रैखिक सम्मिश्र संरचना: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Mathematics concept}} | {{Short description|Mathematics concept}} | ||
गणित में वास्तविक सदिश समष्टि V पर सम्मिश्र संरचना, V का स्वप्रतिरूपण है जो ऋणात्मक पहचान −I का वर्ग है। जो कि V पर इस तरह की संरचना किसी को विहित विधि से सम्मिश्र अदिशों द्वारा गुणन को परिभाषित करने की अनुमति देती है जिससे V को सम्मिश्र सदिश समष्टि के रूप में माना जा सकता है। | गणित में वास्तविक सदिश समष्टि V पर सम्मिश्र संरचना, V का स्वप्रतिरूपण है जो ऋणात्मक पहचान −I का वर्ग है। जो कि V पर इस तरह की संरचना किसी को विहित विधि से सम्मिश्र अदिशों द्वारा गुणन को परिभाषित करने की अनुमति देती है जिससे V को सम्मिश्र सदिश समष्टि के रूप में माना जा सकता है। | ||
प्रत्येक सम्मिश्र सदिश | प्रत्येक सम्मिश्र सदिश समष्टि को संगत सम्मिश्र संरचना से सुसज्जित किया जा सकता है, चूँकि यह सामान्य रूप से ऐसी कोई विहित संरचना नहीं होती है। जो कि सम्मिश्र संरचनाओं का [[प्रतिनिधित्व सिद्धांत]] के साथ-साथ [[जटिल ज्यामिति|सम्मिश्र ज्यामिति]] में भी अनुप्रयोग होता है जहां वे सम्मिश्र मैनिफोल्ड के विपरीत, लगभग सम्मिश्र मैनिफोल्ड की परिभाषा में आवश्यक भूमिका निभाते हैं। सम्मिश्र संरचना शब्द अधिकांशत: इस संरचना को अधिक गुना संदर्भित करता है; जब यह सदिश समष्टि पर किसी संरचना को संदर्भित करता है, तो इसे ''''रैखिक सम्मिश्र संरचना'''<nowiki/>' कहा जा सकता है। | ||
==परिभाषा और गुण== | ==परिभाषा और गुण== | ||
Line 13: | Line 11: | ||
ऐसा है कि | ऐसा है कि | ||
<math display=block>J^2 = -\mathrm{Id}_V.</math> | <math display=block>J^2 = -\mathrm{Id}_V.</math> | ||
यहां {{math|''J''<sup>2</sup>}} का अर्थ है जो कि {{math|''J''}} स्वयं से बना है और {{math|Id<sub>''V''</sub>}} {{math|''V''}} पर पहचान मानचित्र है। अथार्त, {{math|''V''}} को दो बार लगाने का प्रभाव {{math|−1}} से गुणा करने के समान है। यह काल्पनिक इकाई द्वारा गुणन की याद दिलाता है, अर्थात यह सम्मिश्र संरचना किसी को V को सम्मिश्र सदिश | यहां {{math|''J''<sup>2</sup>}} का अर्थ है जो कि {{math|''J''}} स्वयं से बना है और {{math|Id<sub>''V''</sub>}} {{math|''V''}} पर पहचान मानचित्र है। अथार्त, {{math|''V''}} को दो बार लगाने का प्रभाव {{math|−1}} से गुणा करने के समान है। यह काल्पनिक इकाई द्वारा गुणन की याद दिलाता है, अर्थात यह सम्मिश्र संरचना किसी को V को सम्मिश्र सदिश समष्टि की संरचना प्रदान करने की अनुमति देती है। सम्मिश्र अदिश गुणन को परिभाषित किया जा सकता है | ||
<math display=block>(x + iy)v = xv + yJ(v)</math> | <math display=block>(x + iy)v = xv + yJ(v)</math> | ||
सभी वास्तविक संख्याओं {{math|''x'',''y''}} और {{math|''V''}} में सभी सदिशों {{math|''v''}} के लिए यह कोई जांच सकता है कि यह, वास्तव में, {{math|''V''}} को सम्मिश्र सदिश समष्टि की संरचना देता है जिसे हम {{math|''V''<sub>''J''</sub>}} को दर्शाते हैं। | सभी वास्तविक संख्याओं {{math|''x'',''y''}} और {{math|''V''}} में सभी सदिशों {{math|''v''}} के लिए यह कोई जांच सकता है कि यह, वास्तव में, {{math|''V''}} को सम्मिश्र सदिश समष्टि की संरचना देता है जिसे हम {{math|''V''<sub>''J''</sub>}} को दर्शाते हैं। | ||
यह दूसरी दिशा में जाने पर, यदि कोई सम्मिश्र सदिश समष्टि {{math|''W''}} से प्रारंभ करता है तो वह सभी {{math|''w'' ∈ ''W''}} के लिए {{math|1=''Jw'' = ''iw''}} को परिभाषित करके अंतर्निहित वास्तविक | यह दूसरी दिशा में जाने पर, यदि कोई सम्मिश्र सदिश समष्टि {{math|''W''}} से प्रारंभ करता है तो वह सभी {{math|''w'' ∈ ''W''}} के लिए {{math|1=''Jw'' = ''iw''}} को परिभाषित करके अंतर्निहित वास्तविक समष्टि पर सम्मिश्र संरचना को परिभाषित कर सकता है। | ||
