प्रतीकात्मक परिपथ विश्लेषण: Difference between revisions

From Vigyanwiki
No edit summary
 
Line 1: Line 1:
प्रतीकात्मक [[सर्किट विश्लेषण]] स्वतंत्र चर (समय या आवृत्ति), निर्भर चर (वोल्टेज और धाराओं), और सर्किट के साथ इलेक्ट्रिक / इलेक्ट्रॉनिक सर्किट के व्यवहार या विशेषता की गणना करने के लिए सर्किट विश्लेषण की औपचारिक प्रणाली है। तत्वों को प्रतीकों द्वारा दर्शाया गया है।<ref>G. Gielen and W. Sansen, Symbolic Analysis for Automated Design of Analog Integrated Circuits. Boston: Kluwer Academic Publishers, 1991.</ref><ref>Labrèche P., [https://www.researchgate.net/publication/266391592_1977_Labreche_-_LINEAR_ELECTRICAL_CIRCUITS_SYMBOLIC_NETWORK_ANALYSIS presentation: Linear Electrical Circuits:Symbolic Network Analysis], 1977</ref>
'''प्रतीकात्मक [[सर्किट विश्लेषण|परिपथ विश्लेषण]]''' स्वतंत्र चर (समय या आवृत्ति), निर्भर चर (वोल्टेज एवं धाराओं), एवं परिपथ के साथ इलेक्ट्रिक/इलेक्ट्रॉनिक परिपथ के व्यवहार या विशेषता की गणना करने के लिए परिपथ विश्लेषण की औपचारिक प्रणाली है। तत्वों को प्रतीकों द्वारा दर्शाया गया है।<ref>G. Gielen and W. Sansen, Symbolic Analysis for Automated Design of Analog Integrated Circuits. Boston: Kluwer Academic Publishers, 1991.</ref><ref>Labrèche P., [https://www.researchgate.net/publication/266391592_1977_Labreche_-_LINEAR_ELECTRICAL_CIRCUITS_SYMBOLIC_NETWORK_ANALYSIS presentation: Linear Electrical Circuits:Symbolic Network Analysis], 1977</ref>


विद्युत/इलेक्ट्रॉनिक परिपथों का विश्लेषण करते समय, हम दो प्रकार के प्रश्न पूछ सकते हैं: निश्चित परिपथ चर ([[वोल्टेज]], धारा (बिजली), [[प्रतिरोध (बिजली)]], [[लाभ (इलेक्ट्रॉनिक्स)]], आदि) का मान क्या है, कुछ परिपथ चरों के मध्य या किसी परिपथ चर और के मध्य क्या संबंध है सर्किट घटक और आवृत्ति (या समय) क्या है। इस प्रकार के संबंध ग्राफ का रूप ले सकते हैं, जहां सर्किट चर के संख्यात्मक मान बनाम आवृत्ति या घटक मूल्य (उदाहरण ट्रांसफर फ़ंक्शन बनाम आवृत्ति के परिमाण का प्लॉट होगा)।
विद्युत/इलेक्ट्रॉनिक परिपथों का विश्लेषण करते समय, हम दो प्रकार के प्रश्न पूछ सकते हैं: निश्चित परिपथ चर ([[वोल्टेज]], धारा (बिजली), [[प्रतिरोध (बिजली)]], [[लाभ (इलेक्ट्रॉनिक्स)]], आदि) का मान क्या है, कुछ परिपथ चरों के मध्य या किसी परिपथ चर एवं के मध्य क्या संबंध है परिपथ घटक एवं आवृत्ति (या समय) क्या है। इस प्रकार के संबंध ग्राफ का रूप ले सकते हैं, जहां परिपथ चर के संख्यात्मक मान के प्रति आवृत्ति या घटक मूल्य (उदाहरण ट्रांसफर फलन के प्रति आवृत्ति के परिमाण का प्लॉट होगा)।


प्रतीकात्मक सर्किट विश्लेषण उन संबंधों को प्रतीकात्मक रूप में प्राप्त करने से संबंधित है, अर्थात, [[विश्लेषणात्मक अभिव्यक्ति]] के रूप में, जहां जटिल आवृत्ति (या समय) और कुछ या सभी सर्किट घटकों को प्रतीकों द्वारा दर्शाया जाता है।
प्रतीकात्मक परिपथ विश्लेषण उन संबंधों को प्रतीकात्मक रूप में प्राप्त करने से संबंधित है, अर्थात, [[विश्लेषणात्मक अभिव्यक्ति]] के रूप में, जहां जटिल आवृत्ति (या समय) एवं कुछ या सभी परिपथ घटकों को प्रतीकों द्वारा दर्शाया जाता है।


