आघुर्णजनक फलन: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Concept in probability theory and statistics}} | {{Short description|Concept in probability theory and statistics}} | ||
संभाव्यता सिद्धांत और सांख्यिकी में, वास्तविक-मूल्यवान यादृच्छिक चर का क्षण-उत्पन्न करने वाला कार्य इसकी संभाव्यता वितरण का एक वैकल्पिक विनिर्देश है। इस प्रकार, यह संभाव्यता घनत्व कार्यों या [[संचयी वितरण कार्य|संचयी वितरण कार्यों]] के साथ सीधे काम करने की | संभाव्यता सिद्धांत और सांख्यिकी में, वास्तविक-मूल्यवान यादृच्छिक चर का क्षण-उत्पन्न करने वाला कार्य इसकी संभाव्यता वितरण का एक वैकल्पिक विनिर्देश है। इस प्रकार, यह संभाव्यता घनत्व कार्यों या [[संचयी वितरण कार्य|संचयी वितरण कार्यों]] के साथ सीधे काम करने की समानता में विश्लेषणात्मक परिणामों के वैकल्पिक मार्ग का आधार प्रदान करता है। यादृच्छिक चर के भारित रकम के माध्यम से परिभाषित वितरण के क्षण-उत्पन्न कार्यों के लिए विशेष रूप से सरल परिणाम हैं। चूँकि, सभी यादृच्छिक चरों में क्षण-उत्पन्न करने वाले कार्य नहीं होते हैं। | ||
जैसा कि इसके नाम से स्पष्ट होता है, [[जनरेटिंग फ़ंक्शन]] का उपयोग डिस्ट्रीब्यूशन के क्षण (गणित) की गणना करने के लिए किया जा सकता है: 0 के बारे में ''n''th क्षण को क्षण-जेनरेटिंग फ़ंक्शन के ''n'th डेरिवेटिव है, जिसका मूल्यांकन किया गया है 0. | जैसा कि इसके नाम से स्पष्ट होता है, [[जनरेटिंग फ़ंक्शन]] का उपयोग डिस्ट्रीब्यूशन के क्षण (गणित) की गणना करने के लिए किया जा सकता है: 0 के बारे में ''n''th क्षण को क्षण-जेनरेटिंग फ़ंक्शन के ''n'th डेरिवेटिव है, जिसका मूल्यांकन किया गया है 0. | ||
वास्तविक-मूल्यवान वितरण (यूनिवेरिएट डिस्ट्रीब्यूशन) के | वास्तविक-मूल्यवान वितरण (यूनिवेरिएट डिस्ट्रीब्यूशन) के अतिरिक्त, क्षण-उत्पन्न करने वाले कार्यों को वेक्टर- या मैट्रिक्स-मूल्यवान यादृच्छिक चर के लिए परिभाषित किया जा सकता है, और यहां तक कि अधिक सामान्य स्थितियों में भी बढ़ाया जा सकता है। | ||
विशेषता फ़ंक्शन (संभाव्यता सिद्धांत) के विपरीत, वास्तविक-मूल्यवान वितरण का क्षण-उत्पन्न करने वाला कार्य हमेशा | विशेषता फ़ंक्शन (संभाव्यता सिद्धांत) के विपरीत, वास्तविक-मूल्यवान वितरण का क्षण-उत्पन्न करने वाला कार्य हमेशा सम्मलित नहीं होता है। वितरण के क्षण-सृजन फंक्शन के व्यवहार और वितरण के गुणों के बीच संबंध हैं, जैसे कि क्षणों का अस्तित्व। | ||
== परिभाषा == | == परिभाषा == | ||
Line 12: | Line 12: | ||
:<math> M_X(t) = \operatorname E \left[e^{tX}\right] </math> | :<math> M_X(t) = \operatorname E \left[e^{tX}\right] </math> | ||
बशर्ते यह [[अपेक्षित मूल्य]] | बशर्ते यह [[अपेक्षित मूल्य]] सम्मलित हो <math>t</math> कुछ [[पड़ोस (गणित)]] में 0. अर्थात एक है <math>h>0</math> ऐसा कि सभी के लिए <math>t</math> में <math>-h<t<h</math>, <math>\operatorname E \left[e^{tX}\right] </math> सम्मलित। यदि अपेक्षा 0 के पड़ोस में सम्मलित नहीं है, तो हम कहते हैं कि क्षण उत्पन्न करने वाला कार्य सम्मलित नहीं है।<ref>{{cite book |last1=Casella |first1=George|last2= Berger|first2= Roger L. |title=सांख्यिकीय निष्कर्ष|publisher=Wadsworth & Brooks/Cole|year=1990 |page=61 |isbn=0-534-11958-1 }}</ref> | ||
दूसरे शब्दों में, X का क्षण-उत्पन्न करने वाला कार्य यादृच्छिक चर का अपेक्षित मान है <math> e^{tX}</math>. अधिक | दूसरे शब्दों में, X का क्षण-उत्पन्न करने वाला कार्य यादृच्छिक चर का अपेक्षित मान है <math> e^{tX}</math>. अधिक सामान्यतः, जब <math>\mathbf X = ( X_1, \ldots, X_n)^{\mathrm{T}}</math>, एक <math>n</math>-आयामी [[यादृच्छिक वेक्टर]], और <math>\mathbf t</math> एक निश्चित वेक्टर है, एक उपयोग करता है तब <math>\mathbf t \cdot \mathbf X = \mathbf t^\mathrm T\mathbf X</math> के अतिरिक्त <math>tX</math>: | ||