अधिक औपचारिक रूप से, वास्तविक सदिश | अधिक औपचारिक रूप से, वास्तविक सदिश समष्टि पर रैखिक सम्मिश्र संरचना सम्मिश्र संख्याओं {{math|'''C'''}} का बीजगणित प्रतिनिधित्व है, जिसे वास्तविक संख्याओं पर सहयोगी बीजगणित के रूप में माना जाता है। यह बीजगणित ठोस रूप में साकार होता है | ||
<math display="block">\Complex = \Reals[x]/(x^2+1),</math> | <math display="block">\Complex = \Reals[x]/(x^2+1),</math> | ||
जो {{math|1=''i''<sup>2</sup> = −1}} से मेल खाता है। फिर {{math|'''C'''}} का प्रतिनिधित्व वास्तविक सदिश समष्टि {{math|''V''}} है, इसके साथ में {{math|''V''}} पर {{math|'''C'''}} की क्रिया (एक मानचित्र {{math|'''C''' → End(''V'')}} भी है। जो कि समान्य रूप से, यह केवल {{math|''i''}} की क्रिया है, क्योंकि यह बीजगणित उत्पन्न करता है, और यह {{math|''i''}} ({{math|End(''V'')}} में {{math|''i''}} की छवि) का प्रतिनिधित्व करने वाला ऑपरेटर | जो {{math|1=''i''<sup>2</sup> = −1}} से मेल खाता है। फिर {{math|'''C'''}} का प्रतिनिधित्व वास्तविक सदिश समष्टि {{math|''V''}} है, इसके साथ में {{math|''V''}} पर {{math|'''C'''}} की क्रिया (एक मानचित्र {{math|'''C''' → End(''V'')}} भी है। जो कि समान्य रूप से, यह केवल {{math|''i''}} की क्रिया है, क्योंकि यह बीजगणित उत्पन्न करता है, और यह {{math|''i''}} ({{math|End(''V'')}} में {{math|''i''}} की छवि) का प्रतिनिधित्व करने वाला ऑपरेटर केवल {{math|''J''}} है। | ||
यदि {{math|''V''<sub>''J''</sub>}} का सम्मिश्र आयाम {{math|''n''}} है तो {{math|''V''}} का वास्तविक आयाम {{math|2''n''}} होना चाहिए। अर्थात्, परिमित-आयामी | यदि {{math|''V''<sub>''J''</sub>}} का सम्मिश्र आयाम {{math|''n''}} है तो {{math|''V''}} का वास्तविक आयाम {{math|2''n''}} होना चाहिए। अर्थात्, परिमित-आयामी समष्टि {{math|''V''}} सम्मिश्र संरचना को तभी स्वीकार करता है जब वह सम-आयामी हो। यह देखना कठिन नहीं है कि प्रत्येक सम-आयामी सदिश समष्टि सम्मिश्र संरचना को स्वीकार करता है। कोई व्यक्ति {{math|1=''Je'' = ''f''}} और {{math|1=''Jf'' = −''e''}} द्वारा आधार सदिश के जोड़े {{math|''e'',''f''}} पर {{math|''J''}} को परिभाषित कर सकता है और फिर सभी {{math|''V''}} तक रैखिकता द्वारा विस्तारित कर सकता है। यदि {{math|(''v''<sub>1</sub>, …, ''v''<sub>''n''</sub>)}} सम्मिश्र सदिश समष्टि {{math|''V''<sub>''J''</sub>}} के लिए आधार है तो {{math|(''v''<sub>1</sub>, ''Jv''<sub>1</sub>, …, ''v''<sub>''n''</sub>, ''Jv''<sub>''n''</sub>)}} अंतर्निहित वास्तविक समष्टि {{math|''V''}} का आधार है। | ||
एक वास्तविक रैखिक परिवर्तन {{math|''A'' : ''V'' → ''V''}} संगत सम्मिश्र | एक वास्तविक रैखिक परिवर्तन {{math|''A'' : ''V'' → ''V''}} संगत सम्मिश्र समष्टि {{math|''V''<sub>''J''</sub>}} का सम्मिश्र रैखिक परिवर्तन है [[अगर और केवल अगर|यदि और केवल]] यदि {{math|''A''}} {{math|''J''}} के साथ आवागमन करता है , अर्थात यदि और केवल यदि | ||
<math display="block">AJ = JA.</math> | <math display="block">AJ = JA.</math> | ||
इसी तरह, {{math|''V''}} का वास्तविक उप- | इसी तरह, {{math|''V''}} का वास्तविक उप-समष्टि {{math|''U''}}, {{math|''V''<sub>''J''</sub>}} का सम्मिश्र उप-समष्टि है यदि और केवल यदि {{math|''J''}}, {{math|''U''}} को संरक्षित करता है, अर्थात यदि और केवल यदि | ||
<math display="block">JU = U.</math> | <math display="block">JU = U.</math> | ||
==उदाहरण== | ==उदाहरण== | ||
Line 43: | Line 39: | ||
=== C<sup>''n''</sup> === | === C<sup>''n''</sup> === | ||
