लौ आयनीकरण संसूचक: Difference between revisions
No edit summary |
|||
Line 19: | Line 19: | ||
== प्रतिक्रिया कारक == | == प्रतिक्रिया कारक == | ||
{{main| | {{main| प्रतिक्रिया कारक}} | ||
एफआईडी माप को | एफआईडी माप को सामान्य स्तर पर [[मीथेन]] के रूप में सूचित किया जाता है, जिसका अर्थ है मीथेन की मात्रा जो समान प्रतिक्रिया उत्पन्न करेगी। विभिन्न रसायनों की एक ही मात्रा, रसायनों की मौलिक संरचना के आधार पर, अलग-अलग मात्रा में धारा उत्पन्न करती है। विभिन्न रसायनों के लिए संसूचक के [[प्रतिक्रिया कारक]] का उपयोग वर्तमान माप को प्रत्येक रसायन की वास्तविक मात्रा में परिवर्तित करने के लिए किया जा सकता है। | ||
हाइड्रोकार्बन में | हाइड्रोकार्बन में सामान्य स्तर पर प्रतिक्रिया कारक होते हैं जो उनके अणु में कार्बन परमाणुओं की संख्या के बराबर होते हैं (अधिक कार्बन परमाणु अधिक धारा उत्पन्न करते हैं), जबकि ऑक्सीजनेट और अन्य प्रजातियां जिनमें [[heteroatom|हेटरोएटम (विषम परमाणु)]] होते हैं उनमें कम प्रतिक्रिया कारक होते हैं। एफआईडी द्वारा [[कार्बन मोनोआक्साइड]] और [[ कार्बन डाईऑक्साइड ]] का पता नहीं लगाया जा सकता है। | ||
एफआईडी माप को | एफआईडी माप को अधिकांशतः कुल हाइड्रोकार्बन का लेबल दिया जाता है<ref>{{citation |mode=cs1 |title=ASTM D7675-2015: Standard Test Method for Determination of Total Hydrocarbons in Hydrogen by FID-Based Total Hydrocarbon (THC) Analyzer |date=December 2015 |publisher=[[ASTM]] |doi=10.1520/D7675-15}}</ref> या कुल हाइड्रोकार्बन सामग्री (टीएचसी), चूँकि अधिक सटीक नाम कुल अस्थिर हाइड्रोकार्बन सामग्री (टीवीएचसी) होगा,<ref>{{Cite web |title=कुल हाइड्रोकार्बन|url=https://airanalysis.com/Total_Hydrocarbons_2.html |publisher=Analytical Chemists, Inc. |access-date=23 January 2017}}</ref> चूंकि हाइड्रोकार्बन जो संघनित हो गए हैं, उनका पता नहीं लगाया जाता है, भले ही वे महत्वपूर्ण हों, उदाहरण के लिए संपीड़ित ऑक्सीजन को संभालते समय सुरक्षा है। | ||
==विवरण== | ==विवरण== | ||
[[Image:Flame Ionization Detector.svg|frame|एफआईडी योजनाबद्ध:<ref>{{Cite web|url = http://slideplayer.com/slide/1709798/|title = "गैस क्रोमैटोग्राफी" प्रस्तुति पर स्लाइड 11|website = slideplayer.com|access-date = 2016-03-08}}</ref> ए) केशिका ट्यूब; बी) प्लैटिनम जेट; सी) हाइड्रोजन; डी) वायु; ई) ज्वाला; एफ) आयन; जी) कलेक्टर; एच) [[एनॉलॉग से डिजिटल परिवर्तित करने वाला उपकरण]] के लिए समाक्षीय केबल; जे) गैस आउटलेट]] | [[Image:Flame Ionization Detector.svg|frame|एफआईडी योजनाबद्ध:<ref>{{Cite web|url = http://slideplayer.com/slide/1709798/|title = "गैस क्रोमैटोग्राफी" प्रस्तुति पर स्लाइड 11|website = slideplayer.com|access-date = 2016-03-08}}</ref> ए) केशिका ट्यूब; बी) प्लैटिनम जेट; सी) हाइड्रोजन; डी) वायु; ई) ज्वाला; एफ) आयन; जी) कलेक्टर; एच) [[एनॉलॉग से डिजिटल परिवर्तित करने वाला उपकरण]] के लिए समाक्षीय केबल; जे) गैस आउटलेट]]लौ आयनीकरण संसूचकका डिज़ाइन निर्माता से निर्माता में भिन्न होता है, परन्तु सिद्धांत समान होते हैं। सामान्य स्तर पर, एफआईडी गैस वर्णलेखन प्रणाली से जुड़ा होता है। | ||