:<math> M_{\mathbf X}(\mathbf t) := \operatorname E \left(e^{\mathbf t^\mathrm T\mathbf X}\right).</math> | :<math> M_{\mathbf X}(\mathbf t) := \operatorname E \left(e^{\mathbf t^\mathrm T\mathbf X}\right).</math> | ||
<math> M_X(0) </math> हमेशा | <math> M_X(0) </math> हमेशा सम्मलित होता है और 1 के समान होता है। चूंकि, क्षण-सृजन कार्यों के साथ एक महत्वपूर्ण समस्या यह है कि क्षण और क्षण-सृजन कार्य सम्मलित नहीं हो सकते हैं, क्योंकि इंटीग्रल को पूरी प्रकार से अभिसरण करने की आवश्यकता नहीं है। इसके विपरीत, विशेषता कार्य (संभाव्यता सिद्धांत) या फूरियर रूपांतरण हमेशा सम्मलित होता है (क्योंकि यह परिमित माप (गणित) के स्थान पर एक बंधे हुए कार्य का अभिन्न अंग है), और इसके अतिरिक्त कुछ उद्देश्यों के लिए इसका उपयोग किया जा सकता है। | ||
क्षण-उत्पन्न करने वाले फ़ंक्शन को इसलिए नाम दिया गया है क्योंकि इसका उपयोग वितरण के क्षणों को खोजने के लिए किया जा सकता है।<ref>{{cite book |last=Bulmer |first=M. G. |title=सांख्यिकी के सिद्धांत|publisher=Dover |year=1979 |pages=75–79 |isbn=0-486-63760-3 }}</ref> श्रृंखला का विस्तार <math>e^{tX}</math> है | क्षण-उत्पन्न करने वाले फ़ंक्शन को इसलिए नाम दिया गया है क्योंकि इसका उपयोग वितरण के क्षणों को खोजने के लिए किया जा सकता है।<ref>{{cite book |last=Bulmer |first=M. G. |title=सांख्यिकी के सिद्धांत|publisher=Dover |year=1979 |pages=75–79 |isbn=0-486-63760-3 }}</ref> श्रृंखला का विस्तार <math>e^{tX}</math> है | ||
Line 26: | Line 26: | ||
e^{t\,X} = 1 + t\,X + \frac{t^2\,X^2}{2!} + \frac{t^3\,X^3}{3!} + \cdots +\frac{t^n\,X^n}{n!} + \cdots. | e^{t\,X} = 1 + t\,X + \frac{t^2\,X^2}{2!} + \frac{t^3\,X^3}{3!} + \cdots +\frac{t^n\,X^n}{n!} + \cdots. | ||
</math> | </math> | ||
इस | इस प्रकार | ||
: <math> | : <math> | ||
Line 36: | Line 36: | ||
जहाँ <math>m_n</math>, <math>n</math> क्षण (गणित) है । भेदभाव <math>M_X(t)</math> <math>i</math> बार के संबंध में <math>t</math> और सेटिंग <math>t = 0</math>, हम प्राप्त करते हैं <math>i</math> वें क्षण उत्पत्ति के बारे में, <math>m_i</math>; नीचे क्षणों की गणना देखें। | जहाँ <math>m_n</math>, <math>n</math> क्षण (गणित) है । भेदभाव <math>M_X(t)</math> <math>i</math> बार के संबंध में <math>t</math> और सेटिंग <math>t = 0</math>, हम प्राप्त करते हैं <math>i</math> वें क्षण उत्पत्ति के बारे में, <math>m_i</math>; नीचे क्षणों की गणना देखें। | ||
यदि <math>X</math> एक सतत यादृच्छिक चर है, इसके क्षण-उत्पन्न करने वाले कार्य के बीच निम्नलिखित संबंध <math>M_X(t)</math> और इसके प्रायिकता घनत्व फलन का दो तरफा लाप्लास रूपांतरण <math>f_X(x)</math> धारण करता है: | |||
:<math> | :<math> | ||
Line 46: | Line 46: | ||
\mathcal{L}\{f_X\}(s) = \int_{-\infty}^\infty e^{-sx} f_X(x)\, dx, | \mathcal{L}\{f_X\}(s) = \int_{-\infty}^\infty e^{-sx} f_X(x)\, dx, | ||
</math> | </math> | ||
और क्षण-उत्पन्न करने वाले फलन की परिभाषा (अचेतन सांख्यिकीविद के नियम | और क्षण-उत्पन्न करने वाले फलन की परिभाषा (अचेतन सांख्यिकीविद के नियम के माध्यम से) तक विस्तृत होती है | ||
: <math> | : <math> | ||
M_X(t) = \operatorname E \left[e^{tX}\right] = \int_{-\infty}^\infty e^{tx} f_X(x)\, dx. | M_X(t) = \operatorname E \left[e^{tX}\right] = \int_{-\infty}^\infty e^{tx} f_X(x)\, dx. | ||
</math> | </math> | ||
