नेटवर्क परफॉरमेंस: Difference between revisions
No edit summary |
No edit summary |
||
Line 2: | Line 2: | ||
'''नेटवर्क परफॉरमेंस''' से तात्पर्य ग्राहक द्वारा देखे गए नेटवर्क की [[सेवा गुणवत्ता]] के माप से है। | '''नेटवर्क परफॉरमेंस''' से तात्पर्य ग्राहक द्वारा देखे गए नेटवर्क की [[सेवा गुणवत्ता]] के माप से है। | ||
किसी नेटवर्क के परफॉरमेंस को मापने | किसी नेटवर्क के परफॉरमेंस को मापने की अनेक भिन्न-भिन्न विधिया होती हैं, जिससे कि प्रत्येक नेटवर्क प्रकृति और डिज़ाइन में भिन्न होता है। इस प्रकार परफॉरमेंस को मापने के अतिरिक्त मॉडलिंग और अनुकरण भी किया जा सकता है। इसका उदाहरण कतारबद्ध परफॉरमेंस को मॉडल करने या नेटवर्क सिम्युलेटर का उपयोग करने के लिए राज्य संक्रमण आरेखों का उपयोग करना है। | ||
=='''परफॉरमेंस उपाय'''== | =='''परफॉरमेंस उपाय'''== | ||
निम्नलिखित उपाय अधिकांशतः महत्वपूर्ण माने जाते हैं: | निम्नलिखित उपाय अधिकांशतः महत्वपूर्ण माने जाते हैं: | ||
* सामान्यतः बिट्स/सेकंड में मापी जाने वाली '''बैंडविड्थ''' वह अधिकतम दर है जिससे सूचना स्थानांतरित की जा सकती | * सामान्यतः बिट्स/सेकंड में मापी जाने वाली '''बैंडविड्थ''' वह अधिकतम दर है जिससे सूचना स्थानांतरित की जा सकती है। | ||
* ''' | * '''प्रवाह''' वह वास्तविक दर है जिससे सूचना स्थानांतरित की जाती है। | ||
* प्रेषक और रिसीवर के मध्य इसे डिकोड करने में होने वाली देरी, यह मुख्य रूप से सिग्नल के यात्रा समय और सूचना के किसी भी नोड पर प्रसंस्करण समय का कार्य है। | * प्रेषक और रिसीवर के मध्य इसे डिकोड करने में होने वाली देरी, यह मुख्य रूप से सिग्नल के यात्रा समय और सूचना के किसी भी नोड पर प्रसंस्करण समय का कार्य होता है। | ||
* सूचना प्राप्तकर्ता के पैकेट विलंब में ''' | * सूचना प्राप्तकर्ता के पैकेट विलंब में '''जिटर''' भिन्नता। | ||
* '''त्रुटि दर''' दूषित बिट्स की संख्या को भेजे गए कुल के प्रतिशत या अंश के रूप में व्यक्त करती | * '''त्रुटि दर''' दूषित बिट्स की संख्या को भेजे गए कुल के प्रतिशत या अंश के रूप में व्यक्त करती है। | ||
===बैंडविड्थ=== | ===बैंडविड्थ=== | ||
{{Main|बैंडविड्थ (कंप्यूटिंग)}} | {{Main|बैंडविड्थ (कंप्यूटिंग)}} | ||
उपलब्ध चैनल बैंडविड्थ और प्राप्य सिग्नल-टू-ध्वनि अनुपात अधिकतम संभव | उपलब्ध चैनल बैंडविड्थ और प्राप्य सिग्नल-टू-ध्वनि अनुपात अधिकतम संभव प्रवाह निर्धारित करते हैं। इस प्रकार [[शैनन-हार्टले प्रमेय]] द्वारा निर्धारित से अधिक डेटा भेजना सामान्यतः संभव नहीं होता है। | ||
=== | ===प्रवाह=== | ||