एल्युशन गैस | एल्युशन गैस वर्णलेखन पंक्ति (ए) से बाहर निकलता है और एफआईडी संसूचक के ओवन (बी) में प्रवेश करता है। यह सुनिश्चित करने के लिए ओवन की आवश्यकता होती है कि जैसे ही एलुएंट पंक्ति से बाहर निकलता है, यह गैसीय चरण से बाहर नहीं आता है और पंक्ति और एफआईडी के बीच अंतरफलक पर जमा नहीं होता है। इस निक्षेपण के परिणामस्वरूप एलुएंट की हानि होगी और पता लगाने में त्रुटियाँ होंगी। जैसे ही एलुएंट एफआईडी तक जाता है, इसे पहले हाइड्रोजन ईंधन (सी) और फिर ऑक्सीडेंट (डी) के साथ मिलाया जाता है। एलुएंट/ईंधन/ऑक्सीडेंट मिश्रण नोजल हेड तक चलना प्रारम्भ रखता है जहां धनात्मक पूर्वाग्रह वोल्टेज उपस्थित होता है। यह धनात्मक पूर्वाग्रह लौ (ई) द्वारा एलुएंट को निष्क्रिय करने से उत्पन्न ऑक्सीकृत कार्बन आयनों को पीछे हटाने में मदद करता है। आयन (एफ) को संग्राही प्लेटों (जी) की ओर धकेल दिया जाता है जो बहुत ही संवेदनशील एमीटर से जुड़े होते हैं, जो प्लेटों से टकराने वाले आयनों का पता लगाता है, फिर उस सिग्नल को प्रवर्धक, समाकलक और डिस्प्ले सिस्टम (उच्चविभेदी र्निदर्शन तंत्र) (एच) को स्थापित करता है। लौ के उत्पादों को अंततः निर्वात द्वारक (जे) के माध्यम से संसूचक से बाहर निकाल दिया जाता है। | ||
==फायदे और नुकसान== | ==फायदे और नुकसान== |
Revision as of 11:24, 9 October 2023
This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages)
(Learn how and when to remove this template message)
|
लौ आयनीकरण संसूचक (एफआईडी) वैज्ञानिक उपकरण है जो गैस धारा में विश्लेषण को मापता है। इसका उपयोग अधिकांशतः गैस वर्णलेखन में संसूचक के रूप में किया जाता है। प्रति इकाई समय में आयन की माप इसे द्रव्यमान संवेदनशील उपकरण बनाती है।[1] स्टैंडअलोन एफआईडी का उपयोग लैंडफिल गैस की निरिक्षण, आशुलोपी उत्सर्जन निरिक्षण और स्थिर या पोर्टेबल (सुवाह्य) उपकरणों में अन्तः दहन इंजन उत्सर्जन माप जैसे अनुप्रयोगों में भी किया जा सकता है।[2]
इतिहास
प्रथम लौ आयनीकरण संसूचक 1957 में ऑस्ट्रेलिया और न्यूजीलैंड के इंपीरियल केमिकल इंडस्ट्रीज (आईसीआईएएनजेड, ओरिका इतिहास) सेंट्रल रिसर्च लेबोरेटरी, एस्कॉट वेले, मेलबोर्न, ऑस्ट्रेलिया में मैकविलियम और देवर द्वारा एक साथ और स्वतंत्र रूप से विकसित किया गया था।[3][4][5] और दक्षिण अफ्रीका के प्रिटोरिया में प्रिटोरिया विश्वविद्यालय में हार्ले और प्रिटोरियस द्वारा किया गया था।[6] 1959 में, पर्किन एल्मर कॉर्प ने अपने वाष्प फ़्रैक्टोमीटर में ज्वाला आयनीकरण संसूचक सम्मिलित किया था।[7]
संचालन सिद्धांत
एफआईडी का संचालन हाइड्रोजन लौ में कार्बनिक यौगिकों के दहन के समय बनने वाले आयनों का पता लगाने पर आधारित है। इन आयनों की उत्पत्ति प्रतिदर्श गैस धारा में कार्बनिक प्रजातियों की सांद्रता के समानुपाती होती है।
इन आयनों का पता लगाने के लिए, संभावित अंतर प्रदान करने के लिए दो इलेक्ट्रोड का उपयोग किया जाता है। धनात्मक इलेक्ट्रोड नोजल हेड (तुंड प्रवाहमापी) के रूप में कार्य करता है जहां लौ उत्पन्न होती है। दूसरा, ऋणात्मक इलेक्ट्रोड लौ के ऊपर स्थित होता है। जब पहली बार डिज़ाइन किया गया था, तो ऋणात्मक इलेक्ट्रोड या तो आंसू-बूंद के आकार का था या प्लैटिनम का कोणीय टुकड़ा था। आज, डिज़ाइन को एक ट्यूबलर इलेक्ट्रोड में संशोधित किया गया है, जिसे सामान्य स्तर पर संग्राही प्लेट के रूप में जाना जाता है। इस प्रकार आयन संग्राही प्लेट की ओर आकर्षित होते हैं और प्लेट से टकराने पर धारा उत्पन्न करते हैं। इस धारा को उच्च-प्रतिबाधा पिकोएमीटर से मापा जाता है और समाकलक में डाला जाता है। अंतिम डेटा प्रदर्शित करने का नियम कंप्यूटर और सॉफ़्टवेयर पर आधारित है। सामान्य स्तर पर, ग्राफ प्रदर्शित किया जाता है जिसमें x-अक्ष पर समय और y-अक्ष पर कुल आयन होता है।