एक रैखिक सम्मिश्र संरचना का मूल उदाहरण '''C'''<sup>''n''</sup> पर सम्मिश्र संरचना से आने वाली '''R'''<sup>2''n''</sup> पर संरचना है। अर्थात्, सम्मिश्र n-आयामी | एक रैखिक सम्मिश्र संरचना का मूल उदाहरण '''C'''<sup>''n''</sup> पर सम्मिश्र संरचना से आने वाली '''R'''<sup>2''n''</sup> पर संरचना है। अर्थात्, सम्मिश्र n-आयामी समष्टि '''C'''<sup>''n''</sup> भी वास्तविक 2n-आयामी समष्टि है - समान सदिश जोड़ और वास्तविक अदिश गुणन का उपयोग करते हुए - जबकि सम्मिश्र संख्या i द्वारा गुणा न केवल अंतरिक्ष का सम्मिश्र रैखिक परिवर्तन है, जैसा कि सोचा गया है सम्मिश्र सदिश समष्टि, किन्त्तु अंतरिक्ष का वास्तविक रैखिक परिवर्तन भी, जिसे वास्तविक सदिश समष्टि माना जाता है। सामान्य रूप से, इसका कारण यह है कि i द्वारा अदिश गुणन वास्तविक संख्याओं द्वारा अदिश गुणन के साथ परिवर्तित होता है। जिसका <math> i (\lambda v) = (i \lambda) v = (\lambda i) v = \lambda (i v) </math> - और सदिश जोड़ में वितरित होता है। सम्मिश्र n×n आव्यूह के रूप में, यह केवल विकर्ण पर i के साथ [[अदिश मैट्रिक्स|अदिश आव्यूह]] है। संगत वास्तविक 2n×2n आव्यूह को J दर्शाया गया है। | ||
सम्मिश्र | सम्मिश्र समष्टि के लिए <math>\left\{e_1, e_2, \dots, e_n \right\}</math> का आधार दिया गया है, इस सेट को इन सदिशों के साथ i से गुणा किया गया है, अर्थात् <math>\left\{ie_1, ie_2, \dots, ie_n\right\},</math> वास्तविक समष्टि के लिए आधार बनाते हैं। इस आधार को ऑर्डर करने के दो प्राकृतिक विधि हैं, जो संक्षेप में इस बात से मेल खाते हैं कि कोई टेंसर उत्पाद को <math>\Complex^n = \R^n \otimes_{\R} \Complex</math> के रूप में लिखता है या इसके अतिरिक्त <math>\Complex^n = \Complex \otimes_{\R} \R^n.</math> के रूप में है । | ||
Line 66: | Line 62: | ||
& & & J_2 | & & & J_2 | ||
\end{bmatrix}.</math> | \end{bmatrix}.</math> | ||
इस क्रम का लाभ यह है कि यह सम्मिश्र सदिश रिक्त | इस क्रम का लाभ यह है कि यह सम्मिश्र सदिश रिक्त समष्टि के प्रत्यक्ष योग का सम्मान करता है, जिसका अर्थ है कि <math>\Complex^m \oplus \Complex^n</math> का आधार <math>\Complex^{m+n}.</math> के समान है। | ||
दूसरी ओर, यदि कोई आधार को <math>\left\{e_1,e_2,\dots,e_n, ie_1, ie_2, \dots, ie_n\right\}</math> के रूप में ऑर्डर करता है, तो J के लिए आव्यूह ब्लॉक-एंटीडायगोनल है: | दूसरी ओर, यदि कोई आधार को <math>\left\{e_1,e_2,\dots,e_n, ie_1, ie_2, \dots, ie_n\right\}</math> के रूप में ऑर्डर करता है, तो J के लिए आव्यूह ब्लॉक-एंटीडायगोनल है: | ||
<math display="block">J_{2n} = \begin{bmatrix}0 & -I_n \\ I_n & 0\end{bmatrix}.</math> | <math display="block">J_{2n} = \begin{bmatrix}0 & -I_n \\ I_n & 0\end{bmatrix}.</math> | ||
यह क्रम अधिक स्वाभाविक है यदि कोई सम्मिश्र | यह क्रम अधिक स्वाभाविक है यदि कोई सम्मिश्र समष्टि को वास्तविक समष्टि के प्रत्यक्ष योग के रूप में सोचता है, जैसा कि नीचे विचार की गई है। | ||
वास्तविक सदिश | वास्तविक सदिश समष्टि और J आव्यूह का डेटा केवल सम्मिश्र सदिश समष्टि के डेटा के समान है, क्योंकि J आव्यूह सम्मिश्र गुणन को परिभाषित करने की अनुमति देता है। लाई बीजगणित और लाई समूहों के स्तर पर, यह gl(2n,'R') में gl(n,'C') को सम्मिलित करने से मेल खाता है ([[झूठ बीजगणित|लाई बीजगणित]] - आव्यूह , जरूरी नहीं कि विपरीत हो) और GL(n,C) |GL(n,'C') GL(2n,'R' में): | ||
{{block indent | em = 1.5 | text = gl(''n'','''C''') < gl(''2n'','''R''') and GL(''n'','''C''') < GL(''2n'','''R''').}} | {{block indent | em = 1.5 | text = gl(''n'','''C''') < gl(''2n'','''R''') and GL(''n'','''C''') < GL(''2n'','''R''').}} | ||
समावेशन सम्मिश्र संरचना को भूलने (और केवल वास्तविक रखने) से मेल खाता है, जबकि उपसमूह GL(''n'','''C''') को ''J'' के साथ आने वाले आव्यूह के रूप में चित्रित किया जा सकता है (समीकरणों में दिया गया है): | समावेशन सम्मिश्र संरचना को भूलने (और केवल वास्तविक रखने) से मेल खाता है, जबकि उपसमूह GL(''n'','''C''') को ''J'' के साथ आने वाले आव्यूह के रूप में चित्रित किया जा सकता है (समीकरणों में दिया गया है): | ||