{{Main|प्रवाह}} | {{Main|प्रवाह}} | ||
प्रवाह प्रति इकाई समय में सफलतापूर्वक वितरित संदेशों की संख्या है। इस प्रकार प्रवाह को उपलब्ध बैंडविड्थ, साथ ही उपलब्ध सिग्नल-टू-ध्वनि अनुपात और हार्डवेयर सीमाओं द्वारा नियंत्रित किया जाता है। इस लेख के प्रयोजन के लिए प्रवाह को रिसीवर पर डेटा के पहले बिट के आगमन से मापा जाना समझा जाता है, जिससे कि प्रवाह की अवधारणा को विलंबता की अवधारणा से भिन्न किया जा सकता है। इस प्रकार की चर्चाओं के लिए, 'प्रवाह' और 'बैंडविड्थ' शब्दों का प्रयोग अधिकांशतः दूसरे के स्थान पर किया जाता है। | |||
टाइम विंडो वह अवधि है जिस पर | टाइम विंडो वह अवधि है जिस पर प्रवाह मापा जाता है। इस प्रकार उचित समय विंडो का चुनाव अधिकांशतः प्रवाह की गणना पर हावी होता है, और विलंबता को ध्यान में रखा जाता है या नहीं, यह निर्धारित करता है कि विलंबता प्रवाह को प्रभावित करती है या नहीं। | ||
===विलंबता=== | ===विलंबता=== | ||
{{Main|विलंबता (इंजीनियरिंग)}} | {{Main|विलंबता (इंजीनियरिंग)}} | ||
[[प्रकाश की गति]] सभी विद्युत चुम्बकीय संकेतों पर न्यूनतम प्रसार समय लगाती है। नीचे विलंबता को कम करना संभव नहीं है | [[प्रकाश की गति]] सभी विद्युत चुम्बकीय संकेतों पर न्यूनतम प्रसार समय लगाती है। इस आधार पर नीचे विलंबता को कम करना संभव नहीं है | ||
:<math>t=s/c_m</math> | :<math>t=s/c_m</math> | ||
जहां s दूरी है और c<sub>m</sub> माध्यम में प्रकाश की गति है (अधिकांश [[ प्रकाशित तंतु |प्रकाशित तंतु]] या विद्युत केबल मीडिया के लिए लगभग 200,000 किमी/सेकेंड, उनके [[वेग कारक]] पर निर्भर करता है)। इसका कारण लगभग मेजबानों के मध्य प्रति 100 किमी (या 62 मील) की दूरी पर अतिरिक्त मिलीसेकंड [[राउंड-ट्रिप में देरी]] (आरटीटी) है। | जहां s दूरी होती है और c<sub>m</sub> माध्यम में प्रकाश की गति है (अधिकांश [[ प्रकाशित तंतु |प्रकाशित तंतु]] या विद्युत केबल मीडिया के लिए लगभग 200,000 किमी/सेकेंड, उनके [[वेग कारक]] पर निर्भर करता है)। इसका कारण लगभग मेजबानों के मध्य प्रति 100 किमी (या 62 मील) की दूरी पर अतिरिक्त मिलीसेकंड [[राउंड-ट्रिप में देरी]] (आरटीटी) है। | ||
अन्य विलंब मध्यवर्ती नोड्स में भी होते हैं। पैकेट स्विच्ड नेटवर्क में कतार के कारण देरी हो सकती है। | अन्य विलंब मध्यवर्ती नोड्स में भी होते हैं। इस प्रकार पैकेट स्विच्ड नेटवर्क में कतार के कारण देरी हो सकती है। | ||
=== | ===जिटर=== | ||
{{Main|घबराना}} | {{Main|घबराना}} | ||
