (गणितज्ञ) ने एसीएल2 प्रमेय कहावत का उपयोग करते हुए एक औपचारिक प्रमाण विकसित किया कि नुथ का सामान्यीकृत कार्य संपूर्ण था।[2]
संदर्भ
- ↑ Knuth, Donald E. (1991). "पुनरावृत्ति के पाठ्यपुस्तक उदाहरण". Artificial Intelligence and Mathematical Theory of Computation: 207–229. arXiv:cs/9301113. Bibcode:1993cs........1113K. doi:10.1016/B978-0-12-450010-5.50018-9. ISBN 9780124500105. S2CID 6411737.
- ↑ Cowles, John (2013) [2000]. "Knuth's generalization of McCarthy's 91 function". In Kaufmann, M.; Manolios, P.; Strother Moore, J (eds.). Computer-Aided reasoning: ACL2 case studies. Kluwer Academic. pp. 283–299. ISBN 9781475731880.
- मन्ना, ज़ोहर; पनुएलि, अमीर (जुलाई 1970). "कार्यात्मक कार्यक्रमों के गुणों का औपचारिकीकरण". एसीएम का जर्नल. 17 (3): 555–569. doi:10.1145/321592.321606. S2CID 5924829.
{{cite journal}}
: Check date values in:|date=
(help) - मन्ना, ज़ोहर; मैकार्थी, जॉन (1970). "प्रोग्राम के गुण और आंशिक फ़ंक्शन तर्क". मशीन इंटेलिजेंस. 5. OCLC 35422131.
- मन्ना, ज़ोहर (1974). संगणना का गणितीय सिद्धांत (4th ed.). मैकग्रा-हिल. ISBN 9780070399105.
- छड़ी, मिशेल (जनवरी 1980). "निरंतरता-आधारित कार्यक्रम परिवर्तन रणनीतियाँ". एसीएम का जर्नल. 27 (1): 164–180. doi:10.1145/322169.322183. S2CID 16015891.
{{cite journal}}
: Check date values in:|date=
(help)