यह की विशेषता कार्य के अनुरूप है <math>X</math> का एक [[ बाती का घूमना ]] होना <math>M_X(t)</math> जब क्षण उत्पन्न करने वाला कार्य | यह की विशेषता कार्य के अनुरूप है <math>X</math> का एक [[ बाती का घूमना ]] होना <math>M_X(t)</math> जब क्षण उत्पन्न करने वाला कार्य सम्मलित होता है, एक निरंतर यादृच्छिक चर के विशिष्ट कार्य के रूप में <math>X</math> इसके प्रायिकता घनत्व फलन का [[फूरियर रूपांतरण]] है <math>f_X(x)</math>, और सामान्यतः जब कोई फ़ंक्शन <math>f(x)</math> [[घातीय क्रम]] का है, का फूरियर रूपांतरण <math>f</math> अभिसरण के क्षेत्र में इसके दो तरफा लाप्लास परिवर्तन का एक विक रोटेशन है। अधिक जानकारी के लिए फूरियर ट्रांसफॉर्म#लाप्लास ट्रांसफॉर्म देखें। | ||
== उदाहरण == | == उदाहरण == | ||
यहाँ क्षण-सृजन फलन और | यहाँ क्षण-सृजन फलन और समानता के लिए अभिलाक्षणिक फलन के कुछ उदाहरण दिए गए हैं। यह देखा जा सकता है कि विशिष्ट कार्य क्षण-उत्पन्न करने वाले कार्य का एक विक रोटेशन है <math>M_X(t)</math> जब बाद वाला सम्मलित है। | ||
:{|class="wikitable" | :{|class="wikitable" | ||
|- | |- | ||
Line 125: | Line 125: | ||
|- | |- | ||
| [[Cauchy distribution|कॉची]] <math>\operatorname{Cauchy}(\mu, \theta)</math> | | [[Cauchy distribution|कॉची]] <math>\operatorname{Cauchy}(\mu, \theta)</math> | ||
|[[Indeterminate form| | |[[Indeterminate form|सम्मलित नहीं]] | ||
| <math>e^{it\mu - \theta|t|}</ गणित> | | <math>e^{it\mu - \theta|t|}</ गणित> | ||
|- | |- | ||
Line 131: | Line 131: | ||
गणित>\operatorname {MultiCauchy}(\mu, \Sigma)</math><ref>Kotz et al.{{full citation needed|date=December 2019}} p. 37 using 1 as the number of degree of freedom to recover the Cauchy distribution</ref> | गणित>\operatorname {MultiCauchy}(\mu, \Sigma)</math><ref>Kotz et al.{{full citation needed|date=December 2019}} p. 37 using 1 as the number of degree of freedom to recover the Cauchy distribution</ref> | ||
| | |सम्मलित नहीं है | ||
|<math>\!\, e^{i\mathbf{t}^{\mathrm{T}}\boldsymbol\mu - \sqrt{\mathbf{t}^{\mathrm{T}}\boldsymbol{\Sigma} \mathbf{t}}}</math> | |<math>\!\, e^{i\mathbf{t}^{\mathrm{T}}\boldsymbol\mu - \sqrt{\mathbf{t}^{\mathrm{T}}\boldsymbol{\Sigma} \mathbf{t}}}</math> | ||
|- | |- | ||
Line 141: | Line 141: | ||
* असतत संभाव्यता द्रव्यमान फंक्शन के लिए, <math>M_X(t)=\sum_{i=0}^\infty e^{tx_i}\, p_i</math> | * असतत संभाव्यता द्रव्यमान फंक्शन के लिए, <math>M_X(t)=\sum_{i=0}^\infty e^{tx_i}\, p_i</math> | ||
* सतत प्रायिकता घनत्व फलन के लिए, <math> M_X(t) = \int_{-\infty}^\infty e^{tx} f(x)\,dx </math> | * सतत प्रायिकता घनत्व फलन के लिए, <math> M_X(t) = \int_{-\infty}^\infty e^{tx} f(x)\,dx </math> | ||
* सामान्य | * सामान्य स्थितियोंमें: <math>M_X(t) = \int_{-\infty}^\infty e^{tx}\,dF(x)</math>, रीमैन-स्टिएल्टजेस इंटीग्रल का उपयोग करके, और जहाँ <math>F</math> संचयी वितरण फंक्शन है। यह एकमात्र लाप्लास-स्टील्टजेस का रूपांतरण है <math>F</math>, किन्तु तर्क के संकेत के साथ उलट गया। | ||
ध्यान दें कि उस | ध्यान दें कि उस स्थितियोंके लिए जहां <math>X</math> एक सतत संभावना घनत्व फंक्शन है <math>f(x)</math>, <math>M_X(-t)</math> का दो तरफा लाप्लास रूपांतर है <math>f(x)</math>. | ||
: <math> | : <math> | ||
Line 162: | Line 162: | ||
=== स्वतंत्र यादृच्छिक चर का रैखिक संयोजन === | === स्वतंत्र यादृच्छिक चर का रैखिक संयोजन === | ||
यदि <math>S_n = \sum_{i=1}^{n} a_i X_i</math>, जहां एक्स<sub>''i''</sub> स्वतंत्र यादृच्छिक चर हैं और ए<sub>''i''</sub> स्थिरांक हैं, तो S के लिए प्रायिकता घनत्व फलन<sub>''n''</sub> एक्स में से प्रत्येक के प्रायिकता घनत्व कार्यों का [[कनवल्शन]] है<sub>''i''</sub>, और एस के लिए क्षण-उत्पन्न करने वाला कार्य<sub>''n''</sub> के माध्यम से दिया गया है | |||
: <math> | : <math> | ||
Line 171: | Line 171: | ||
=== वेक्टर-मूल्यवान यादृच्छिक चर === | === वेक्टर-मूल्यवान यादृच्छिक चर === | ||