जिटर [[ इलेक्ट्रानिक्स |इलेक्ट्रानिक्स]] और [[दूरसंचार]] में कल्पित आवधिक [[सिग्नलिंग (दूरसंचार)]] की वास्तविक आवधिकता से अवांछित विचलन है, जो अधिकांशतः संदर्भ घड़ी सिग्नल के संबंध में होता है। जिटर को क्रमिक दालों की [[आवृत्ति]], सिग्नल [[आयाम]], या आवधिक संकेतों के चरण (तरंगों) जैसी विशेषताओं में देखा जा सकता है। जिटर लगभग सभी संचार लिंक (जैसे, [[USB]], [[PCI-e]], [[SATA]], [[OC-48]]) के डिज़ाइन में महत्वपूर्ण और सामान्यतः अवांछित कारक है। [[ घड़ी पुनर्प्राप्ति |घड़ी पुनर्प्राप्ति]] अनुप्रयोगों में इसे ''टाइमिंग जिटर'' कहा जाता है।<ref name=wol91p211>[[#Wol1991|Wolaver, 1991, p.211]]</ref> | जिटर [[ इलेक्ट्रानिक्स |इलेक्ट्रानिक्स]] और [[दूरसंचार]] में कल्पित आवधिक [[सिग्नलिंग (दूरसंचार)]] की वास्तविक आवधिकता से अवांछित विचलन है, जो अधिकांशतः संदर्भ घड़ी सिग्नल के संबंध में होता है। इस प्रकार जिटर को क्रमिक दालों की [[आवृत्ति]], सिग्नल [[आयाम]], या आवधिक संकेतों के चरण (तरंगों) जैसी विशेषताओं में देखा जा सकता है। सामान्यतः जिटर लगभग सभी संचार लिंक (जैसे, [[USB]], [[PCI-e]], [[SATA]], [[OC-48]]) के डिज़ाइन में महत्वपूर्ण और सामान्यतः अवांछित कारक है। [[ घड़ी पुनर्प्राप्ति |घड़ी पुनर्प्राप्ति]] अनुप्रयोगों में इसे ''टाइमिंग जिटर'' कहा जाता है।<ref name=wol91p211>[[#Wol1991|Wolaver, 1991, p.211]]</ref> | ||
===त्रुटि दर=== | ===त्रुटि दर=== | ||
{{Main|बिट त्रुटि दर}} | {{Main|बिट त्रुटि दर}} | ||
Line 46: | Line 46: | ||
===कारकों की परस्पर क्रिया=== | ===कारकों की परस्पर क्रिया=== | ||
उपरोक्त सभी कारक, उपयोगकर्ता की आवश्यकताओं और उपयोगकर्ता धारणाओं के साथ मिलकर, नेटवर्क कनेक्शन की कथित 'स्थिरता' या उपयोगिता को निर्धारित करने में भूमिका निभाते हैं। | उपरोक्त सभी कारक, उपयोगकर्ता की आवश्यकताओं और उपयोगकर्ता धारणाओं के साथ मिलकर, नेटवर्क कनेक्शन की कथित 'स्थिरता' या उपयोगिता को निर्धारित करने में भूमिका निभाते हैं। प्रवाह, विलंबता और उपयोगकर्ता अनुभव के मध्य संबंध को साझा नेटवर्क माध्यम के संदर्भ में और शेड्यूलिंग समस्या के रूप में सबसे उपयुक्त रूप से समझा जाता है। | ||
=='''एल्गोरिदम और प्रोटोकॉल'''== | =='''एल्गोरिदम और प्रोटोकॉल'''== | ||
