मौलिक प्रतिनिधित्व: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
लाई गणितीय समूहों और | लाई गणितीय समूहों और लाई बीजगणित के [[प्रतिनिधित्व सिद्धांत]] में, '''मौलिक प्रतिनिधित्व''' एक ऐसा अविच्छेद्य और सीमित आयामी प्रतिनिधित्व होता है जिसका उच्चतम वजन मौलिक वजन होता है। उदाहरण के लिए, शास्त्रीय लाई समूह का परिभाषित मॉड्यूल मौलिक प्रतिनिधित्व होता है। किसी भी सीमित आयामी अविभाज्य प्रतिनिधित्व को मौलिक प्रतिनिधियों के माध्यम से निर्मित किया जा सकता है जो एली कार्टान की प्रक्रिया के माध्यम से होता है। इसलिए एक निश्चित दृष्टिकोण से [[अलघुकरणीय प्रतिनिधित्व]] प्रतिनिधित्व विभिन्न सीमित आयामी प्रतिनिधित्वों के लिए आवश्यकमूली निर्माण ईंधन रूप में काम करती हैं। | ||
== उदाहरण == | == उदाहरण == |
Latest revision as of 13:46, 26 October 2023
लाई गणितीय समूहों और लाई बीजगणित के प्रतिनिधित्व सिद्धांत में, मौलिक प्रतिनिधित्व एक ऐसा अविच्छेद्य और सीमित आयामी प्रतिनिधित्व होता है जिसका उच्चतम वजन मौलिक वजन होता है। उदाहरण के लिए, शास्त्रीय लाई समूह का परिभाषित मॉड्यूल मौलिक प्रतिनिधित्व होता है। किसी भी सीमित आयामी अविभाज्य प्रतिनिधित्व को मौलिक प्रतिनिधियों के माध्यम से निर्मित किया जा सकता है जो एली कार्टान की प्रक्रिया के माध्यम से होता है। इसलिए एक निश्चित दृष्टिकोण से अलघुकरणीय प्रतिनिधित्व प्रतिनिधित्व विभिन्न सीमित आयामी प्रतिनिधित्वों के लिए आवश्यकमूली निर्माण ईंधन रूप में काम करती हैं।
उदाहरण
- सामान्य रैखिक समूह के स्थितियों में, सभी मौलिक प्रतिनिधित्व परिभाषित मॉड्यूल के बाहरी उत्पाद हैं।
- विशेष एकात्मक समूह SU(n) के स्थितियों में, n − मूल निरूपण वेज उत्पाद हैं k = 1, 2, ..., n − 1 के लिए वैकल्पिक टेन्सर से मिलकर बनता है।
- विषम ऑर्थोगोनल समूह के द्विगुणा आवरण के ट्वोफोल्ड कवर के स्पिन प्रतिनिधित्व, विषम स्पिन समूह और समतल ऑर्थोगोनल समूह के द्विगुणा आवरण के दो आधा -स्पिन प्रतिनिधित्व मौलिक प्रतिनिधित्व होते हैं जो टेंसर स्पेस में प्राप्त नहीं किए जा सकते हैं।
- प्रकार E8 (गणित) के सरल लाई समूह के एक लाई समूह का आसन्न प्रतिनिधित्व एक मौलिक प्रतिनिधित्व है।
स्पष्टीकरण
सरलता से जुड़े कॉम्पैक्ट समूह लाई समूह के अविभाज्य प्रतिनिधित्व को उनके उच्चतम वजन (प्रतिनिधित्व सिद्धांत) के माध्यम से अनुक्रमित किया जाता है। ये वजन लाइ ग्रुप के वजन जाल में एक उत्कृष्ट अंकीय वजनों से बनी ओर्थांट Q+ में श्रृंखला बिंदुओं के रूप में होते हैं। यह सिद्ध किया जा सकता है कि डायनकिन आरेख के शीर्षों के माध्यम से अनुक्रमित मूलभूत भारों का सेट सम्मलित है, जैसे कि कोई भी प्रमुख अभिन्न भार मौलिक भारों का एक गैर-नकारात्मक पूर्णांक रैखिक संयोजन है।[1] इनके अनुरूप अविभाज्य प्रतिनिधियां, लाइ समूह के मूलभूत प्रतिनिधित्व होती हैं। एक अधिकतम वजन के मूलभूत वजनों के तत्वरूप के विस्तार से, हम मूलभूत प्रतिनिधित्व का एक संबंधित टेंसर उत्पाद ले सकते हैं और उस अधिकतम वजन के अनुसार अविभाज्य प्रतिनिधि की एक प्रतिलिपि निकाल सकते हैं।[2]
अन्य उपयोग
लाइ सिद्धांत के बाहर, "मौलिक प्रतिनिधि" शब्द कभी-कभी सबसे छोटी आकारदार वफादार प्रतिनिधित्व को संदर्भित करने के लिए ढीले रूप से उपयोग किया जाता है, चूंकि इसे अधिकांशतः "मानक" या "निर्धारित" प्रतिनिधित्व के रूप में भी जाना जाता है (जो इतिहास के अधिक रूप से होता है, न कि अच्छी प्रकार से परिभाषित गणितीय अर्थ होता है।)
संदर्भ
- Fulton, William; Harris, Joe (1991). Representation theory. A first course. Graduate Texts in Mathematics, Readings in Mathematics (in British English). Vol. 129. New York: Springer-Verlag. doi:10.1007/978-1-4612-0979-9. ISBN 978-0-387-97495-8. MR 1153249. OCLC 246650103.
- हॉल, ब्रायन सी. (2015), झूठ समूह, झूठ बीजगणित, और प्रतिनिधित्व: एक प्राथमिक परिचय, गणित में स्नातक ग्रंथ, vol. 222 (2nd ed.), स्प्रिंगर, ISBN 978-0-387-40122-5.
- Specific