वेक्टर-मूल्यवान यादृच्छिक चर के लिए | वेक्टर-मूल्यवान यादृच्छिक चर <math>\mathbf X</math> [[वास्तविक संख्या]] घटकों के साथ, क्षण-उत्पन्न करने वाला कार्य किसके | वेक्टर-मूल्यवान यादृच्छिक चर के लिए | वेक्टर-मूल्यवान यादृच्छिक चर <math>\mathbf X</math> [[वास्तविक संख्या]] घटकों के साथ, क्षण-उत्पन्न करने वाला कार्य किसके के माध्यम से दिया जाता है | ||
:<math> M_X(\mathbf t) = E\left(e^{\langle \mathbf t, \mathbf X \rangle}\right) </math> | :<math> M_X(\mathbf t) = E\left(e^{\langle \mathbf t, \mathbf X \rangle}\right) </math> | ||
Line 180: | Line 180: | ||
क्षण उत्पन्न करने वाले कार्य सकारात्मक और [[लघुगणकीय रूप से उत्तल कार्य]] होते हैं। लॉग-उत्तल, एम (0) = 1 के साथ। | क्षण उत्पन्न करने वाले कार्य सकारात्मक और [[लघुगणकीय रूप से उत्तल कार्य]] होते हैं। लॉग-उत्तल, एम (0) = 1 के साथ। | ||
क्षण-सृजन फंक्शन की एक महत्वपूर्ण संपत्ति यह है कि यह वितरण को विशिष्ट रूप से निर्धारित करता है। दूसरे शब्दों में, | क्षण-सृजन फंक्शन की एक महत्वपूर्ण संपत्ति यह है कि यह वितरण को विशिष्ट रूप से निर्धारित करता है। दूसरे शब्दों में, यदि <math>X</math> और <math>Y</math> दो यादृच्छिक चर हैं और t के सभी मानों के लिए, | ||
:<math>M_X(t) = M_Y(t),\, </math> | :<math>M_X(t) = M_Y(t),\, </math> | ||
Line 186: | Line 186: | ||
:<math>F_X(x) = F_Y(x) \, </math> | :<math>F_X(x) = F_Y(x) \, </math> | ||
x के सभी मानों के लिए (या समतुल्य रूप से X और Y का वितरण समान है)। यह कथन उस कथन के समतुल्य नहीं है "यदि दो वितरणों में समान क्षण हैं, तो वे सभी बिंदुओं पर समान हैं।" ऐसा इसलिए है क्योंकि कुछ | x के सभी मानों के लिए (या समतुल्य रूप से X और Y का वितरण समान है)। यह कथन उस कथन के समतुल्य नहीं है "यदि दो वितरणों में समान क्षण हैं, तो वे सभी बिंदुओं पर समान हैं।" ऐसा इसलिए है क्योंकि कुछ स्थितियों में, क्षण सम्मलित होते हैं और फिर भी क्षण-उत्पन्न करने वाला कार्य नहीं होता है, क्योंकि सीमा | ||
:<math>\lim_{n \rightarrow \infty} \sum_{i=0}^n \frac{t^im_i}{i!}</math> | :<math>\lim_{n \rightarrow \infty} \sum_{i=0}^n \frac{t^im_i}{i!}</math> | ||
सम्मलित नहीं हो सकता है। [[ लॉग-सामान्य वितरण ]] इसका एक उदाहरण है जब ऐसा होता है। | |||
=== क्षणों की गणना === | === क्षणों की गणना === | ||
क्षण-जेनरेटिंग फ़ंक्शन को इसलिए कहा जाता है क्योंकि यदि यह t = 0 के आसपास एक खुले अंतराल पर | क्षण-जेनरेटिंग फ़ंक्शन को इसलिए कहा जाता है क्योंकि यदि यह t = 0 के आसपास एक खुले अंतराल पर सम्मलित है, तो यह प्रायिकता वितरण के पल (गणित) का [[घातीय जनरेटिंग फ़ंक्शन]] है: | ||
:<math>m_n = E \left( X^n \right) = M_X^{(n)}(0) = \left. \frac{d^n M_X}{dt^n}\right|_{t=0}.</math> | :<math>m_n = E \left( X^n \right) = M_X^{(n)}(0) = \left. \frac{d^n M_X}{dt^n}\right|_{t=0}.</math> | ||
Line 206: | Line 206: | ||
एक वास्तविक यादृच्छिक चर X की ऊपरी पूंछ को बाध्य करने के लिए मार्कोव की असमानता के साथ क्षण-उत्पन्न करने वाले फ़ंक्शन का उपयोग किया जा सकता है। इस कथन को [[Chernoff बाध्य|चेरनॉफ़ बाध्य]] भी कहा जाता है। तब से <math>x\mapsto e^{xt}</math> के लिए नीरस रूप से बढ़ रहा है <math>t>0</math>, अपने पास | एक वास्तविक यादृच्छिक चर X की ऊपरी पूंछ को बाध्य करने के लिए मार्कोव की असमानता के साथ क्षण-उत्पन्न करने वाले फ़ंक्शन का उपयोग किया जा सकता है। इस कथन को [[Chernoff बाध्य|चेरनॉफ़ बाध्य]] भी कहा जाता है। तब से <math>x\mapsto e^{xt}</math> के लिए नीरस रूप से बढ़ रहा है <math>t>0</math>, अपने पास | ||
: <math> P(X\ge a) = P(e^{tX}\ge e^{ta}) \le e^{-at}E[e^{tX}] = e^{-at}M_X(t)</math> | : <math> P(X\ge a) = P(e^{tX}\ge e^{ta}) \le e^{-at}E[e^{tX}] = e^{-at}M_X(t)</math> | ||