Line 81: | Line 77: | ||
ध्यान दें कि इन कथनों के लिए परिभाषित समीकरण समान हैं, क्योंकि {<math>AJ = JA</math> , <math>AJ - JA = 0,</math> के समान है, जो कि <math>[A,J] = 0,</math> के समान है, चूँकि लाई ब्रैकेट के लुप्त होने का अर्थ कम तत्काल है आवागमन के अर्थ की तुलना में ज्यामितीय रूप से है । | ध्यान दें कि इन कथनों के लिए परिभाषित समीकरण समान हैं, क्योंकि {<math>AJ = JA</math> , <math>AJ - JA = 0,</math> के समान है, जो कि <math>[A,J] = 0,</math> के समान है, चूँकि लाई ब्रैकेट के लुप्त होने का अर्थ कम तत्काल है आवागमन के अर्थ की तुलना में ज्यामितीय रूप से है । | ||
=== | === प्रत्यक्ष योग === | ||
यदि V कोई वास्तविक सदिश समष्टि है तो सदिश समष्टि V ⊕ V के प्रत्यक्ष योग पर विहित सम्मिश्र संरचना होती है, जो इसके द्वारा दी गई है | यदि V कोई वास्तविक सदिश समष्टि है तो सदिश समष्टि V ⊕ V के प्रत्यक्ष योग पर विहित सम्मिश्र संरचना होती है, जो इसके द्वारा दी गई है | ||
<math display="block">J(v,w) = (-w,v).</math> | <math display="block">J(v,w) = (-w,v).</math> | ||
Line 103: | Line 99: | ||
एक सहानुभूतिपूर्ण रूप ω और V पर रैखिक सम्मिश्र संरचना J को देखते हुए, कोई V पर संबंधित द्विरेखीय रूप {{math|''g''<sub>''J''</sub>}} को परिभाषित कर सकता है | एक सहानुभूतिपूर्ण रूप ω और V पर रैखिक सम्मिश्र संरचना J को देखते हुए, कोई V पर संबंधित द्विरेखीय रूप {{math|''g''<sub>''J''</sub>}} को परिभाषित कर सकता है | ||
<math display="block"> g_J(u, v) = \omega(u, Jv). </math> | <math display="block"> g_J(u, v) = \omega(u, Jv). </math> | ||
चूँकि सिम्प्लेक्टिक रूप गैर-विक्षिप्त होता है, इसलिए उससे जुड़ा द्विरेखीय रूप भी अप्रचलित होता है। संबंधित प्रपत्र को J द्वारा संरक्षित किया जाता है यदि और केवल यदि सहानुभूतिपूर्ण रूप है। इसके अतिरिक्त , यदि सहानुभूतिपूर्ण रूप {{math|''J''}} द्वारा संरक्षित है, तो संबंधित रूप सममित है। यदि इसके अतिरिक्त ω को J द्वारा वश में किया जाता है, तो संबंधित रूप सकारात्मक निश्चित है। इस प्रकार इस स्थिति में V, {{math|''g''<sub>''J''</sub>}} के संबंध में आंतरिक उत्पाद | चूँकि सिम्प्लेक्टिक रूप गैर-विक्षिप्त होता है, इसलिए उससे जुड़ा द्विरेखीय रूप भी अप्रचलित होता है। संबंधित प्रपत्र को J द्वारा संरक्षित किया जाता है यदि और केवल यदि सहानुभूतिपूर्ण रूप है। इसके अतिरिक्त , यदि सहानुभूतिपूर्ण रूप {{math|''J''}} द्वारा संरक्षित है, तो संबंधित रूप सममित है। यदि इसके अतिरिक्त ω को J द्वारा वश में किया जाता है, तो संबंधित रूप सकारात्मक निश्चित है। इस प्रकार इस स्थिति में V, {{math|''g''<sub>''J''</sub>}} के संबंध में आंतरिक उत्पाद समष्टि है। | ||
यदि सहानुभूतिपूर्ण रूप ω को J द्वारा संरक्षित किया जाता है (किन्तु जरूरी नहीं कि उसे वश में किया जाए), तो {{math|''g''<sub>''J''</sub>}} हर्मिटियन रूप का वास्तविक भाग है (पहले तर्क में सम्मेलन एंटीलिनियर द्वारा) <math display="inline">h_J\colon V_J\times V_J\to\mathbb{C}</math> द्वारा परिभाषित है | यदि सहानुभूतिपूर्ण रूप ω को J द्वारा संरक्षित किया जाता है (किन्तु जरूरी नहीं कि उसे वश में किया जाए), तो {{math|''g''<sub>''J''</sub>}} हर्मिटियन रूप का वास्तविक भाग है (पहले तर्क में सम्मेलन एंटीलिनियर द्वारा) <math display="inline">h_J\colon V_J\times V_J\to\mathbb{C}</math> द्वारा परिभाषित है | ||
Line 109: | Line 105: | ||
==[[जटिलता| | ==[[जटिलता|सम्मिश्रता]]ओं से संबंध== | ||