== फ़्रीक्वेंसी डोमेन एक्सप्रेशन ==
== फ़्रीक्वेंसी डोमेन एक्सप्रेशन ==


फ़्रीक्वेंसी डोमेन में प्रतीकात्मक सर्किट विश्लेषण का सबसे सामान्य कार्य जटिल फ़्रीक्वेंसी में तर्कसंगत फ़ंक्शन के रूप में इनपुट और आउटपुट चर के मध्य संबंध प्राप्त करना है <math>\mathit{s}\,</math> और प्रतीकात्मक चर <math>\mathbf{x}</math>:
फ़्रीक्वेंसी डोमेन में प्रतीकात्मक परिपथ विश्लेषण का सबसे सामान्य कार्य जटिल फ़्रीक्वेंसी में तर्कसंगत फलन के रूप में इनपुट एवं आउटपुट चर के मध्य संबंध प्राप्त करना है <math>\mathit{s}\,</math> एवं प्रतीकात्मक चर <math>\mathbf{x}</math>:


{{center|<math>T(s,\mathbf{x})=\frac{N(s,\mathbf{x})}{D(s,\mathbf{x})}</math>}}
{{center|<math>T(s,\mathbf{x})=\frac{N(s,\mathbf{x})}{D(s,\mathbf{x})}</math>}}


उपरोक्त संबंध को अधिकांशतः नेटवर्क फ़ंक्शन कहा जाता है। भौतिक प्रणालियों के लिए, <math>N(s,\mathbf{x})</math> और <math>D(s,\mathbf{x})</math> में [[बहुपद]] हैं <math>\mathit{s}\,</math> वास्तविक गुणांक के साथ:
उपरोक्त संबंध को अधिकांशतः नेटवर्क फलन कहा जाता है। भौतिक प्रणालियों के लिए, <math>N(s,\mathbf{x})</math> एवं <math>D(s,\mathbf{x})</math> में [[बहुपद]] हैं <math>\mathit{s}\,</math> वास्तविक गुणांक के साथ:


{{center|<math>T(s,\mathbf{x})=\frac{\displaystyle \sum_{i=0}^n a_i(\mathbf{x}) s^i}{\displaystyle \sum_{i=0}^m b_i(\mathbf{x}) s^i}=K\frac{\displaystyle \prod_{i=1}^n (s-z_i(\mathbf{x}))}{\displaystyle \prod_{i=1}^m (s-p_i(\mathbf{x}))}</math>}}
{{center|<math>T(s,\mathbf{x})=\frac{\displaystyle \sum_{i=0}^n a_i(\mathbf{x}) s^i}{\displaystyle \sum_{i=0}^m b_i(\mathbf{x}) s^i}=K\frac{\displaystyle \prod_{i=1}^n (s-z_i(\mathbf{x}))}{\displaystyle \prod_{i=1}^m (s-p_i(\mathbf{x}))}</math>}}


जहां <math>z_i(\mathbf{x})</math> शून्य हैं और <math>p_i(\mathbf{x})</math> नेटवर्क फ़ंक्शन के ध्रुव हैं; <math>m \geqslant n</math>.
जहां <math>z_i(\mathbf{x})</math> शून्य हैं एवं <math>p_i(\mathbf{x})</math> नेटवर्क फलन के ध्रुव हैं; <math>m \geqslant n</math>.