किसी के लिए <math>t>0</math> और कोई भी, प्रदान किया गया <math>M_X(t)</math> | किसी के लिए <math>t>0</math> और कोई भी, प्रदान किया गया <math>M_X(t)</math> सम्मलित। उदाहरण के लिए, जब X एक मानक सामान्य वितरण है और <math>a>0</math>, हम चुन सकते हैं <math>t=a</math> और याद करो <math>M_X(t)=e^{t^2/2}</math>. यह देता है <math>P(X\ge a)\le e^{-a^2/2}</math>, जो त्रुटिहीन मान के 1+a के कारक के भीतर है। | ||
हॉफडिंग की लेम्मा या बेनेट की असमानता जैसे विभिन्न लेम्मा शून्य-माध्य, परिबद्ध यादृच्छिक चर के | हॉफडिंग की लेम्मा या बेनेट की असमानता जैसे विभिन्न लेम्मा शून्य-माध्य, परिबद्ध यादृच्छिक चर के स्थितियोंमें क्षण-उत्पन्न करने वाले फ़ंक्शन पर सीमाएं प्रदान करते हैं। | ||
कब <math>X</math> गैर-ऋणात्मक है, क्षण उत्पन्न करने वाला कार्य क्षणों पर एक सरल, उपयोगी सीमा देता है: | कब <math>X</math> गैर-ऋणात्मक है, क्षण उत्पन्न करने वाला कार्य क्षणों पर एक सरल, उपयोगी सीमा देता है: | ||
Line 215: | Line 215: | ||
यह असमानता से अनुसरण करता है <math>1+x\le e^x</math> जिसमें हम स्थानापन्न कर सकते हैं <math>x'=tx/m-1</math> तात्पर्य <math>tx/m\le e^{tx/m-1}</math> किसी के लिए <math>x,t,m\in\mathbb R</math>. | यह असमानता से अनुसरण करता है <math>1+x\le e^x</math> जिसमें हम स्थानापन्न कर सकते हैं <math>x'=tx/m-1</math> तात्पर्य <math>tx/m\le e^{tx/m-1}</math> किसी के लिए <math>x,t,m\in\mathbb R</math>. | ||
अब | अब यदि <math>t>0</math> और <math>x,m\ge 0</math>, इसे पुनर्व्यवस्थित किया जा सकता है <math>x^m \le (m/(te))^m e^{tx}</math>. | ||
अपेक्षा को दोनों ओर ले जाने से बाउंड ऑन हो जाता है <math>E[X^m]</math> के अनुसार <math>E[e^{tX}]</math>. | अपेक्षा को दोनों ओर ले जाने से बाउंड ऑन हो जाता है <math>E[X^m]</math> के अनुसार <math>E[e^{tX}]</math>. | ||
Line 222: | Line 222: | ||
:<math>E[X^m] \le (1+2m/k)^{k/2} e^{-m} (k+2m)^m.</math> | :<math>E[X^m] \le (1+2m/k)^{k/2} e^{-m} (k+2m)^m.</math> | ||
हम जानते हैं कि ची-स्क्वायर वितरण#गैरकेंद्रीय क्षण सही सीमा है <math>E[X^m]\le 2^m \Gamma(m+k/2)/\Gamma(k/2)</math>. | हम जानते हैं कि ची-स्क्वायर वितरण#गैरकेंद्रीय क्षण सही सीमा है <math>E[X^m]\le 2^m \Gamma(m+k/2)/\Gamma(k/2)</math>. | ||
सीमाओं की | सीमाओं की समानता करने के लिए, हम बड़े पैमाने पर स्पर्शोन्मुखता पर विचार कर सकते हैं <math>k</math>. | ||
यहां क्षण-उत्पन्न करने वाला कार्य बाध्य है <math>k^m(1+m^2/k + O(1/k^2))</math>, | यहां क्षण-उत्पन्न करने वाला कार्य बाध्य है <math>k^m(1+m^2/k + O(1/k^2))</math>, | ||
जहां वास्तविक सीमा है <math>k^m(1+(m^2-m)/k + O(1/k^2))</math>. | जहां वास्तविक सीमा है <math>k^m(1+(m^2-m)/k + O(1/k^2))</math>. | ||
इस प्रकार इस | इस प्रकार इस स्थितियोंमें क्षण-उत्पन्न करने वाला कार्य बहुत मजबूत है। | ||
== अन्य कार्यों से संबंध == | == अन्य कार्यों से संबंध == | ||
Line 231: | Line 231: | ||
===== विशेषता कार्य (संभाव्यता सिद्धांत): ===== | ===== विशेषता कार्य (संभाव्यता सिद्धांत): ===== | ||
विशेषता कार्य (संभावना सिद्धांत) <math>\varphi_X(t)</math> के माध्यम से क्षण-सृजन फंक्शन से संबंधित है <math>\varphi_X(t) = M_{iX}(t) = M_X(it):</math> चारित्रिक फलन iX का क्षण-उत्पन्न करने वाला फलन है या काल्पनिक अक्ष पर मूल्यांकित X का आघूर्ण-सृजन फलन है। इस फ़ंक्शन को संभाव्यता घनत्व फ़ंक्शन के फूरियर रूपांतरण के रूप में भी देखा जा सकता है, जो कि व्युत्क्रम फूरियर रूपांतरण | विशेषता कार्य (संभावना सिद्धांत) <math>\varphi_X(t)</math> के माध्यम से क्षण-सृजन फंक्शन से संबंधित है <math>\varphi_X(t) = M_{iX}(t) = M_X(it):</math> चारित्रिक फलन iX का क्षण-उत्पन्न करने वाला फलन है या काल्पनिक अक्ष पर मूल्यांकित X का आघूर्ण-सृजन फलन है। इस फ़ंक्शन को संभाव्यता घनत्व फ़ंक्शन के फूरियर रूपांतरण के रूप में भी देखा जा सकता है, जो कि व्युत्क्रम फूरियर रूपांतरण के माध्यम से इससे निकाला जा सकता है। | ||