किसी भी वास्तविक सदिश समष्टि V को देखते हुए हम अदिशों के विस्तार द्वारा इसकी सम्मिश्र्ता को परिभाषित कर सकते हैं: | किसी भी वास्तविक सदिश समष्टि V को देखते हुए हम अदिशों के विस्तार द्वारा इसकी सम्मिश्र्ता को परिभाषित कर सकते हैं: | ||
:<math>V^{\mathbb C}=V\otimes_{\mathbb{R}}\mathbb{C}.</math> | :<math>V^{\mathbb C}=V\otimes_{\mathbb{R}}\mathbb{C}.</math> | ||
Line 124: | Line 120: | ||
''V<sub>J</sub>'' और ''V''<sup>+</sup>के बीच प्राकृतिक सम्मिश्र रैखिक समरूपता है, इसलिए इन सदिश | ''V<sub>J</sub>'' और ''V''<sup>+</sup>के बीच प्राकृतिक सम्मिश्र रैखिक समरूपता है, इसलिए इन सदिश समष्टि को समान माना जा सकता है, जबकि V<sup>−</sup> को ''V<sub>J</sub>'' का सम्मिश्र संयुग्म माना जा सकता है। | ||
ध्यान दें कि यदि ''V<sub>J</sub>'' का सम्मिश्र आयाम n है तो ''V''<sup>+</sup> और ''V''<sup>−</sup> दोनों का सम्मिश्र आयाम n है जबकि ''V''<sup>'''C'''</sup> का सम्मिश्र आयाम 2n है। | ध्यान दें कि यदि ''V<sub>J</sub>'' का सम्मिश्र आयाम n है तो ''V''<sup>+</sup> और ''V''<sup>−</sup> दोनों का सम्मिश्र आयाम n है जबकि ''V''<sup>'''C'''</sup> का सम्मिश्र आयाम 2n है। | ||
संक्षेप में, यदि कोई सम्मिश्र सदिश समष्टि ''W'' से प्रारंभ करता है और अंतर्निहित वास्तविक | संक्षेप में, यदि कोई सम्मिश्र सदिश समष्टि ''W'' से प्रारंभ करता है और अंतर्निहित वास्तविक समष्टि की सम्मिश्र्ता को लेता है, तो उसे ''W'' और उसके संयुग्म के प्रत्यक्ष योग के लिए समरूपी समष्टि प्राप्त होती है: | ||
:<math>W^{\mathbb C} \cong W\oplus \overline{W}.</math> | :<math>W^{\mathbb C} \cong W\oplus \overline{W}.</math> | ||
== संबंधित सदिश | == संबंधित सदिश समष्टि का विस्तार == | ||
मान लीजिए कि V सम्मिश्र संरचना J के साथ वास्तविक सदिश समष्टि है। दोहरे | मान लीजिए कि V सम्मिश्र संरचना J के साथ वास्तविक सदिश समष्टि है। दोहरे समष्टि(''V''*) में प्राकृतिक सम्मिश्र संरचना J* है जो J के दोहरे (या स्थानान्तरण) द्वारा दी गई है। इसलिए दोहरे समष्टि (''V''*)<sup>'''C'''</sup> की सम्मिश्र ता में है जो कि प्राकृतिक अपघटन है | ||
:<math>(V^*)^\mathbb{C} = (V^*)^{+}\oplus (V^*)^-</math> | :<math>(V^*)^\mathbb{C} = (V^*)^{+}\oplus (V^*)^-</math> | ||
J* के ±i आइगेन स्पेस में। (''V''*)<sup>'''C'''</sup> कि (''V''<sup>'''C'''</sup>)* के साथ प्राकृतिक पहचान के अनुसार कोई (''V''*)<sup>+</sup> को उन सम्मिश्र रैखिक कार्यात्मकताओं के रूप में चिह्नित कर सकता है जो V− पर गायब हो जाते हैं। इसी तरह (''V''*)<sup>−</sup> में वे सम्मिश्र रैखिक कार्यात्मकताएं सम्मिलित हैं जो ''V''<sup>+</sup> पर लुप्त हो जाती हैं। | J* के ±i आइगेन स्पेस में। (''V''*)<sup>'''C'''</sup> कि (''V''<sup>'''C'''</sup>)* के साथ प्राकृतिक पहचान के अनुसार कोई (''V''*)<sup>+</sup> को उन सम्मिश्र रैखिक कार्यात्मकताओं के रूप में चिह्नित कर सकता है जो V− पर गायब हो जाते हैं। इसी तरह (''V''*)<sup>−</sup> में वे सम्मिश्र रैखिक कार्यात्मकताएं सम्मिलित हैं जो ''V''<sup>+</sup> पर लुप्त हो जाती हैं। | ||
''V''<sup>'''C'''</sup> पर (सम्मिश्र ) [[टेंसर बीजगणित]], [[सममित बीजगणित]] और [[बाहरी बीजगणित]] विघटन को भी स्वीकार करता है। बाहरी बीजगणित संभवतः इस अपघटन का सबसे महत्वपूर्ण अनुप्रयोग है। सामान्य रूप से यदि सदिश | ''V''<sup>'''C'''</sup> पर (सम्मिश्र ) [[टेंसर बीजगणित]], [[सममित बीजगणित]] और [[बाहरी बीजगणित]] विघटन को भी स्वीकार करता है। बाहरी बीजगणित संभवतः इस अपघटन का सबसे महत्वपूर्ण अनुप्रयोग है। सामान्य रूप से यदि सदिश समष्टि ''U'' अपघटन ''U'' = ''S'' ⊕ ''T'' को स्वीकार करता है तो ''U'' की बाहरी शक्तियों को निम्नानुसार विघटित किया जा सकता है: | ||
:<math>\Lambda^r U = \bigoplus_{p+q=r}(\Lambda^p S)\otimes(\Lambda^q T).</math> | :<math>\Lambda^r U = \bigoplus_{p+q=r}(\Lambda^p S)\otimes(\Lambda^q T).</math> | ||