जबकि गुणांक उत्पन्न करने के कई विधि हैं <math>a_i(\mathbf{x})</math> और <math>b_i(\mathbf{x})</math>, 5 से उच्च क्रम के बहुपदों के लिए ध्रुवों और शून्यों के लिए सटीक प्रतीकात्मक अभिव्यक्ति प्राप्त करने के लिए कोई  प्रणाली उपस्थित नहीं है।
जबकि गुणांक उत्पन्न करने के कई विधि हैं <math>a_i(\mathbf{x})</math> एवं <math>b_i(\mathbf{x})</math>, 5 से उच्च क्रम के बहुपदों के लिए ध्रुवों एवं शून्यों के लिए त्रुटिहीन प्रतीकात्मक अभिव्यक्ति प्राप्त करने के लिए कोई  प्रणाली उपस्थित नहीं है।


== प्रतीकात्मक नेटवर्क कार्यों के प्रकार ==
== प्रतीकात्मक नेटवर्क कार्यों के प्रकार ==


प्रतीकों के रूप में कौन से मापदंडों को रखा जाता है, इस पर निर्भर करते हुए, हमारे निकट कई  भिन्न- भिन्न प्रकार के प्रतीकात्मक नेटवर्क कार्य हो सकते हैं। यह  उदाहरण पर सबसे अच्छा सचित्र है। उदाहरण के लिए, नीचे दिखाए गए आदर्श ऑप एम्प्स के साथ [[बाईक्वाड फिल्टर]] सर्किट पर विचार करें। हम आवृत्ति डोमेन में इसके वोल्टेज संप्रेषण (जिसे वोल्टेज लाभ भी कहा जाता है) के लिए सूत्र प्राप्त करना चाहते हैं, <math>{T_v(s) = V_{out}(s)/V_{in}(s)}\,</math>.
प्रतीकों के रूप में कौन से मापदंडों को रखा जाता है, इस पर निर्भर करते हुए, हमारे निकट कई  भिन्न- भिन्न प्रकार के प्रतीकात्मक नेटवर्क कार्य हो सकते हैं। यह  उदाहरण पर सबसे उत्तम सचित्र है। उदाहरण के लिए, नीचे दिखाए गए आदर्श ऑप एम्प्स के साथ [[बाईक्वाड फिल्टर]] परिपथ पर विचार करें। हम आवृत्ति डोमेन में इसके वोल्टेज संप्रेषण (जिसे वोल्टेज लाभ भी कहा जाता है) के लिए सूत्र प्राप्त करना चाहते हैं, <math>{T_v(s) = V_{out}(s)/V_{in}(s)}\,</math>.


[[Image:Biquad circuit.gif|thumb|510px|center|चित्रा 1: आदर्श opamps के साथ Biquad सर्किट। (यह आरेख [[सैपविन]] की योजनाबद्ध कैप्चर सुविधा का उपयोग करके बनाया गया था।)]]
[[Image:Biquad circuit.gif|thumb|510px|center|चित्रा 1: आदर्श opamps के साथ Biquad परिपथ। (यह आरेख [[सैपविन]] की योजनाबद्ध कैप्चर सुविधा का उपयोग करके बनाया गया था।)]]


''s'' के साथ नेटवर्क फ़ंक्शन चर के रूप में
''s'' के साथ नेटवर्क फलन चर के रूप में


यदि जटिल आवृत्ति <math>\mathit{s}\,</math> एकमात्र चर है, सूत्र इस प्रकार दिखेगा (सरलता के लिए हम संख्यात्मक मानों का उपयोग करते हैं: <math>R_i=i, C_i = 0.01i\,</math>):
यदि जटिल आवृत्ति <math>\mathit{s}\,</math> एकमात्र चर है, सूत्र इस प्रकार दिखेगा (सरलता के लिए हम संख्यात्मक मानों का उपयोग करते हैं: <math>R_i=i, C_i = 0.01i\,</math>):
Line 31: Line 31:
{{center|<math>T(s)=\frac{3.48s}{13.2s^2+1.32s+0.33}</math>}}
{{center|<math>T(s)=\frac{3.48s}{13.2s^2+1.32s+0.33}</math>}}


=== अर्ध-प्रतीकात्मक नेटवर्क फ़ंक्शन ===
=== अर्ध-प्रतीकात्मक नेटवर्क फलन ===


यदि जटिल आवृत्ति <math>\mathit{s}\,</math> और कुछ सर्किट चर को प्रतीकों (अर्ध-प्रतीकात्मक विश्लेषण) के रूप में रखा जाता है,  
यदि जटिल आवृत्ति <math>\mathit{s}\,</math> एवं कुछ परिपथ चर को प्रतीकों (अर्ध-प्रतीकात्मक विश्लेषण) के रूप में रखा जाता है,  


