परिबद्ध समुच्चय: Difference between revisions

From Vigyanwiki
 
Line 1: Line 1:
{{Short description|Collection of mathematical objects of finite size}}
{{Short description|Collection of mathematical objects of finite size}}
[[Image:Bounded unbounded.svg|right|thumb|एक कलाकार की एक सीमित सेट (शीर्ष) और एक असीमित सेट (नीचे) की छाप। नीचे का सेट दाहिनी ओर हमेशा के लिए जारी रहता है।]]परिबद्ध और सीमा भिन्न-भिन्न अवधारणाएं हैं; बाद के लिए [[सीमा (टोपोलॉजी)|सीमा]] देखें। विभाजन में एक वृत्त एक सीमाहीन परिबद्ध समुच्चय है, जबकि आधा तल अबाधित है फिर भी एक सीमा है।
[[Image:Bounded unbounded.svg|right|thumb|एक कलाकार की एक सीमित सेट (शीर्ष) और एक असीमित सेट (नीचे) की छाप। नीचे का सेट दाहिनी ओर हमेशा के लिए जारी रहता है।]]परिबद्ध और सीमा भिन्न-भिन्न अवधारणाएं हैं; बाद के लिए [[सीमा (टोपोलॉजी)|सीमा]] देखें। विभाजन में एक वृत्त एक सीमाहीन '''परिबद्ध समुच्चय''' है, जबकि आधा तल अबाधित है फिर भी एक सीमा है।
[[गणितीय विश्लेषण]] और गणित के संबंधित क्षेत्रों में, एक समुच्चय को 'परिबद्ध' कहा जाता है, यदि यह एक निश्चित अर्थ में परिमित माप का हो। इसके विपरीत, एक समुच्चय जो परिबद्ध नहीं है, 'अपरिबद्ध' कहलाता है। 'परिबद्ध' शब्द का सामान्य टोपोलॉजिकल स्थान में बिना किसी मीट्रिकके कोई अर्थ  नहीं है।
[[गणितीय विश्लेषण]] और गणित के संबंधित क्षेत्रों में, एक समुच्चय को 'परिबद्ध' कहा जाता है, यदि यह एक निश्चित अर्थ में परिमित माप का हो। इसके विपरीत, एक समुच्चय जो परिबद्ध नहीं है, 'अपरिबद्ध' कहलाता है। 'परिबद्ध' शब्द का सामान्य टोपोलॉजिकल समष्टि में बिना किसी मीट्रिकके कोई अर्थ  नहीं है।


== वास्तविक संख्या में परिभाषा ==
== वास्तविक संख्या में परिभाषा ==
Line 8: Line 8:
एक समुच्चय S 'परिबद्ध' है यदि इसमें ऊपरी और निचली दोनों सीमाएँ हैं। इसलिए, वास्तविक संख्याओं का एक समुच्चय परिबद्ध होता है यदि यह एक [[अंतराल (गणित)|अंतराल]] में समाहित होता है।
एक समुच्चय S 'परिबद्ध' है यदि इसमें ऊपरी और निचली दोनों सीमाएँ हैं। इसलिए, वास्तविक संख्याओं का एक समुच्चय परिबद्ध होता है यदि यह एक [[अंतराल (गणित)|अंतराल]] में समाहित होता है।


== एक [[मीट्रिक स्थान]] में परिभाषा ==
== [[मीट्रिक स्थान|मीट्रिक समष्टि]] में परिभाषा ==


मीट्रिक स्थान (M, d) का एक उपसमुच्चय 'परिबद्ध' होता है, यदि वहां r > 0 सम्मिलित हो, जैसे कि S में सभी s और t के लिए, हमारे पास d(s, t) <r है।मीट्रिक स्थान (M, d) एक सीमित मीट्रिक स्थान है (या d एक सीमित मीट्रिक है) यदि M स्वयं के [[सबसेट|उपसमुच्चय]] के रूप में परिबद्ध है।
मीट्रिक समष्टि (M, d) का एक उपसमुच्चय 'परिबद्ध' होता है, यदि वहां r > 0 सम्मिलित हो, जैसे कि S में सभी s और t के लिए, हमारे पास d(s, t) <r है।मीट्रिक समष्टि (M, d) एक सीमित मीट्रिक समष्टि है (या d एक सीमित मीट्रिक है) यदि M स्वयं के [[सबसेट|उपसमुच्चय]] के रूप में परिबद्ध है।