इसलिए V पर सम्मिश्र संरचना J अपघटन को प्रेरित करती है | इसलिए V पर सम्मिश्र संरचना J अपघटन को प्रेरित करती है | ||
Line 150: | Line 146: | ||
वेंडरमोंडे की पहचान के परिणामस्वरूप आयाम सही रूप से जुड़ते हैं। | वेंडरमोंडे की पहचान के परिणामस्वरूप आयाम सही रूप से जुड़ते हैं। | ||
(p,q)-रूपों Λ<sup>''p'',''q''</sup> ''V<sub>J</sub>''* का | (p,q)-रूपों Λ<sup>''p'',''q''</sup> ''V<sub>J</sub>''* का समष्टि ''V''<sup>'''C'''</sup> पर (सम्मिश्र ) बहुरेखीय रूपों का समष्टि है जो सजातीय तत्वों पर गायब हो जाता है जब तक कि p ''V''<sup>+</sup> से न हो और q ''V''<sup>−</sup> से न हो। Λ<sup>''p'',''q''</sup> ''V<sub>J</sub>''* को ''V<sub>J</sub>'' से C तक वास्तविक बहुरेखीय मानचित्रों के समष्टि के रूप में मानना भी संभव है जो p पदों में सम्मिश्र रैखिक और q पदों में संयुग्म-रैखिक हैं। | ||
इन विचारों के अनुप्रयोगों के लिए [[जटिल विभेदक रूप|सम्मिश्र विभेदक रूप]] और लगभग सम्मिश्र मैनिफोल्ड देखें। | इन विचारों के अनुप्रयोगों के लिए [[जटिल विभेदक रूप|सम्मिश्र विभेदक रूप]] और लगभग सम्मिश्र मैनिफोल्ड देखें। | ||
Line 158: | Line 154: | ||
* सम्मिश्र मैनी फोल्ड | * सम्मिश्र मैनी फोल्ड | ||
* सम्मिश्र विभेदक रूप | * सम्मिश्र विभेदक रूप | ||
* सम्मिश्र संयुग्म सदिश | * सम्मिश्र संयुग्म सदिश समष्टि | ||
*[[हर्मिटियन संरचना]] | *[[हर्मिटियन संरचना]] | ||
* [[वास्तविक संरचना]] | * [[वास्तविक संरचना]] |
Revision as of 09:59, 5 October 2023
गणित में वास्तविक सदिश समष्टि V पर सम्मिश्र संरचना, V का स्वप्रतिरूपण है जो ऋणात्मक पहचान −I का वर्ग है। जो कि V पर इस तरह की संरचना किसी को विहित विधि से सम्मिश्र अदिशों द्वारा गुणन को परिभाषित करने की अनुमति देती है जिससे V को सम्मिश्र सदिश समष्टि के रूप में माना जा सकता है।
प्रत्येक सम्मिश्र सदिश समष्टि को संगत सम्मिश्र संरचना से सुसज्जित किया जा सकता है, चूँकि यह सामान्य रूप से ऐसी कोई विहित संरचना नहीं होती है। जो कि सम्मिश्र संरचनाओं का प्रतिनिधित्व सिद्धांत के साथ-साथ सम्मिश्र ज्यामिति में भी अनुप्रयोग होता है जहां वे सम्मिश्र मैनिफोल्ड के विपरीत, लगभग सम्मिश्र मैनिफोल्ड की परिभाषा में आवश्यक भूमिका निभाते हैं। सम्मिश्र संरचना शब्द अधिकांशत: इस संरचना को अधिक गुना संदर्भित करता है; जब यह सदिश समष्टि पर किसी संरचना को संदर्भित करता है, तो इसे 'रैखिक सम्मिश्र संरचना' कहा जा सकता है।
परिभाषा और गुण
वास्तविक सदिश समष्टि V पर सम्मिश्र संरचना वास्तविक रैखिक परिवर्तन है
यह दूसरी दिशा में जाने पर, यदि कोई सम्मिश्र सदिश समष्टि W से प्रारंभ करता है तो वह सभी w ∈ W के लिए Jw = iw को परिभाषित करके अंतर्निहित वास्तविक समष्टि पर सम्मिश्र संरचना को परिभाषित कर सकता है।
अधिक औपचारिक रूप से, वास्तविक सदिश समष्टि पर रैखिक सम्मिश्र संरचना सम्मिश्र संख्याओं C का बीजगणित प्रतिनिधित्व है, जिसे वास्तविक संख्याओं पर सहयोगी बीजगणित के रूप में माना जाता है। यह बीजगणित ठोस रूप में साकार होता है
जो i2 = −1 से मेल खाता है। फिर C का प्रतिनिधित्व वास्तविक सदिश समष्टि V है, इसके साथ में V पर C की क्रिया (एक मानचित्र C → End(V) भी है। जो कि समान्य रूप से, यह केवल i की क्रिया है, क्योंकि यह बीजगणित उत्पन्न करता है, और यह i (End(V) में i की छवि) का प्रतिनिधित्व करने वाला ऑपरेटर केवल J है।
यदि VJ का सम्मिश्र आयाम n है तो V का वास्तविक आयाम 2n होना चाहिए। अर्थात्, परिमित-आयामी समष्टि V सम्मिश्र संरचना को तभी स्वीकार करता है जब वह सम-आयामी हो। यह देखना कठिन नहीं है कि प्रत्येक सम-आयामी सदिश समष्टि सम्मिश्र संरचना को स्वीकार करता है। कोई व्यक्ति Je = f और Jf = −e द्वारा आधार सदिश के जोड़े e,f पर J को परिभाषित कर सकता है और फिर सभी V तक रैखिकता द्वारा विस्तारित कर सकता है। यदि (v1, …, vn) सम्मिश्र सदिश समष्टि VJ के लिए आधार है तो (v1, Jv1, …, vn, Jvn) अंतर्निहित वास्तविक समष्टि V का आधार है।