{{center|
{{center|
Line 44: Line 44:
}}
}}


=== पूरी प्रकार प्रतीकात्मक नेटवर्क फ़ंक्शन ===
=== पूर्ण प्रकार प्रतीकात्मक नेटवर्क फलन ===


यदि जटिल आवृत्ति <math>\mathit{s}\,</math> और सभी सर्किट चर प्रतीकात्मक हैं (पूरी प्रकार से प्रतीकात्मक विश्लेषण), वोल्टेज संप्रेषण द्वारा दिया गया है (यहाँ <math>G_i = 1/R_i \,</math>):
यदि जटिल आवृत्ति <math>\mathit{s}\,</math> एवं सभी परिपथ चर प्रतीकात्मक हैं (पूरी प्रकार से प्रतीकात्मक विश्लेषण), वोल्टेज संप्रेषण द्वारा दिया गया है (यहाँ <math>G_i = 1/R_i \,</math>):


{{center|
{{center|
Line 57: Line 57:
}}
}}


उपरोक्त सभी भाव सर्किट के संचालन में अंतर्दृष्टि प्राप्त करने और यह समझने में अत्यंत उपयोगी हैं कि प्रत्येक घटक समग्र सर्किट प्रदर्शन में कैसे योगदान देता है। जैसे-जैसे सर्किट का आकार बढ़ता है, वैसे-वैसे ऐसे भावों में शब्दों की संख्या तीव्रता से बढ़ती है। इसलिए, अपेक्षाकृत सरल परिपथों के लिए भी, सूत्र किसी भी व्यावहारिक मूल्य के लिए बहुत लंबे हो जाते हैं। इस समस्या से निपटने की विधि सांकेतिक अभिव्यक्ति से संख्यात्मक रूप से महत्वहीन शब्दों को छोड़ना है, अपरिहार्य त्रुटि को पूर्व निर्धारित सीमा से नीचे रखना है।<ref>B. Rodanski, M. Hassoun, "Symbolic Analysis," in The Circuits and Filters Handbook: Fundamentals of Circuits and Filters, 3rd ed., Wai-Kai Chen, Editor. CRC Press, 2009, pp. 25-1 - 25-29.</ref>
उपरोक्त सभी भाव परिपथ के संचालन में अंतर्दृष्टि प्राप्त करने एवं यह समझने में अत्यंत उपयोगी हैं कि प्रत्येक घटक समग्र परिपथ प्रदर्शन में कैसे योगदान देता है। जैसे-जैसे परिपथ का आकार बढ़ता है, वैसे-वैसे ऐसे भावों में शब्दों की संख्या तीव्रता से बढ़ती है। इसलिए, अपेक्षाकृत सरल परिपथों के लिए भी, सूत्र किसी भी व्यावहारिक मूल्य के लिए अधिक लंबे हो जाते हैं। इस समस्या से निपटने की विधि सांकेतिक अभिव्यक्ति से संख्यात्मक रूप से महत्वहीन शब्दों को छोड़ना है, अपरिहार्य त्रुटि को पूर्व निर्धारित सीमा से नीचे रखना है।<ref>B. Rodanski, M. Hassoun, "Symbolic Analysis," in The Circuits and Filters Handbook: Fundamentals of Circuits and Filters, 3rd ed., Wai-Kai Chen, Editor. CRC Press, 2009, pp. 25-1 - 25-29.</ref>