===== [[संचयी-जनन समारोह|संचयी-जनन फंक्शन]]: ===== | ===== [[संचयी-जनन समारोह|संचयी-जनन फंक्शन]]: ===== | ||
क्यूम्यलेंट-जेनरेटिंग फ़ंक्शन को [[संभाव्यता पैदा करने वाला कार्य]] के लघुगणक के रूप में परिभाषित किया गया है; कुछ इसके | क्यूम्यलेंट-जेनरेटिंग फ़ंक्शन को [[संभाव्यता पैदा करने वाला कार्य|संभाव्यता उत्पन्न करने वाला कार्य]] के लघुगणक के रूप में परिभाषित किया गया है; कुछ इसके अतिरिक्त क्यूम्यलेंट-जनरेटिंग फ़ंक्शन को विशेषता फ़ंक्शन (संभाव्यता सिद्धांत) के लघुगणक के रूप में परिभाषित करते हैं, चूँकि अन्य इसे बाद वाले को दूसरा क्यूम्यलेंट-जेनरेटिंग फ़ंक्शन कहते हैं। | ||
===== प्रायिकता-उत्पन्न करने वाला कार्य: ===== | ===== प्रायिकता-उत्पन्न करने वाला कार्य: ===== |
Revision as of 19:02, 27 March 2023
संभाव्यता सिद्धांत और सांख्यिकी में, वास्तविक-मूल्यवान यादृच्छिक चर का क्षण-उत्पन्न करने वाला कार्य इसकी संभाव्यता वितरण का एक वैकल्पिक विनिर्देश है। इस प्रकार, यह संभाव्यता घनत्व कार्यों या संचयी वितरण कार्यों के साथ सीधे काम करने की समानता में विश्लेषणात्मक परिणामों के वैकल्पिक मार्ग का आधार प्रदान करता है। यादृच्छिक चर के भारित रकम के माध्यम से परिभाषित वितरण के क्षण-उत्पन्न कार्यों के लिए विशेष रूप से सरल परिणाम हैं। चूँकि, सभी यादृच्छिक चरों में क्षण-उत्पन्न करने वाले कार्य नहीं होते हैं।
जैसा कि इसके नाम से स्पष्ट होता है, जनरेटिंग फ़ंक्शन का उपयोग डिस्ट्रीब्यूशन के क्षण (गणित) की गणना करने के लिए किया जा सकता है: 0 के बारे में nth क्षण को क्षण-जेनरेटिंग फ़ंक्शन के n'th डेरिवेटिव है, जिसका मूल्यांकन किया गया है 0.
वास्तविक-मूल्यवान वितरण (यूनिवेरिएट डिस्ट्रीब्यूशन) के अतिरिक्त, क्षण-उत्पन्न करने वाले कार्यों को वेक्टर- या मैट्रिक्स-मूल्यवान यादृच्छिक चर के लिए परिभाषित किया जा सकता है, और यहां तक कि अधिक सामान्य स्थितियों में भी बढ़ाया जा सकता है।
विशेषता फ़ंक्शन (संभाव्यता सिद्धांत) के विपरीत, वास्तविक-मूल्यवान वितरण का क्षण-उत्पन्न करने वाला कार्य हमेशा सम्मलित नहीं होता है। वितरण के क्षण-सृजन फंक्शन के व्यवहार और वितरण के गुणों के बीच संबंध हैं, जैसे कि क्षणों का अस्तित्व।
परिभाषा
संयुक्त त्रिविमीय वितरण के लिए हो। (या ) का क्षण-जनरेटिंग फ़ंक्शन , का क्षण-जनरेटिंग फ़ंक्शन
बशर्ते यह अपेक्षित मूल्य सम्मलित हो कुछ पड़ोस (गणित) में 0. अर्थात एक है ऐसा कि सभी के लिए में , सम्मलित। यदि अपेक्षा 0 के पड़ोस में सम्मलित नहीं है, तो हम कहते हैं कि क्षण उत्पन्न करने वाला कार्य सम्मलित नहीं है।[1]
दूसरे शब्दों में, X का क्षण-उत्पन्न करने वाला कार्य यादृच्छिक चर का अपेक्षित मान है . अधिक सामान्यतः, जब , एक -आयामी यादृच्छिक वेक्टर, और एक निश्चित वेक्टर है, एक उपयोग करता है तब के अतिरिक्त :
हमेशा सम्मलित होता है और 1 के समान होता है। चूंकि, क्षण-सृजन कार्यों के साथ एक महत्वपूर्ण समस्या यह है कि क्षण और क्षण-सृजन कार्य सम्मलित नहीं हो सकते हैं, क्योंकि इंटीग्रल को पूरी प्रकार से अभिसरण करने की आवश्यकता नहीं है। इसके विपरीत, विशेषता कार्य (संभाव्यता सिद्धांत) या फूरियर रूपांतरण हमेशा सम्मलित होता है (क्योंकि यह परिमित माप (गणित) के स्थान पर एक बंधे हुए कार्य का अभिन्न अंग है), और इसके अतिरिक्त कुछ उद्देश्यों के लिए इसका उपयोग किया जा सकता है।
क्षण-उत्पन्न करने वाले फ़ंक्शन को इसलिए नाम दिया गया है क्योंकि इसका उपयोग वितरण के क्षणों को खोजने के लिए किया जा सकता है।[2] श्रृंखला का विस्तार है
इस प्रकार
जहाँ , क्षण (गणित) है । भेदभाव बार के संबंध में और सेटिंग , हम प्राप्त करते हैं वें क्षण उत्पत्ति के बारे में, ; नीचे क्षणों की गणना देखें।