*संपूर्ण सीमाबद्धता का तात्पर्य सीमाबद्धता से है। ''''R'''<sup>''n''</sup>' के उपसमुच्चयों के लिए<sup>n</sup> दोनों बराबर हैं।
*संपूर्ण सीमाबद्धता का तात्पर्य सीमाबद्धता से है। ''''R'''<sup>''n''</sup>' के उपसमुच्चयों के लिए<sup>n</sup> दोनों बराबर हैं।
*एक मीट्रिक स्थान [[कॉम्पैक्ट जगह|कॉम्पैक्ट स्थान]] है यदि केवल यह [[पूर्ण मीट्रिक स्थान]] है और पूरी तरह से घिरा हुआ है।
*एक मीट्रिक समष्टि [[कॉम्पैक्ट जगह|कॉम्पैक्ट समष्टि]] है यदि केवल यह [[पूर्ण मीट्रिक स्थान|पूर्ण मीट्रिक समष्टि]] है और पूरी तरह से घिरा हुआ है।
*[[यूक्लिडियन अंतरिक्ष|यूक्लिडियन स्थान]] ''''R'''<sup>''n''</sup>' का एक उपसमुच्चय सघन है यदि केवल यह [[बंद सेट|बंद]] और परिबद्ध [[बंद सेट|समुच्चय]] हो।
*[[यूक्लिडियन अंतरिक्ष|यूक्लिडियन समष्टि]] ''''R'''<sup>''n''</sup>' का एक उपसमुच्चय सघन है यदि केवल यह [[बंद सेट|बंद]] और परिबद्ध [[बंद सेट|समुच्चय]] हो।


== सामयिक सदिश स्थानों में परिबद्धता ==
== सामयिक सदिश समष्टियों में परिबद्धता ==
{{main|परिबद्ध सेट (टोपोलॉजिकल वेक्टर स्थान)
{{main|परिबद्ध सेट (टोपोलॉजिकल वेक्टर स्थान)
}}
}}


टोपोलॉजिकल सदिश रिक्त स्थान में, बंधे हुए उपसमुच्चयों के लिए एक भिन्न परिभाषा उपस्थित है जिसे कभी-कभी वॉन न्यूमैन बाध्यता कहा जाता है। यदि [[टोपोलॉजिकल वेक्टर स्पेस|टोपोलॉजिकल सदिश स्थान]] की टोपोलॉजी एक [[मीट्रिक (गणित)|मीट्रिक]]  से प्रेरित होती है जो [[सजातीय मीट्रिक|सजातीय]]  है, जैसा कि आदर्श सदिश रिक्त स्थान के [[मानदंड (गणित)|मानदंड]]  से प्रेरित मीट्रिक की स्थिति में है, तो दो परिभाषाएँ मेल खाती हैं।
टोपोलॉजिकल सदिश रिक्त समष्टि में, बंधे हुए उपसमुच्चयों के लिए एक भिन्न परिभाषा उपस्थित है जिसे कभी-कभी वॉन न्यूमैन बाध्यता कहा जाता है। यदि [[टोपोलॉजिकल वेक्टर स्पेस|टोपोलॉजिकल सदिश समष्टि]] की टोपोलॉजी एक [[मीट्रिक (गणित)|मीट्रिक]]  से प्रेरित होती है जो [[सजातीय मीट्रिक|सजातीय]]  है, जैसा कि आदर्श सदिश रिक्त समष्टि के [[मानदंड (गणित)|मानदंड]]  से प्रेरित मीट्रिक की स्थिति में है, तो दो परिभाषाएँ मेल खाती हैं।


== क्रम सिद्धांत में परिबद्धता ==
== क्रम सिद्धांत में परिबद्धता ==


वास्तविक संख्याओं का एक समुच्चय परिबद्ध होता है यदि केवल इसकी सीमा ऊपरी और निचली सीमा हो। यह परिभाषा [[आंशिक रूप से आदेशित सेट|आंशिक रूप से आदेशित समुच्चय]] के उपसमुच्चय के लिए विस्तार योग्य है। ध्यान दें कि सीमा की यह अधिक सामान्य अवधारणा आकार की धारणा के अनुरूप नहीं है।
वास्तविक संख्याओं का एक समुच्चय परिबद्ध होता है यदि केवल इसकी सीमा ऊपरी और निचली सीमा हो। यह परिभाषा आंशिक रूप से आदेशित समुच्चय के उपसमुच्चय के लिए विस्तार योग्य है। ध्यान दें कि सीमा की यह अधिक सामान्य अवधारणा आकार की धारणा के अनुरूप नहीं है।