मापी गई धारा मोटे स्तर पर लौ में कम कार्बन परमाणुओं के अनुपात से मिलती है। विशेष प्रकार से आयनों का उत्पादन कैसे किया जाता है, यह आवश्यक रूप से समझा नहीं जाता है, परन्तु संसूचक की प्रतिक्रिया प्रति इकाई समय में संसूचक से टकराने वाले कार्बन परमाणुओं (आयनों) की संख्या से निर्धारित होती है। यह संसूचक को सांद्रता के बदले द्रव्यमान के प्रति संवेदनशील बनाता है, जो उपयोगी है क्योंकि वाहक गैस प्रवाह दर में परिवर्तन से संसूचक की प्रतिक्रिया बहुत अधिक प्रभावित नहीं होती है।
प्रतिक्रिया कारक
एफआईडी माप को सामान्य स्तर पर मीथेन के रूप में सूचित किया जाता है, जिसका अर्थ है मीथेन की मात्रा जो समान प्रतिक्रिया उत्पन्न करेगी। विभिन्न रसायनों की एक ही मात्रा, रसायनों की मौलिक संरचना के आधार पर, अलग-अलग मात्रा में धारा उत्पन्न करती है। विभिन्न रसायनों के लिए संसूचक के प्रतिक्रिया कारक का उपयोग वर्तमान माप को प्रत्येक रसायन की वास्तविक मात्रा में परिवर्तित करने के लिए किया जा सकता है।
हाइड्रोकार्बन में सामान्य स्तर पर प्रतिक्रिया कारक होते हैं जो उनके अणु में कार्बन परमाणुओं की संख्या के बराबर होते हैं (अधिक कार्बन परमाणु अधिक धारा उत्पन्न करते हैं), जबकि ऑक्सीजनेट और अन्य प्रजातियां जिनमें हेटरोएटम (विषम परमाणु) होते हैं उनमें कम प्रतिक्रिया कारक होते हैं। एफआईडी द्वारा कार्बन मोनोआक्साइड और कार्बन डाईऑक्साइड का पता नहीं लगाया जा सकता है।
एफआईडी माप को अधिकांशतः कुल हाइड्रोकार्बन का लेबल दिया जाता है[8] या कुल हाइड्रोकार्बन सामग्री (टीएचसी), चूँकि अधिक सटीक नाम कुल अस्थिर हाइड्रोकार्बन सामग्री (टीवीएचसी) होगा,[9] चूंकि हाइड्रोकार्बन जो संघनित हो गए हैं, उनका पता नहीं लगाया जाता है, भले ही वे महत्वपूर्ण हों, उदाहरण के लिए संपीड़ित ऑक्सीजन को संभालते समय सुरक्षा है।
विवरण
लौ आयनीकरण संसूचकका डिज़ाइन निर्माता से निर्माता में भिन्न होता है, परन्तु सिद्धांत समान होते हैं। सामान्य स्तर पर, एफआईडी गैस वर्णलेखन प्रणाली से जुड़ा होता है।
एल्युशन गैस वर्णलेखन पंक्ति (ए) से बाहर निकलता है और एफआईडी संसूचक के ओवन (बी) में प्रवेश करता है। यह सुनिश्चित करने के लिए ओवन की आवश्यकता होती है कि जैसे ही एलुएंट पंक्ति से बाहर निकलता है, यह गैसीय चरण से बाहर नहीं आता है और पंक्ति और एफआईडी के बीच अंतरफलक पर जमा नहीं होता है। इस निक्षेपण के परिणामस्वरूप एलुएंट की हानि होगी और पता लगाने में त्रुटियाँ होंगी। जैसे ही एलुएंट एफआईडी तक जाता है, इसे पहले हाइड्रोजन ईंधन (सी) और फिर ऑक्सीडेंट (डी) के साथ मिलाया जाता है। एलुएंट/ईंधन/ऑक्सीडेंट मिश्रण नोजल हेड तक चलना प्रारम्भ रखता है जहां धनात्मक पूर्वाग्रह वोल्टेज उपस्थित होता है। यह धनात्मक पूर्वाग्रह लौ (ई) द्वारा एलुएंट को निष्क्रिय करने से उत्पन्न ऑक्सीकृत कार्बन आयनों को पीछे हटाने में मदद करता है। आयन (एफ) को संग्राही प्लेटों (जी) की ओर धकेल दिया जाता है जो बहुत ही संवेदनशील एमीटर से जुड़े होते हैं, जो प्लेटों से टकराने वाले आयनों का पता लगाता है, फिर उस सिग्नल को प्रवर्धक, समाकलक और डिस्प्ले सिस्टम (उच्चविभेदी र्निदर्शन तंत्र) (एच) को स्थापित करता है। लौ के उत्पादों को अंततः निर्वात द्वारक (जे) के माध्यम से संसूचक से बाहर निकाल दिया जाता है।