कुछ प्रणालियों के लिए, विलंबता और | कुछ प्रणालियों के लिए, विलंबता और प्रवाह युग्मित इकाइयाँ हैं। टीसीपी/आईपी में, विलंबता सीधे प्रवाह को भी प्रभावित कर सकती है। [[ प्रसारण नियंत्रण प्रोटोकॉल |प्रसारण नियंत्रण प्रोटोकॉल]] कनेक्शन में, उच्च विलंबता कनेक्शन के बड़े [[बैंडविड्थ-विलंब उत्पाद]], अनेक उपकरणों पर अपेक्षाकृत छोटे टीसीपी विंडो आकार के साथ मिलकर, प्रभावी रूप से उच्च विलंबता कनेक्शन के प्रवाह को विलंबता के साथ तेजी से गिरने का कारण बनता है। इसे विभिन्न विधियों से ठीक किया जा सकता है, जैसे कि टीसीपी कंजेशन विंडो का आकार बढ़ाना, या अधिक कठोर समाधान, जैसे पैकेट कोलेसिंग, [[टीसीपी त्वरण]], और फॉरवर्ड त्रुटि सुधार, जो सभी सामान्यतः उच्च विलंबता उपग्रह लिंक के लिए उपयोग किए जाते हैं। | ||
टीसीपी त्वरण टीसीपी पैकेट को स्ट्रीम में परिवर्तित करता है जो उपयोगकर्ता [[डेटाग्राम प्रोटेकॉलका उपयोग करें]] समान है। इस वजह से, टीसीपी त्वरण सॉफ़्टवेयर को लिंक की विश्वसनीयता सुनिश्चित करने के लिए अपने स्वयं के तंत्र प्रदान करने चाहिए, लिंक की विलंबता और बैंडविड्थ को ध्यान में रखना चाहिए, और उच्च विलंबता लिंक के दोनों सिरों को उपयोग की जाने वाली विधि का समर्थन करना चाहिए। | टीसीपी त्वरण टीसीपी पैकेट को स्ट्रीम में परिवर्तित करता है जो उपयोगकर्ता [[डेटाग्राम प्रोटेकॉलका उपयोग करें]] समान है। इस वजह से, टीसीपी त्वरण सॉफ़्टवेयर को लिंक की विश्वसनीयता सुनिश्चित करने के लिए अपने स्वयं के तंत्र प्रदान करने चाहिए, लिंक की विलंबता और बैंडविड्थ को ध्यान में रखना चाहिए, और उच्च विलंबता लिंक के दोनों सिरों को उपयोग की जाने वाली विधि का समर्थन करना चाहिए। | ||
मीडिया एक्सेस कंट्रोल (मैक) परत में, | मीडिया एक्सेस कंट्रोल (मैक) परत में, प्रवाह और एंड-टू-एंड देरी जैसे परफॉरमेंस विवादों को भी संबोधित किया जाता है। | ||
=='''विलंबता या | =='''विलंबता या प्रवाह प्रभुत्व वाली प्रणालियों के उदाहरण'''== | ||
अनेक प्रणालियों को अंतिम-उपयोगकर्ता उपयोगिता या अनुभव के संदर्भ में या तब | अनेक प्रणालियों को अंतिम-उपयोगकर्ता उपयोगिता या अनुभव के संदर्भ में या तब प्रवाह सीमाओं या विलंबता सीमाओं के प्रभुत्व के रूप में वर्णित किया जा सकता है। कुछ स्थितियों में, प्रकाश की गति जैसी कठिन सीमाएं ऐसी प्रणालियों के लिए अनोखी समस्याएं प्रस्तुत करती हैं और इसे ठीक करने के लिए कुछ भी नहीं किया जा सकता है। अन्य प्रणालियाँ सर्वोत्तम उपयोगकर्ता अनुभव के लिए महत्वपूर्ण संतुलन और अनुकूलन की अनुमति देती हैं। | ||
===उपग्रह=== | ===उपग्रह=== | ||