यदि एक सतत यादृच्छिक चर है, इसके क्षण-उत्पन्न करने वाले कार्य के बीच निम्नलिखित संबंध और इसके प्रायिकता घनत्व फलन का दो तरफा लाप्लास रूपांतरण धारण करता है:
चूँकि PDF का दो तरफा लाप्लास परिवर्तन इस रूप में दिया गया है
और क्षण-उत्पन्न करने वाले फलन की परिभाषा (अचेतन सांख्यिकीविद के नियम के माध्यम से) तक विस्तृत होती है
यह की विशेषता कार्य के अनुरूप है का एक बाती का घूमना होना जब क्षण उत्पन्न करने वाला कार्य सम्मलित होता है, एक निरंतर यादृच्छिक चर के विशिष्ट कार्य के रूप में इसके प्रायिकता घनत्व फलन का फूरियर रूपांतरण है , और सामान्यतः जब कोई फ़ंक्शन घातीय क्रम का है, का फूरियर रूपांतरण अभिसरण के क्षेत्र में इसके दो तरफा लाप्लास परिवर्तन का एक विक रोटेशन है। अधिक जानकारी के लिए फूरियर ट्रांसफॉर्म#लाप्लास ट्रांसफॉर्म देखें।
उदाहरण
यहाँ क्षण-सृजन फलन और समानता के लिए अभिलाक्षणिक फलन के कुछ उदाहरण दिए गए हैं। यह देखा जा सकता है कि विशिष्ट कार्य क्षण-उत्पन्न करने वाले कार्य का एक विक रोटेशन है जब बाद वाला सम्मलित है।
वितरण क्षण-उत्पन्न करने वाला कार्य विशेषता फंक्शन Degenerate बरनौली ज्यामितिक
द्विपद नकारात्मक द्विपद प्वासों यूनिफार्म (निरंतर) यूनिफार्म (असतत) लाप्लास सामान्य ची-स्क्वैरेड नॉनसेन्ट्रल ची-स्क्वैरेड गामा घातीय बीटा (see कंफ्लुएंट हाइपरज्यामेट्रिक फ़ंक्शन ) बहुभिन्नरूपी सामान्य कॉची सम्मलित नहीं Failed to parse (Conversion error. Server ("cli") reported: "SyntaxError: Expected "-", "[", "\\", "\\begin", "\\begin{", "]", "^", "_", "{", "}", [ \t\n\r], [%$], [().], [,:;?!'], [/|], [0-9], [><~], [\-+*=], or [a-zA-Z] but "ग" found.in 1:40"): {\displaystyle e^{it\mu - \theta|t|}</ गणित> |- |[[बहुभिन्नरूपी कॉची वितरण]] गणित>\operatorname {MultiCauchy}(\mu, \Sigma)} [3] सम्मलित नहीं है
गणना
क्षण-उत्पन्न करने वाला कार्य यादृच्छिक चर के एक कार्य की अपेक्षा है, इसे इस प्रकार लिखा जा सकता है:
- असतत संभाव्यता द्रव्यमान फंक्शन के लिए,
- सतत प्रायिकता घनत्व फलन के लिए,
- सामान्य स्थितियोंमें: , रीमैन-स्टिएल्टजेस इंटीग्रल का उपयोग करके, और जहाँ संचयी वितरण फंक्शन है। यह एकमात्र लाप्लास-स्टील्टजेस का रूपांतरण है , किन्तु तर्क के संकेत के साथ उलट गया।
ध्यान दें कि उस स्थितियोंके लिए जहां एक सतत संभावना घनत्व फंक्शन है , का दो तरफा लाप्लास रूपांतर है .
जहाँ है वें क्षण (गणित)।
यादृच्छिक चर के रैखिक परिवर्तन
यदि यादृच्छिक चर क्षण उत्पन्न करने वाला कार्य है , तब क्षण उत्पन्न करने वाला कार्य है
स्वतंत्र यादृच्छिक चर का रैखिक संयोजन
यदि , जहां एक्सi स्वतंत्र यादृच्छिक चर हैं और एi स्थिरांक हैं, तो S के लिए प्रायिकता घनत्व फलनn एक्स में से प्रत्येक के प्रायिकता घनत्व कार्यों का कनवल्शन हैi, और एस के लिए क्षण-उत्पन्न करने वाला कार्यn के माध्यम से दिया गया है
वेक्टर-मूल्यवान यादृच्छिक चर
वेक्टर-मूल्यवान यादृच्छिक चर के लिए | वेक्टर-मूल्यवान यादृच्छिक चर वास्तविक संख्या घटकों के साथ, क्षण-उत्पन्न करने वाला कार्य किसके के माध्यम से दिया जाता है
जहाँ एक वेक्टर है और डॉट उत्पाद है।
महत्वपूर्ण गुण
क्षण उत्पन्न करने वाले कार्य सकारात्मक और लघुगणकीय रूप से उत्तल कार्य होते हैं। लॉग-उत्तल, एम (0) = 1 के साथ।
क्षण-सृजन फंक्शन की एक महत्वपूर्ण संपत्ति यह है कि यह वितरण को विशिष्ट रूप से निर्धारित करता है। दूसरे शब्दों में, यदि और दो यादृच्छिक चर हैं और t के सभी मानों के लिए,
तब
x के सभी मानों के लिए (या समतुल्य रूप से X और Y का वितरण समान है)। यह कथन उस कथन के समतुल्य नहीं है "यदि दो वितरणों में समान क्षण हैं, तो वे सभी बिंदुओं पर समान हैं।" ऐसा इसलिए है क्योंकि कुछ स्थितियों में, क्षण सम्मलित होते हैं और फिर भी क्षण-उत्पन्न करने वाला कार्य नहीं होता है, क्योंकि सीमा
सम्मलित नहीं हो सकता है। लॉग-सामान्य वितरण इसका एक उदाहरण है जब ऐसा होता है।