फायदे और नुकसान
फायदे
कई फायदों के कारण फ्लेम आयनीकरण डिटेक्टरों का उपयोग गैस क्रोमैटोग्राफी में बहुत व्यापक रूप से किया जाता है।
- लागत: ज्वाला आयनीकरण डिटेक्टरों को प्राप्त करना और संचालित करना अपेक्षाकृत सस्ता है।
- कम रखरखाव की आवश्यकताएं: एफआईडी जेट को साफ करने या बदलने के अलावा, इन डिटेक्टरों को कम रखरखाव की आवश्यकता होती है।
- मजबूत निर्माण: एफआईडी दुरुपयोग के प्रति अपेक्षाकृत प्रतिरोधी हैं।
- रैखिकता और पता लगाने की सीमाएँ: एफआईडी कार्बनिक पदार्थ की सांद्रता को बहुत कम (10) पर माप सकते हैं−13 g/s) और बहुत उच्च स्तर, जिसकी रैखिक प्रतिक्रिया सीमा 10 है7g/s.[1]
नुकसान
ज्वाला आयनीकरण डिटेक्टर अकार्बनिक पदार्थों का पता नहीं लगा सकते हैं और कुछ अत्यधिक ऑक्सीजन युक्त या कार्यात्मक प्रजातियां जैसे कि इन्फ्रारेड और लेजर तकनीक इसका पता लगा सकती हैं। कुछ प्रणालियों में, CO और CO2 मेथेनाइज़र का उपयोग करके एफआईडी में पता लगाया जा सकता है, जो नी उत्प्रेरक का एक बिस्तर है जो सीओ और सीओ को कम करता है2 मीथेन के लिए, जिसे एफआईडी द्वारा पता लगाया जा सकता है। मीथेनाइज़र सीओ और सीओ के अलावा अन्य यौगिकों को कम करने में असमर्थता के कारण सीमित है2 और इसकी प्रवृत्ति आमतौर पर गैस क्रोमैटोग्राफी अपशिष्टों में पाए जाने वाले कई रसायनों द्वारा जहर होने की है।
एक और महत्वपूर्ण नुकसान यह है कि एफआईडी लौ इसके माध्यम से गुजरने वाले सभी ऑक्सीकरण योग्य यौगिकों को ऑक्सीकरण करती है; सभी हाइड्रोकार्बन और ऑक्सीजनेट कार्बन डाइऑक्साइड में ऑक्सीकृत हो जाते हैं और पानी और अन्य हेटरोएटम थर्मोडायनामिक्स के अनुसार ऑक्सीकृत हो जाते हैं। इस कारण से, एफआईडी डिटेक्टर ट्रेन में अंतिम होते हैं और प्रारंभिक कार्य के लिए भी इसका उपयोग नहीं किया जा सकता है।
वैकल्पिक समाधान
मेथेनाइज़र में एक सुधार पॉलीआर्क रिएक्टर है, जो एक अनुक्रमिक रिएक्टर है जो यौगिकों को मीथेन में कम करने से पहले ऑक्सीकरण करता है। इस पद्धति का उपयोग एफआईडी की प्रतिक्रिया को बेहतर बनाने और कई अधिक कार्बन युक्त यौगिकों का पता लगाने के लिए किया जा सकता है।[11] यौगिकों का मीथेन में पूर्ण रूपांतरण और डिटेक्टर में अब समकक्ष प्रतिक्रिया भी अंशांकन और मानकों की आवश्यकता को समाप्त कर देती है क्योंकि प्रतिक्रिया कारक सभी मीथेन के बराबर होते हैं। यह उन जटिल मिश्रणों के त्वरित विश्लेषण की अनुमति देता है जिनमें ऐसे अणु होते हैं जहां मानक उपलब्ध नहीं हैं।
यह भी देखें
- लौ निर्देशक
- तापीय चालकता डिटेक्टर
- गैस वर्णलेखन
- सक्रिय अग्नि सुरक्षा
- फोटोआयनीकरण डिटेक्टर
- फोटोइलेक्ट्रिक फ्लेम फोटोमीटर
संदर्भ
- ↑ 1.0 1.1 Skoog, Douglas A.; Holler, F. James; Crouch, Stanley R. (2017-01-27). वाद्य विश्लेषण के सिद्धांत (in English). Cengage Learning. ISBN 9781305577213.