जियोसिंक्रोनस कक्षा में दूरसंचार उपग्रह ट्रांसमीटर और रिसीवर के मध्य कम से कम 71000 किमी की पथ लंबाई लगाता है।<ref>Roddy, 2001, 67 - 90</ref> जिसका अर्थ है संदेश अनुरोध और संदेश प्राप्ति के मध्य न्यूनतम विलंब, या 473 एमएस की विलंबता। यह देरी बहुत ध्यान देने योग्य हो सकती है और उपलब्ध | जियोसिंक्रोनस कक्षा में दूरसंचार उपग्रह ट्रांसमीटर और रिसीवर के मध्य कम से कम 71000 किमी की पथ लंबाई लगाता है।<ref>Roddy, 2001, 67 - 90</ref> जिसका अर्थ है संदेश अनुरोध और संदेश प्राप्ति के मध्य न्यूनतम विलंब, या 473 एमएस की विलंबता। यह देरी बहुत ध्यान देने योग्य हो सकती है और उपलब्ध प्रवाह क्षमता की परवाह किए बिना सैटेलाइट फोन सेवा को प्रभावित करती है। | ||
===गहरे अंतरिक्ष संचार=== | ===गहरे अंतरिक्ष संचार=== | ||
Line 69: | Line 69: | ||
===और भी गहरा अंतरिक्ष संचार=== | ===और भी गहरा अंतरिक्ष संचार=== | ||
अंतरतारकीय दूरी पर, किसी भी | अंतरतारकीय दूरी पर, किसी भी प्रवाह को प्राप्त करने में सक्षम रेडियो प्रणाली को डिजाइन करने में कठिनाइयाँ बहुत बड़ी हैं। इन स्थितियों में, संचार बनाए रखने में कितना समय लगता है, इसकी तुलना में संचार बनाए रखना बड़ा मुद्दा है। | ||
===ऑफ़लाइन डेटा परिवहन=== | ===ऑफ़लाइन डेटा परिवहन=== | ||
परिवहन लगभग पूरी तरह से | परिवहन लगभग पूरी तरह से प्रवाह से संबंधित है, यही कारण है कि बैकअप टेप अभिलेखागार की भौतिक डिलीवरी अभी भी बड़े पैमाने पर वाहन द्वारा की जाती है। | ||
== '''यह भी देखें''' == | == '''यह भी देखें''' == | ||
* [[बिटरेट]] | * [[बिटरेट]] | ||
* नेटवर्क | * नेटवर्क प्रवाह को मापना | ||
* [[नेटवर्क ट्रैफ़िक माप]] | * [[नेटवर्क ट्रैफ़िक माप]] | ||
* [[राउंड-ट्रिप में देरी का समय]] | * [[राउंड-ट्रिप में देरी का समय]] |
Revision as of 23:34, 5 October 2023
नेटवर्क परफॉरमेंस से तात्पर्य ग्राहक द्वारा देखे गए नेटवर्क की सेवा गुणवत्ता के माप से है।
किसी नेटवर्क के परफॉरमेंस को मापने की अनेक भिन्न-भिन्न विधिया होती हैं, जिससे कि प्रत्येक नेटवर्क प्रकृति और डिज़ाइन में भिन्न होता है। इस प्रकार परफॉरमेंस को मापने के अतिरिक्त मॉडलिंग और अनुकरण भी किया जा सकता है। इसका उदाहरण कतारबद्ध परफॉरमेंस को मॉडल करने या नेटवर्क सिम्युलेटर का उपयोग करने के लिए राज्य संक्रमण आरेखों का उपयोग करना है।
परफॉरमेंस उपाय
निम्नलिखित उपाय अधिकांशतः महत्वपूर्ण माने जाते हैं:
- सामान्यतः बिट्स/सेकंड में मापी जाने वाली बैंडविड्थ वह अधिकतम दर है जिससे सूचना स्थानांतरित की जा सकती है।
- प्रवाह वह वास्तविक दर है जिससे सूचना स्थानांतरित की जाती है।
- प्रेषक और रिसीवर के मध्य इसे डिकोड करने में होने वाली देरी, यह मुख्य रूप से सिग्नल के यात्रा समय और सूचना के किसी भी नोड पर प्रसंस्करण समय का कार्य होता है।
- सूचना प्राप्तकर्ता के पैकेट विलंब में जिटर भिन्नता।