क्षणों की गणना
क्षण-जेनरेटिंग फ़ंक्शन को इसलिए कहा जाता है क्योंकि यदि यह t = 0 के आसपास एक खुले अंतराल पर सम्मलित है, तो यह प्रायिकता वितरण के पल (गणित) का घातीय जनरेटिंग फ़ंक्शन है:
अर्थात्, n एक गैर-ऋणात्मक पूर्णांक होने के साथ, 0 के बारे में nवाँ क्षण क्षण उत्पन्न करने वाले फलन का nवाँ व्युत्पन्न है, जिसका मूल्यांकन t = 0 पर किया जाता है।
अन्य गुण
जेन्सेन की असमानता क्षण-उत्पन्न करने वाले कार्य पर एक साधारण निचली सीमा प्रदान करती है:
कहाँ X का माध्य है।
एक वास्तविक यादृच्छिक चर X की ऊपरी पूंछ को बाध्य करने के लिए मार्कोव की असमानता के साथ क्षण-उत्पन्न करने वाले फ़ंक्शन का उपयोग किया जा सकता है। इस कथन को चेरनॉफ़ बाध्य भी कहा जाता है। तब से के लिए नीरस रूप से बढ़ रहा है , अपने पास
किसी के लिए और कोई भी, प्रदान किया गया सम्मलित। उदाहरण के लिए, जब X एक मानक सामान्य वितरण है और , हम चुन सकते हैं और याद करो . यह देता है , जो त्रुटिहीन मान के 1+a के कारक के भीतर है।
हॉफडिंग की लेम्मा या बेनेट की असमानता जैसे विभिन्न लेम्मा शून्य-माध्य, परिबद्ध यादृच्छिक चर के स्थितियोंमें क्षण-उत्पन्न करने वाले फ़ंक्शन पर सीमाएं प्रदान करते हैं।
कब गैर-ऋणात्मक है, क्षण उत्पन्न करने वाला कार्य क्षणों पर एक सरल, उपयोगी सीमा देता है:
किसी के लिए और .
यह असमानता से अनुसरण करता है जिसमें हम स्थानापन्न कर सकते हैं तात्पर्य किसी के लिए . अब यदि और , इसे पुनर्व्यवस्थित किया जा सकता है . अपेक्षा को दोनों ओर ले जाने से बाउंड ऑन हो जाता है के अनुसार .
एक उदाहरण के रूप में विचार करें साथ स्वतंत्रता की कोटियां। फिर क्षण-जेनरेटिंग फंक्शन से # उदाहरण . उठा और बाध्य में प्रतिस्थापन:
हम जानते हैं कि ची-स्क्वायर वितरण#गैरकेंद्रीय क्षण सही सीमा है . सीमाओं की समानता करने के लिए, हम बड़े पैमाने पर स्पर्शोन्मुखता पर विचार कर सकते हैं . यहां क्षण-उत्पन्न करने वाला कार्य बाध्य है , जहां वास्तविक सीमा है . इस प्रकार इस स्थितियोंमें क्षण-उत्पन्न करने वाला कार्य बहुत मजबूत है।
अन्य कार्यों से संबंध
क्षण-सृजन फंक्शन से संबंधित कई अन्य अभिन्न परिवर्तन हैं जो संभाव्यता सिद्धांत में आम हैं:
विशेषता कार्य (संभाव्यता सिद्धांत):
विशेषता कार्य (संभावना सिद्धांत) के माध्यम से क्षण-सृजन फंक्शन से संबंधित है चारित्रिक फलन iX का क्षण-उत्पन्न करने वाला फलन है या काल्पनिक अक्ष पर मूल्यांकित X का आघूर्ण-सृजन फलन है। इस फ़ंक्शन को संभाव्यता घनत्व फ़ंक्शन के फूरियर रूपांतरण के रूप में भी देखा जा सकता है, जो कि व्युत्क्रम फूरियर रूपांतरण के माध्यम से इससे निकाला जा सकता है।
संचयी-जनन फंक्शन:
क्यूम्यलेंट-जेनरेटिंग फ़ंक्शन को संभाव्यता उत्पन्न करने वाला कार्य के लघुगणक के रूप में परिभाषित किया गया है; कुछ इसके अतिरिक्त क्यूम्यलेंट-जनरेटिंग फ़ंक्शन को विशेषता फ़ंक्शन (संभाव्यता सिद्धांत) के लघुगणक के रूप में परिभाषित करते हैं, चूँकि अन्य इसे बाद वाले को दूसरा क्यूम्यलेंट-जेनरेटिंग फ़ंक्शन कहते हैं।
प्रायिकता-उत्पन्न करने वाला कार्य:
संभाव्यता-उत्पन्न करने वाले कार्य को इस रूप में परिभाषित किया गया है इसका तुरंत तात्पर्य है
यह भी देखें
- विशेषता कार्य (संभावना सिद्धांत)
- जोखिम में एंट्रोपिक मूल्य
- फैक्टोरियल पल जनरेटिंग फ़ंक्शन
- दर फंक्शन
- हैम्बर्गर पल समस्या
संदर्भ
उद्धरण
- ↑ Casella, George; Berger, Roger L. (1990). सांख्यिकीय निष्कर्ष. Wadsworth & Brooks/Cole. p. 61. ISBN 0-534-11958-1.
- ↑ Bulmer, M. G. (1979). सांख्यिकी के सिद्धांत. Dover. pp. 75–79. ISBN 0-486-63760-3.
- ↑ Kotz et al.[full citation needed] p. 37 using 1 as the number of degree of freedom to recover the Cauchy distribution
स्रोत
- Casella, George; Berger, Roger (2002). सांख्यिकीय निष्कर्ष (2nd ed.). pp. 59–68. ISBN 978-0-534-24312-8.
श्रेणी:पल (गणित)
श्रेणी:उत्पन्न कार्य