Line 63: Line 63:
भावों का क्रम बनता है
भावों का क्रम बनता है


प्रबंधनीय लंबाई के लिए प्रतीकात्मक अभिव्यक्ति को छोटा करने की अन्य संभावना अभिव्यक्ति के अनुक्रम (एसओई) द्वारा नेटवर्क फ़ंक्शन का प्रतिनिधित्व करना है।<ref>M. Pierzchala, B. Rodanski, "Generation of Sequential Symbolic Network Functions for Large-Scale Networks by Circuit Reduction to a Two-Port," [[IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications]], vol. 48, no. 7, July 2001, pp. 906-909.</ref>  निःसंदेह, सूत्र की व्याख्या विलुप्त गई है, लेकिन यह दृष्टिकोण दोहराए जाने वाले संख्यात्मक गणनाओं के लिए बहुत उपयोगी है। इस प्रकार के अनुक्रम उत्पन्न करने के लिए सॉफ्टवेयर पैकेज स्टैंस (आंतरिक नोड दमन के माध्यम से प्रतीकात्मक दो-पोर्ट विश्लेषण) विकसित किया गया है।<ref>L.P. Huelsman, "STAINS - Symbolic Two-Port Analysis via Internal Node Suppression," IEEE Circuits & Devices Magazine, March 2002, pp. 3-6.</ref> स्टैंस से ​​कई प्रकार केसोए  प्राप्त किए जा सकते हैं। उदाहरण के लिए, कॉम्पैक्ट सोए के लिए <math>T_v(s)\,</math> हमारे बिक्वाद का है
प्रबंधनीय लंबाई के लिए प्रतीकात्मक अभिव्यक्ति को अल्प करने की अन्य संभावना अभिव्यक्ति के अनुक्रम (एसओई) द्वारा नेटवर्क फलन का प्रतिनिधित्व करना है।<ref>M. Pierzchala, B. Rodanski, "Generation of Sequential Symbolic Network Functions for Large-Scale Networks by Circuit Reduction to a Two-Port," [[IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications]], vol. 48, no. 7, July 2001, pp. 906-909.</ref>  निःसंदेह, सूत्र की व्याख्या विलुप्त गई है, लेकिन यह दृष्टिकोण दोहराए जाने वाले संख्यात्मक गणनाओं के लिए अधिक उपयोगी है। इस प्रकार के अनुक्रम उत्पन्न करने के लिए सॉफ्टवेयर पैकेज स्टैंस (आंतरिक नोड दमन के माध्यम से प्रतीकात्मक दो-पोर्ट विश्लेषण) विकसित किया गया है।<ref>L.P. Huelsman, "STAINS - Symbolic Two-Port Analysis via Internal Node Suppression," IEEE Circuits & Devices Magazine, March 2002, pp. 3-6.</ref> स्टैंस से ​​कई प्रकार केसोए  प्राप्त किए जा सकते हैं। उदाहरण के लिए, कॉम्पैक्ट सोए के लिए <math>T_v(s)\,</math> हमारे बिक्वाद का है


<pre>
<pre>
Line 84: Line 84:
</pre>
</pre>


फिर भी अभिव्यक्ति को छोटा करने की विधि बहुपदों का गुणनखंड करना है <math>N(s,\mathbf{x})</math> और <math>D(s,\mathbf{x})</math>. हमारे उदाहरण के लिए यह बहुत सरल है और इसकी ओर जाता है:
अभिव्यक्ति को अल्प करने की विधि बहुपदों का गुणनखंड करना है <math>N(s,\mathbf{x})</math> एवं <math>D(s,\mathbf{x})</math>. हमारे उदाहरण के लिए यह अधिक सरल है एवं इसकी ओर जाता है:


<pre>
<pre>
Line 92: Line 92:
</pre>
</pre>


बड़े परिपथों के लिए, तथापि, गुणनखंडन कठिन [[मिश्रित]] समस्या बन जाती है और अंतिम परिणाम व्याख्या और संख्यात्मक गणना दोनों के लिए अव्यावहारिक हो सकता है।
बड़े परिपथों के लिए, तथापि, गुणनखंडन कठिन [[मिश्रित]] समस्या बन जाती है एवं अंतिम परिणाम व्याख्या एवं संख्यात्मक गणना दोनों के लिए अव्यावहारिक हो सकता है।




Line 101: Line 101:
== यह भी देखें ==
== यह भी देखें ==
* [[सिग्नल-फ्लो ग्राफ]]
* [[सिग्नल-फ्लो ग्राफ]]
* [[टोपोलॉजी (विद्युत सर्किट)]]
* [[टोपोलॉजी (विद्युत सर्किट)|टोपोलॉजी (विद्युत परिपथ)]]


== बाहरी संबंध ==
== बाहरी संबंध ==
Line 109: Line 109:


== संदर्भ ==
== संदर्भ ==
<!--- See [[Wikipedia:Footnotes]] on how to create references using <ref></ref> tags which will then appear here automatically -->
 
{{Reflist}}
{{Reflist}}



Latest revision as of 11:48, 16 October 2023

प्रतीकात्मक परिपथ विश्लेषण स्वतंत्र चर (समय या आवृत्ति), निर्भर चर (वोल्टेज एवं धाराओं), एवं परिपथ के साथ इलेक्ट्रिक/इलेक्ट्रॉनिक परिपथ के व्यवहार या विशेषता की गणना करने के लिए परिपथ विश्लेषण की औपचारिक प्रणाली है। तत्वों को प्रतीकों द्वारा दर्शाया गया है।[1][2]