- त्रुटि दर दूषित बिट्स की संख्या को भेजे गए कुल के प्रतिशत या अंश के रूप में व्यक्त करती है।
बैंडविड्थ
उपलब्ध चैनल बैंडविड्थ और प्राप्य सिग्नल-टू-ध्वनि अनुपात अधिकतम संभव प्रवाह निर्धारित करते हैं। इस प्रकार शैनन-हार्टले प्रमेय द्वारा निर्धारित से अधिक डेटा भेजना सामान्यतः संभव नहीं होता है।
प्रवाह
प्रवाह प्रति इकाई समय में सफलतापूर्वक वितरित संदेशों की संख्या है। इस प्रकार प्रवाह को उपलब्ध बैंडविड्थ, साथ ही उपलब्ध सिग्नल-टू-ध्वनि अनुपात और हार्डवेयर सीमाओं द्वारा नियंत्रित किया जाता है। इस लेख के प्रयोजन के लिए प्रवाह को रिसीवर पर डेटा के पहले बिट के आगमन से मापा जाना समझा जाता है, जिससे कि प्रवाह की अवधारणा को विलंबता की अवधारणा से भिन्न किया जा सकता है। इस प्रकार की चर्चाओं के लिए, 'प्रवाह' और 'बैंडविड्थ' शब्दों का प्रयोग अधिकांशतः दूसरे के स्थान पर किया जाता है।
टाइम विंडो वह अवधि है जिस पर प्रवाह मापा जाता है। इस प्रकार उचित समय विंडो का चुनाव अधिकांशतः प्रवाह की गणना पर हावी होता है, और विलंबता को ध्यान में रखा जाता है या नहीं, यह निर्धारित करता है कि विलंबता प्रवाह को प्रभावित करती है या नहीं।
विलंबता
प्रकाश की गति सभी विद्युत चुम्बकीय संकेतों पर न्यूनतम प्रसार समय लगाती है। इस आधार पर नीचे विलंबता को कम करना संभव नहीं है
जहां s दूरी होती है और cm माध्यम में प्रकाश की गति है (अधिकांश प्रकाशित तंतु या विद्युत केबल मीडिया के लिए लगभग 200,000 किमी/सेकेंड, उनके वेग कारक पर निर्भर करता है)। इसका कारण लगभग मेजबानों के मध्य प्रति 100 किमी (या 62 मील) की दूरी पर अतिरिक्त मिलीसेकंड राउंड-ट्रिप में देरी (आरटीटी) है।
अन्य विलंब मध्यवर्ती नोड्स में भी होते हैं। इस प्रकार पैकेट स्विच्ड नेटवर्क में कतार के कारण देरी हो सकती है।
जिटर
जिटर इलेक्ट्रानिक्स और दूरसंचार में कल्पित आवधिक सिग्नलिंग (दूरसंचार) की वास्तविक आवधिकता से अवांछित विचलन है, जो अधिकांशतः संदर्भ घड़ी सिग्नल के संबंध में होता है। इस प्रकार जिटर को क्रमिक दालों की आवृत्ति, सिग्नल आयाम, या आवधिक संकेतों के चरण (तरंगों) जैसी विशेषताओं में देखा जा सकता है। सामान्यतः जिटर लगभग सभी संचार लिंक (जैसे, USB, PCI-e, SATA, OC-48) के डिज़ाइन में महत्वपूर्ण और सामान्यतः अवांछित कारक है। घड़ी पुनर्प्राप्ति अनुप्रयोगों में इसे टाइमिंग जिटर कहा जाता है।[1]
त्रुटि दर
डिजिटल प्रसारण में, अंश त्रुटियों की संख्या संचार चैनल पर आकड़ों का प्रवाह के प्राप्त बिट्स की संख्या है जो ध्वनि (दूरसंचार), हस्तक्षेप (संचार), विरूपण या बिट तुल्यकालन त्रुटियों के कारण बदल दी गई है।