- ↑ "ज्वाला आयनीकरण डिटेक्टर सिद्धांत". Cambustion. Retrieved 3 December 2014.
- ↑ Scott, R. P. W., 1957, Vapour Phase Chromatography, Ed. D. H. Desty (London: Butterworths), p. 131.
- ↑ McWilliam, I. G.; Dewar, R. A. (1958). "गैस क्रोमैटोग्राफी के लिए फ्लेम आयोनाइजेशन डिटेक्टर". Nature. 181 (4611): 760. Bibcode:1958Natur.181..760M. doi:10.1038/181760a0. S2CID 4175977.
- ↑ Morgan, D J (1961). "गैस क्रोमैटोग्राफी के लिए एक सरल लौ-आयनीकरण डिटेक्टर का निर्माण और संचालन". J. Sci. Instrum. 38 (12): 501–503. Bibcode:1961JScI...38..501M. doi:10.1088/0950-7671/38/12/321. Retrieved 2009-03-18.
- ↑ Harley, J.; Nel, W.; Pretorius, V. (1 December 1956). "वाष्प चरण क्रोमैटोग्राफी के लिए एक नया डिटेक्टर". Nature. 178 (4544): 1244. Bibcode:1956Natur.178.1244H. doi:10.1038/1781244b0. PMID 13387685. S2CID 4167882.
- ↑ "समय". Perkinelmer.com. Retrieved 12 Dec 2014.
- ↑ ASTM D7675-2015: Standard Test Method for Determination of Total Hydrocarbons in Hydrogen by FID-Based Total Hydrocarbon (THC) Analyzer. ASTM. December 2015. doi:10.1520/D7675-15.
- ↑ "कुल हाइड्रोकार्बन". Analytical Chemists, Inc. Retrieved 23 January 2017.
- ↑ ""गैस क्रोमैटोग्राफी" प्रस्तुति पर स्लाइड 11". slideplayer.com. Retrieved 2016-03-08.
- ↑ Dauenhauer, Paul (January 21, 2015). "जटिल मिश्रणों के अंशांकन-मुक्त, उच्च-रिज़ॉल्यूशन लक्षण वर्णन के लिए मात्रात्मक कार्बन डिटेक्टर (क्यूसीडी)". Lab Chip. 15 (2): 440–7. doi:10.1039/c4lc01180e. PMID 25387003.
स्रोत
- स्कूग, डगलस ए., एफ. जेम्स हॉलर, और स्टेनली आर. क्राउच। वाद्य विश्लेषण के सिद्धांत. छठा संस्करण. संयुक्त राज्य अमेरिका: थॉमसन ब्रूक्स/कोल, 2007।
- Halász, I.; Schneider, W. (1961). "केशिका स्तंभ और लौ आयनीकरण डिटेक्टर के साथ हाइड्रोकार्बन का मात्रात्मक गैस क्रोमैटोग्राफिक विश्लेषण". Analytical Chemistry. 33 (8): 978–982. doi:10.1021/ac60176a034.
- जी.एच. जेफ़री, जे.बासेट, जे.मेंधम, आर.सी.डेनी, वोगेल की मात्रात्मक रासायनिक विश्लेषण की पाठ्यपुस्तक।
श्रेणी:गैस क्रोमैटोग्राफी श्रेणी:ऑस्ट्रेलियाई आविष्कार श्रेणी:दक्षिण अफ़्रीकी आविष्कार