विद्युत/इलेक्ट्रॉनिक परिपथों का विश्लेषण करते समय, हम दो प्रकार के प्रश्न पूछ सकते हैं: निश्चित परिपथ चर (वोल्टेज, धारा (बिजली), प्रतिरोध (बिजली), लाभ (इलेक्ट्रॉनिक्स), आदि) का मान क्या है, कुछ परिपथ चरों के मध्य या किसी परिपथ चर एवं के मध्य क्या संबंध है परिपथ घटक एवं आवृत्ति (या समय) क्या है। इस प्रकार के संबंध ग्राफ का रूप ले सकते हैं, जहां परिपथ चर के संख्यात्मक मान के प्रति आवृत्ति या घटक मूल्य (उदाहरण ट्रांसफर फलन के प्रति आवृत्ति के परिमाण का प्लॉट होगा)।

प्रतीकात्मक परिपथ विश्लेषण उन संबंधों को प्रतीकात्मक रूप में प्राप्त करने से संबंधित है, अर्थात, विश्लेषणात्मक अभिव्यक्ति के रूप में, जहां जटिल आवृत्ति (या समय) एवं कुछ या सभी परिपथ घटकों को प्रतीकों द्वारा दर्शाया जाता है।

फ़्रीक्वेंसी डोमेन एक्सप्रेशन

फ़्रीक्वेंसी डोमेन में प्रतीकात्मक परिपथ विश्लेषण का सबसे सामान्य कार्य जटिल फ़्रीक्वेंसी में तर्कसंगत फलन के रूप में इनपुट एवं आउटपुट चर के मध्य संबंध प्राप्त करना है एवं प्रतीकात्मक चर :

उपरोक्त संबंध को अधिकांशतः नेटवर्क फलन कहा जाता है। भौतिक प्रणालियों के लिए, एवं में बहुपद हैं वास्तविक गुणांक के साथ:

जहां शून्य हैं एवं नेटवर्क फलन के ध्रुव हैं; .

जबकि गुणांक उत्पन्न करने के कई विधि हैं एवं , 5 से उच्च क्रम के बहुपदों के लिए ध्रुवों एवं शून्यों के लिए त्रुटिहीन प्रतीकात्मक अभिव्यक्ति प्राप्त करने के लिए कोई प्रणाली उपस्थित नहीं है।

प्रतीकात्मक नेटवर्क कार्यों के प्रकार

प्रतीकों के रूप में कौन से मापदंडों को रखा जाता है, इस पर निर्भर करते हुए, हमारे निकट कई भिन्न- भिन्न प्रकार के प्रतीकात्मक नेटवर्क कार्य हो सकते हैं। यह उदाहरण पर सबसे उत्तम सचित्र है। उदाहरण के लिए, नीचे दिखाए गए आदर्श ऑप एम्प्स के साथ बाईक्वाड फिल्टर परिपथ पर विचार करें। हम आवृत्ति डोमेन में इसके वोल्टेज संप्रेषण (जिसे वोल्टेज लाभ भी कहा जाता है) के लिए सूत्र प्राप्त करना चाहते हैं, .

चित्रा 1: आदर्श opamps के साथ Biquad परिपथ। (यह आरेख सैपविन की योजनाबद्ध कैप्चर सुविधा का उपयोग करके बनाया गया था।)

s के साथ नेटवर्क फलन चर के रूप में

यदि जटिल आवृत्ति एकमात्र चर है, सूत्र इस प्रकार दिखेगा (सरलता के लिए हम संख्यात्मक मानों का उपयोग करते हैं: ):

अर्ध-प्रतीकात्मक नेटवर्क फलन

यदि जटिल आवृत्ति एवं कुछ परिपथ चर को प्रतीकों (अर्ध-प्रतीकात्मक विश्लेषण) के रूप में रखा जाता है,

पूर्ण प्रकार प्रतीकात्मक नेटवर्क फलन

यदि जटिल आवृत्ति एवं सभी परिपथ चर प्रतीकात्मक हैं (पूरी प्रकार से प्रतीकात्मक विश्लेषण), वोल्टेज संप्रेषण द्वारा दिया गया है (यहाँ ):