आंशिक रूप से क्रमित समुच्चय P के एक उपसमुच्चय ''S'' को 'ऊपर परिबद्ध' कहा जाता है यदि P में एक तत्व k ऐसा है कि S में सभी s के लिए k ≥ s है। तत्व k को S का 'ऊपरी परिबद्ध' कहा जाता है। 'नीचे की सीमा' और 'निचली सीमा' को समान रूप से परिभाषित किया गया है। (ऊपरी और निचली सीमाएं भी देखें।)
आंशिक रूप से क्रमित समुच्चय P के एक उपसमुच्चय ''S'' को 'ऊपर परिबद्ध' कहा जाता है यदि P में एक तत्व k ऐसा है कि S में सभी s के लिए k ≥ s है। तत्व k को S का 'ऊपरी परिबद्ध' कहा जाता है। 'नीचे की सीमा' और 'निचली सीमा' को समान रूप से परिभाषित किया गया है। (ऊपरी और निचली सीमाएं भी देखें।)
Line 30: Line 30:
आंशिक रूप से आदेशित समुच्चय P के एक उपसमुच्चय S को 'परिबद्ध' कहा जाता है यदि इसमें ऊपरी और निचला दोनों परिबद्ध हो, या समतुल्य हो, यदि यह एक अंतराल में समाहित है। ध्यान दें कि यह न केवल समुच्चय S का गुणधर्म है बल्कि P के उपसमुच्चय के रूप में समुच्चय S का भी एक गुण है।
आंशिक रूप से आदेशित समुच्चय P के एक उपसमुच्चय S को 'परिबद्ध' कहा जाता है यदि इसमें ऊपरी और निचला दोनों परिबद्ध हो, या समतुल्य हो, यदि यह एक अंतराल में समाहित है। ध्यान दें कि यह न केवल समुच्चय S का गुणधर्म है बल्कि P के उपसमुच्चय के रूप में समुच्चय S का भी एक गुण है।


एक 'परिबद्ध पोसेट' P (अर्थात्, अपने आप में, उपसमुच्चय के रूप में नहीं) वह है जिसमें सबसे कम और [[सबसे बड़ा तत्व]] हो। ध्यान दें कि परिबद्धता की इस अवधारणा का परिमित आकार से कोई लेना-देना नहीं है, और यह कि एक बंधे हुए पॉसेट P का एक उपसमुच्चय S आदेश के रूप में ''P''पर आदेश के प्रतिबंध के लिए आवश्यक रूप से एक परिबद्ध पॉसेट नहीं है
एक 'परिबद्ध पोसेट' P (अर्थात्, अपने आप में, उपसमुच्चय के रूप में नहीं) वह है जिसमें सबसे कम और सबसे बड़ा तत्व हो। ध्यान दें कि परिबद्धता की इस अवधारणा का परिमित आकार से कोई लेना-देना नहीं है, और यह कि एक बंधे हुए पॉसेट P का एक उपसमुच्चय S आदेश के रूप में ''P''पर आदेश के प्रतिबंध के लिए आवश्यक रूप से एक परिबद्ध पॉसेट नहीं है


'R<sup>n</sup>' का एक उपसमुच्चय S [[यूक्लिडियन दूरी]] के संबंध में परिबद्ध है यदि केवल यह 'R<sup>n</sup>' के उपसमुच्चय के रूप में परिबद्ध है| चूंकि, S को  [[उत्पाद क्रम]] के साथ 'R<sup>n</sup>' के उपसमुच्चय के रूप में बांधा जा सकता है,लेकिन यूक्लिडियन दूरी के संबंध में नहीं। के साथ।   
'R<sup>n</sup>' का एक उपसमुच्चय S [[यूक्लिडियन दूरी]] के संबंध में परिबद्ध है यदि केवल यह 'R<sup>n</sup>' के उपसमुच्चय के रूप में परिबद्ध है| चूंकि, S को  [[उत्पाद क्रम]] के साथ 'R<sup>n</sup>' के उपसमुच्चय के रूप में बांधा जा सकता है,लेकिन यूक्लिडियन दूरी के संबंध में नहीं। के साथ।   
Line 38: Line 38:
== यह भी देखें ==
== यह भी देखें ==
* परिबद्ध फलन
* परिबद्ध फलन
* [[स्थानीय सीमा]]
* [[स्थानीय सीमा|समष्टिीय सीमा]]
*[[आदेश सिद्धांत]]
*[[आदेश सिद्धांत]]



Latest revision as of 12:22, 27 October 2023

एक कलाकार की एक सीमित सेट (शीर्ष) और एक असीमित सेट (नीचे) की छाप। नीचे का सेट दाहिनी ओर हमेशा के लिए जारी रहता है।

परिबद्ध और सीमा भिन्न-भिन्न अवधारणाएं हैं; बाद के लिए सीमा देखें। विभाजन में एक वृत्त एक सीमाहीन परिबद्ध समुच्चय है, जबकि आधा तल अबाधित है फिर भी एक सीमा है।