बिट त्रुटि दर या बिट त्रुटि अनुपात (बीईआर) अध्ययन किए गए समय अंतराल के समय स्थानांतरित बिट्स की कुल संख्या से विभाजित बिट त्रुटियों की संख्या है। बीईआर इकाई रहित परफॉरमेंस माप है, जिसे अधिकांशतः प्रतिशत के रूप में व्यक्त किया जाता है।
बिट त्रुटि संभावना पीeबीईआर का अपेक्षित मूल्य है। बीईआर को बिट त्रुटि संभावना का अनुमानित अनुमान माना जा सकता है। यह अनुमान लंबे समय अंतराल और बड़ी संख्या में बिट त्रुटियों के लिए त्रुटिहीन है।
कारकों की परस्पर क्रिया
उपरोक्त सभी कारक, उपयोगकर्ता की आवश्यकताओं और उपयोगकर्ता धारणाओं के साथ मिलकर, नेटवर्क कनेक्शन की कथित 'स्थिरता' या उपयोगिता को निर्धारित करने में भूमिका निभाते हैं। प्रवाह, विलंबता और उपयोगकर्ता अनुभव के मध्य संबंध को साझा नेटवर्क माध्यम के संदर्भ में और शेड्यूलिंग समस्या के रूप में सबसे उपयुक्त रूप से समझा जाता है।
एल्गोरिदम और प्रोटोकॉल
कुछ प्रणालियों के लिए, विलंबता और प्रवाह युग्मित इकाइयाँ हैं। टीसीपी/आईपी में, विलंबता सीधे प्रवाह को भी प्रभावित कर सकती है। प्रसारण नियंत्रण प्रोटोकॉल कनेक्शन में, उच्च विलंबता कनेक्शन के बड़े बैंडविड्थ-विलंब उत्पाद, अनेक उपकरणों पर अपेक्षाकृत छोटे टीसीपी विंडो आकार के साथ मिलकर, प्रभावी रूप से उच्च विलंबता कनेक्शन के प्रवाह को विलंबता के साथ तेजी से गिरने का कारण बनता है। इसे विभिन्न विधियों से ठीक किया जा सकता है, जैसे कि टीसीपी कंजेशन विंडो का आकार बढ़ाना, या अधिक कठोर समाधान, जैसे पैकेट कोलेसिंग, टीसीपी त्वरण, और फॉरवर्ड त्रुटि सुधार, जो सभी सामान्यतः उच्च विलंबता उपग्रह लिंक के लिए उपयोग किए जाते हैं।
टीसीपी त्वरण टीसीपी पैकेट को स्ट्रीम में परिवर्तित करता है जो उपयोगकर्ता डेटाग्राम प्रोटेकॉलका उपयोग करें समान है। इस वजह से, टीसीपी त्वरण सॉफ़्टवेयर को लिंक की विश्वसनीयता सुनिश्चित करने के लिए अपने स्वयं के तंत्र प्रदान करने चाहिए, लिंक की विलंबता और बैंडविड्थ को ध्यान में रखना चाहिए, और उच्च विलंबता लिंक के दोनों सिरों को उपयोग की जाने वाली विधि का समर्थन करना चाहिए।
मीडिया एक्सेस कंट्रोल (मैक) परत में, प्रवाह और एंड-टू-एंड देरी जैसे परफॉरमेंस विवादों को भी संबोधित किया जाता है।
विलंबता या प्रवाह प्रभुत्व वाली प्रणालियों के उदाहरण
अनेक प्रणालियों को अंतिम-उपयोगकर्ता उपयोगिता या अनुभव के संदर्भ में या तब प्रवाह सीमाओं या विलंबता सीमाओं के प्रभुत्व के रूप में वर्णित किया जा सकता है। कुछ स्थितियों में, प्रकाश की गति जैसी कठिन सीमाएं ऐसी प्रणालियों के लिए अनोखी समस्याएं प्रस्तुत करती हैं और इसे ठीक करने के लिए कुछ भी नहीं किया जा सकता है। अन्य प्रणालियाँ सर्वोत्तम उपयोगकर्ता अनुभव के लिए महत्वपूर्ण संतुलन और अनुकूलन की अनुमति देती हैं।