एक वास्तविक रैखिक परिवर्तन A : V → V संगत सम्मिश्र समष्टि VJ का सम्मिश्र रैखिक परिवर्तन है यदि और केवल यदि A J के साथ आवागमन करता है , अर्थात यदि और केवल यदि
उदाहरण
प्रारंभिक उदाहरण
वास्तविक क्षेत्र पर 2x2 वास्तविक आव्यूह M(2,R) का संग्रह 4-आयामी है। कोई आव्यूह
- a2 + bc = –1 के साथ
पहचान आव्यूह के ऋणात्मक के समान वर्ग है। जो M(2,R) में सम्मिश्र संरचना बनाई जा सकती है: पहचान आव्यूह I के साथ, तत्व x I + y J, आव्यूह गुणन के साथ सम्मिश्र संख्याएँ बनाते हैं।
Cn
एक रैखिक सम्मिश्र संरचना का मूल उदाहरण Cn पर सम्मिश्र संरचना से आने वाली R2n पर संरचना है। अर्थात्, सम्मिश्र n-आयामी समष्टि Cn भी वास्तविक 2n-आयामी समष्टि है - समान सदिश जोड़ और वास्तविक अदिश गुणन का उपयोग करते हुए - जबकि सम्मिश्र संख्या i द्वारा गुणा न केवल अंतरिक्ष का सम्मिश्र रैखिक परिवर्तन है, जैसा कि सोचा गया है सम्मिश्र सदिश समष्टि, किन्त्तु अंतरिक्ष का वास्तविक रैखिक परिवर्तन भी, जिसे वास्तविक सदिश समष्टि माना जाता है। सामान्य रूप से, इसका कारण यह है कि i द्वारा अदिश गुणन वास्तविक संख्याओं द्वारा अदिश गुणन के साथ परिवर्तित होता है। जिसका - और सदिश जोड़ में वितरित होता है। सम्मिश्र n×n आव्यूह के रूप में, यह केवल विकर्ण पर i के साथ अदिश आव्यूह है। संगत वास्तविक 2n×2n आव्यूह को J दर्शाया गया है।
सम्मिश्र समष्टि के लिए का आधार दिया गया है, इस सेट को इन सदिशों के साथ i से गुणा किया गया है, अर्थात् वास्तविक समष्टि के लिए आधार बनाते हैं। इस आधार को ऑर्डर करने के दो प्राकृतिक विधि हैं, जो संक्षेप में इस बात से मेल खाते हैं कि कोई टेंसर उत्पाद को के रूप में लिखता है या इसके अतिरिक्त के रूप में है ।
यदि कोई आधार को के रूप में ऑर्डर करता है, तो आव्यूह J के लिए ब्लॉक विकर्ण रूप लेता है (आयाम को इंगित करने के लिए सबस्क्रिप्ट जोड़े गए):
दूसरी ओर, यदि कोई आधार को के रूप में ऑर्डर करता है, तो J के लिए आव्यूह ब्लॉक-एंटीडायगोनल है:
वास्तविक सदिश समष्टि और J आव्यूह का डेटा केवल सम्मिश्र सदिश समष्टि के डेटा के समान है, क्योंकि J आव्यूह सम्मिश्र गुणन को परिभाषित करने की अनुमति देता है। लाई बीजगणित और लाई समूहों के स्तर पर, यह gl(2n,'R') में gl(n,'C') को सम्मिलित करने से मेल खाता है (लाई बीजगणित - आव्यूह , जरूरी नहीं कि विपरीत हो) और GL(n,C) |GL(n,'C') GL(2n,'R' में):
समावेशन सम्मिश्र संरचना को भूलने (और केवल वास्तविक रखने) से मेल खाता है, जबकि उपसमूह GL(n,C) को J के साथ आने वाले आव्यूह के रूप में चित्रित किया जा सकता है (समीकरणों में दिया गया है):
ध्यान दें कि इन कथनों के लिए परिभाषित समीकरण समान हैं, क्योंकि { , के समान है, जो कि के समान है, चूँकि लाई ब्रैकेट के लुप्त होने का अर्थ कम तत्काल है आवागमन के अर्थ की तुलना में ज्यामितीय रूप से है ।
प्रत्यक्ष योग
यदि V कोई वास्तविक सदिश समष्टि है तो सदिश समष्टि V ⊕ V के प्रत्यक्ष योग पर विहित सम्मिश्र संरचना होती है, जो इसके द्वारा दी गई है
अन्य संरचनाओं के साथ संगतता
यदि B, V पर द्विरेखीय रूप है तो हम कहते हैं कि J, B को सुरक्षित रखता है
यदि g, V पर आंतरिक उत्पाद है तो J, g को संरक्षित करता है यदि और केवल यदि J ऑर्थोगोनल परिवर्तन है। इसी तरह, J गैर-अपक्षयी, तिरछा-सममित रूप ω को संरक्षित करता है यदि और केवल यदि J सहानुभूतिपूर्ण परिवर्तन है (अर्थात्, यदि सहानुभूतिपूर्ण रूपों के लिए ω J और ω के बीच रौचक अनुकूलता की स्थिति है
एक सहानुभूतिपूर्ण रूप ω और V पर रैखिक सम्मिश्र संरचना J को देखते हुए, कोई V पर संबंधित द्विरेखीय रूप gJ को परिभाषित कर सकता है