उपरोक्त सभी भाव परिपथ के संचालन में अंतर्दृष्टि प्राप्त करने एवं यह समझने में अत्यंत उपयोगी हैं कि प्रत्येक घटक समग्र परिपथ प्रदर्शन में कैसे योगदान देता है। जैसे-जैसे परिपथ का आकार बढ़ता है, वैसे-वैसे ऐसे भावों में शब्दों की संख्या तीव्रता से बढ़ती है। इसलिए, अपेक्षाकृत सरल परिपथों के लिए भी, सूत्र किसी भी व्यावहारिक मूल्य के लिए अधिक लंबे हो जाते हैं। इस समस्या से निपटने की विधि सांकेतिक अभिव्यक्ति से संख्यात्मक रूप से महत्वहीन शब्दों को छोड़ना है, अपरिहार्य त्रुटि को पूर्व निर्धारित सीमा से नीचे रखना है।[3]


भावों का क्रम बनता है

प्रबंधनीय लंबाई के लिए प्रतीकात्मक अभिव्यक्ति को अल्प करने की अन्य संभावना अभिव्यक्ति के अनुक्रम (एसओई) द्वारा नेटवर्क फलन का प्रतिनिधित्व करना है।[4] निःसंदेह, सूत्र की व्याख्या विलुप्त गई है, लेकिन यह दृष्टिकोण दोहराए जाने वाले संख्यात्मक गणनाओं के लिए अधिक उपयोगी है। इस प्रकार के अनुक्रम उत्पन्न करने के लिए सॉफ्टवेयर पैकेज स्टैंस (आंतरिक नोड दमन के माध्यम से प्रतीकात्मक दो-पोर्ट विश्लेषण) विकसित किया गया है।[5] स्टैंस से ​​कई प्रकार केसोए प्राप्त किए जा सकते हैं। उदाहरण के लिए, कॉम्पैक्ट सोए के लिए हमारे बिक्वाद का है

x1 = G5*G3/G6
x2 = -G1-s*C1-G2*x1/(s*C2)
x3 = -G4*G8/x2
Ts = x3/G11

उपरोक्त अनुक्रम में अंश हैं। यदि यह वांछनीय नहीं है (उदाहरण के लिए, जब शून्य से विभाजन दिखाई देते हैं), तो हम भिन्नात्मकसोए उत्पन्न कर सकते हैं:

x1 = -G2*G5
x2 = G6*s*C2
x3 = -G4*x2
x4 = x1*G3-(G1+s*C1)*x2
x5 = x3*G8
x6 = -G11*x4
Ts = -x5/x6

अभिव्यक्ति को अल्प करने की विधि बहुपदों का गुणनखंड करना है एवं . हमारे उदाहरण के लिए यह अधिक सरल है एवं इसकी ओर जाता है:

Num = G4*G6*G8*s*C2
Den = G11*((G1+s*C1)*G6*s*C2+G2*G3*G5)
Ts = Num/Den

बड़े परिपथों के लिए, तथापि, गुणनखंडन कठिन मिश्रित समस्या बन जाती है एवं अंतिम परिणाम व्याख्या एवं संख्यात्मक गणना दोनों के लिए अव्यावहारिक हो सकता है।




यह भी देखें

बाहरी संबंध


संदर्भ

  1. G. Gielen and W. Sansen, Symbolic Analysis for Automated Design of Analog Integrated Circuits. Boston: Kluwer Academic Publishers, 1991.
  2. Labrèche P., presentation: Linear Electrical Circuits:Symbolic Network Analysis, 1977
  3. B. Rodanski, M. Hassoun, "Symbolic Analysis," in The Circuits and Filters Handbook: Fundamentals of Circuits and Filters, 3rd ed., Wai-Kai Chen, Editor. CRC Press, 2009, pp. 25-1 - 25-29.
  4. M. Pierzchala, B. Rodanski, "Generation of Sequential Symbolic Network Functions for Large-Scale Networks by Circuit Reduction to a Two-Port," IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 48, no. 7, July 2001, pp. 906-909.
  5. L.P. Huelsman, "STAINS - Symbolic Two-Port Analysis via Internal Node Suppression," IEEE Circuits & Devices Magazine, March 2002, pp. 3-6.