उपग्रह
जियोसिंक्रोनस कक्षा में दूरसंचार उपग्रह ट्रांसमीटर और रिसीवर के मध्य कम से कम 71000 किमी की पथ लंबाई लगाता है।[2] जिसका अर्थ है संदेश अनुरोध और संदेश प्राप्ति के मध्य न्यूनतम विलंब, या 473 एमएस की विलंबता। यह देरी बहुत ध्यान देने योग्य हो सकती है और उपलब्ध प्रवाह क्षमता की परवाह किए बिना सैटेलाइट फोन सेवा को प्रभावित करती है।
गहरे अंतरिक्ष संचार
पृथ्वी के वायुमंडल से परे अंतरिक्ष जांचों और अन्य लंबी दूरी के लक्ष्यों के साथ संचार करते समय यह लंबी पथ लंबाई संबंधी विचार और भी गंभीर हो जाते हैं। नासा द्वारा कार्यान्वित डीप स्पेस नेटवर्क ऐसी प्रणाली है जिसे इन समस्याओं से निपटना होगा। बड़े पैमाने पर विलंबता से प्रेरित, जीएओ ने वर्तमान वास्तुकला की आलोचना की है।[3] पैकेटों के मध्य रुक-रुक कर होने वाली कनेक्टिविटी और लंबी देरी को संभालने के लिए अनेक भिन्न-भिन्न तरीकों का प्रस्ताव किया गया है, जैसे देरी-सहिष्णु नेटवर्किंग।[4]
और भी गहरा अंतरिक्ष संचार
अंतरतारकीय दूरी पर, किसी भी प्रवाह को प्राप्त करने में सक्षम रेडियो प्रणाली को डिजाइन करने में कठिनाइयाँ बहुत बड़ी हैं। इन स्थितियों में, संचार बनाए रखने में कितना समय लगता है, इसकी तुलना में संचार बनाए रखना बड़ा मुद्दा है।
ऑफ़लाइन डेटा परिवहन
परिवहन लगभग पूरी तरह से प्रवाह से संबंधित है, यही कारण है कि बैकअप टेप अभिलेखागार की भौतिक डिलीवरी अभी भी बड़े पैमाने पर वाहन द्वारा की जाती है।
यह भी देखें
- बिटरेट
- नेटवर्क प्रवाह को मापना
- नेटवर्क ट्रैफ़िक माप
- राउंड-ट्रिप में देरी का समय
टिप्पणियाँ
- ↑ Wolaver, 1991, p.211
- ↑ Roddy, 2001, 67 - 90
- ↑ U.S. Government Accounting Office (GAO), 2006
- ↑ Kevin Fall, 2003
संदर्भ
- Rappaport, थिओडोर एस. (2002). वायरलेस संचार: सिद्धांत और अभ्यास (2 ed.). अपर सैडल नदी, एनजे: अप्रेंटिस हॉल पीटीआर. ISBN 0-13-042232-0.
- रोडी, डेनिस (2001). उपग्रह संचार (3. ed.). न्यूयॉर्क [यू.ए.]: मैकग्रा-हिल. ISBN 0-07-137176-1.
- पतन, केविन, "चुनौतीपूर्ण इंटरनेट के लिए विलंब-सहिष्णु नेटवर्क आर्किटेक्चर", इंटेल कॉर्पोरेशन, फरवरी, 2003, दस्तावेज़ संख्या: IRB-TR-03-003
- सरकारी उत्तरदेही कार्यालय (जीएओ) सूची 06-445, नासा का डीप स्पेस नेटवर्क: वर्तमान प्रबंधन संरचना भविष्य की आवश्यकताओं के साथ संसाधनों के प्रभावी मिलान के लिए अनुकूल नहीं है, 27 अप्रैल, 2006