यदि सहानुभूतिपूर्ण रूप ω को J द्वारा संरक्षित किया जाता है (किन्तु जरूरी नहीं कि उसे वश में किया जाए), तो gJ हर्मिटियन रूप का वास्तविक भाग है (पहले तर्क में सम्मेलन एंटीलिनियर द्वारा) द्वारा परिभाषित है
सम्मिश्रताओं से संबंध
किसी भी वास्तविक सदिश समष्टि V को देखते हुए हम अदिशों के विस्तार द्वारा इसकी सम्मिश्र्ता को परिभाषित कर सकते हैं:
यह सम्मिश्र सदिश समष्टि है जिसका सम्मिश्र आयाम V के वास्तविक आयाम के समान है। इसमें विहित सम्मिश्र संयुग्मन है जिसे परिभाषित किया गया है
यदि J, V पर सम्मिश्र संरचना है, तो हम J को रैखिकता द्वारा VC तक बढ़ा सकते हैं:
चूँकि C बीजगणितीय रूप से बंद है, J में आइगेनवैल्यू होने की गारंटी है जो λ2 = −1,को संतुष्ट करते हैं, अर्थात् λ = ±i. इस प्रकार हम लिख सकते हैं
जहां V+ और V− क्रमशः +i और −i के आइगेन स्पेस हैं। सम्मिश्र संयुग्मन इंटरचेंज V+ और V−. V± पर प्रक्षेपण मानचित्र आइगेन स्पेस द्वारा दिए गए हैं
जिससे
VJ और V+के बीच प्राकृतिक सम्मिश्र रैखिक समरूपता है, इसलिए इन सदिश समष्टि को समान माना जा सकता है, जबकि V− को VJ का सम्मिश्र संयुग्म माना जा सकता है।
ध्यान दें कि यदि VJ का सम्मिश्र आयाम n है तो V+ और V− दोनों का सम्मिश्र आयाम n है जबकि VC का सम्मिश्र आयाम 2n है।
संक्षेप में, यदि कोई सम्मिश्र सदिश समष्टि W से प्रारंभ करता है और अंतर्निहित वास्तविक समष्टि की सम्मिश्र्ता को लेता है, तो उसे W और उसके संयुग्म के प्रत्यक्ष योग के लिए समरूपी समष्टि प्राप्त होती है:
संबंधित सदिश समष्टि का विस्तार
मान लीजिए कि V सम्मिश्र संरचना J के साथ वास्तविक सदिश समष्टि है। दोहरे समष्टि(V*) में प्राकृतिक सम्मिश्र संरचना J* है जो J के दोहरे (या स्थानान्तरण) द्वारा दी गई है। इसलिए दोहरे समष्टि (V*)C की सम्मिश्र ता में है जो कि प्राकृतिक अपघटन है
J* के ±i आइगेन स्पेस में। (V*)C कि (VC)* के साथ प्राकृतिक पहचान के अनुसार कोई (V*)+ को उन सम्मिश्र रैखिक कार्यात्मकताओं के रूप में चिह्नित कर सकता है जो V− पर गायब हो जाते हैं। इसी तरह (V*)− में वे सम्मिश्र रैखिक कार्यात्मकताएं सम्मिलित हैं जो V+ पर लुप्त हो जाती हैं।
VC पर (सम्मिश्र ) टेंसर बीजगणित, सममित बीजगणित और बाहरी बीजगणित विघटन को भी स्वीकार करता है। बाहरी बीजगणित संभवतः इस अपघटन का सबसे महत्वपूर्ण अनुप्रयोग है। सामान्य रूप से यदि सदिश समष्टि U अपघटन U = S ⊕ T को स्वीकार करता है तो U की बाहरी शक्तियों को निम्नानुसार विघटित किया जा सकता है:
इसलिए V पर सम्मिश्र संरचना J अपघटन को प्रेरित करती है
जहाँ
सभी बाहरी शक्तियों को सम्मिश्र संख्याओं पर ले लिया जाता है। तो यदि VJ तो इसका सम्मिश्र आयाम n (वास्तविक आयाम 2n) है
वेंडरमोंडे की पहचान के परिणामस्वरूप आयाम सही रूप से जुड़ते हैं।
(p,q)-रूपों Λp,q VJ* का समष्टि VC पर (सम्मिश्र ) बहुरेखीय रूपों का समष्टि है जो सजातीय तत्वों पर गायब हो जाता है जब तक कि p V+ से न हो और q V− से न हो। Λp,q VJ* को VJ से C तक वास्तविक बहुरेखीय मानचित्रों के समष्टि के रूप में मानना भी संभव है जो p पदों में सम्मिश्र रैखिक और q पदों में संयुग्म-रैखिक हैं।
इन विचारों के अनुप्रयोगों के लिए सम्मिश्र विभेदक रूप और लगभग सम्मिश्र मैनिफोल्ड देखें।
यह भी देखें
- लगभग सम्मिश्र विविधता
- सम्मिश्र मैनी फोल्ड
- सम्मिश्र विभेदक रूप
- सम्मिश्र संयुग्म सदिश समष्टि
- हर्मिटियन संरचना
- वास्तविक संरचना
संदर्भ
- Kobayashi S. and Nomizu K., Foundations of Differential Geometry, John Wiley & Sons, 1969. ISBN 0-470-49648-7. (complex structures are discussed in Volume II, Chapter IX, section 1).
- Budinich, P. and Trautman, A. The Spinorial Chessboard, Springer-Verlag, 1988. ISBN 0-387-19078-3. (complex structures are discussed in section 3.1).
- Goldberg S.I., Curvature and Homology, Dover Publications, 1982. ISBN 0-486-64314-X. (complex structures and almost complex manifolds are discussed in section 5.2).