गणितीय विश्लेषण और गणित के संबंधित क्षेत्रों में, एक समुच्चय को 'परिबद्ध' कहा जाता है, यदि यह एक निश्चित अर्थ में परिमित माप का हो। इसके विपरीत, एक समुच्चय जो परिबद्ध नहीं है, 'अपरिबद्ध' कहलाता है। 'परिबद्ध' शब्द का सामान्य टोपोलॉजिकल समष्टि में बिना किसी मीट्रिकके कोई अर्थ नहीं है।

वास्तविक संख्या में परिभाषा

ऊपरी सीमा और उसके सर्वोच्च के साथ एक वास्तविक सेट।

वास्तविक संख्याओं के समुच्चय S को ऊपर से परिबद्ध कहा जाता है यदि वहाँ कुछ वास्तविक संख्या k सम्मिलित हो जैसे कि k ≥ s S में सभी s के लिए। संख्या k को S की 'ऊपरी सीमा' कहा जाता है। नीचे से घिरा हुआ है और 'निचली सीमा' समान रूप से परिभाषित है।

एक समुच्चय S 'परिबद्ध' है यदि इसमें ऊपरी और निचली दोनों सीमाएँ हैं। इसलिए, वास्तविक संख्याओं का एक समुच्चय परिबद्ध होता है यदि यह एक अंतराल में समाहित होता है।

मीट्रिक समष्टि में परिभाषा

मीट्रिक समष्टि (M, d) का एक उपसमुच्चय 'परिबद्ध' होता है, यदि वहां r > 0 सम्मिलित हो, जैसे कि S में सभी s और t के लिए, हमारे पास d(s, t) <r है।मीट्रिक समष्टि (M, d) एक सीमित मीट्रिक समष्टि है (या d एक सीमित मीट्रिक है) यदि M स्वयं के उपसमुच्चय के रूप में परिबद्ध है।

सामयिक सदिश समष्टियों में परिबद्धता

टोपोलॉजिकल सदिश रिक्त समष्टि में, बंधे हुए उपसमुच्चयों के लिए एक भिन्न परिभाषा उपस्थित है जिसे कभी-कभी वॉन न्यूमैन बाध्यता कहा जाता है। यदि टोपोलॉजिकल सदिश समष्टि की टोपोलॉजी एक मीट्रिक से प्रेरित होती है जो सजातीय है, जैसा कि आदर्श सदिश रिक्त समष्टि के मानदंड से प्रेरित मीट्रिक की स्थिति में है, तो दो परिभाषाएँ मेल खाती हैं।

क्रम सिद्धांत में परिबद्धता

वास्तविक संख्याओं का एक समुच्चय परिबद्ध होता है यदि केवल इसकी सीमा ऊपरी और निचली सीमा हो। यह परिभाषा आंशिक रूप से आदेशित समुच्चय के उपसमुच्चय के लिए विस्तार योग्य है। ध्यान दें कि सीमा की यह अधिक सामान्य अवधारणा आकार की धारणा के अनुरूप नहीं है।

आंशिक रूप से क्रमित समुच्चय P के एक उपसमुच्चय S को 'ऊपर परिबद्ध' कहा जाता है यदि P में एक तत्व k ऐसा है कि S में सभी s के लिए k ≥ s है। तत्व k को S का 'ऊपरी परिबद्ध' कहा जाता है। 'नीचे की सीमा' और 'निचली सीमा' को समान रूप से परिभाषित किया गया है। (ऊपरी और निचली सीमाएं भी देखें।)

आंशिक रूप से आदेशित समुच्चय P के एक उपसमुच्चय S को 'परिबद्ध' कहा जाता है यदि इसमें ऊपरी और निचला दोनों परिबद्ध हो, या समतुल्य हो, यदि यह एक अंतराल में समाहित है। ध्यान दें कि यह न केवल समुच्चय S का गुणधर्म है बल्कि P के उपसमुच्चय के रूप में समुच्चय S का भी एक गुण है।

एक 'परिबद्ध पोसेट' P (अर्थात्, अपने आप में, उपसमुच्चय के रूप में नहीं) वह है जिसमें सबसे कम और सबसे बड़ा तत्व हो। ध्यान दें कि परिबद्धता की इस अवधारणा का परिमित आकार से कोई लेना-देना नहीं है, और यह कि एक बंधे हुए पॉसेट P का एक उपसमुच्चय S आदेश के रूप में Pपर आदेश के प्रतिबंध के लिए आवश्यक रूप से एक परिबद्ध पॉसेट नहीं है

'Rn' का एक उपसमुच्चय S यूक्लिडियन दूरी के संबंध में परिबद्ध है यदि केवल यह 'Rn' के उपसमुच्चय के रूप में परिबद्ध है| चूंकि, S को उत्पाद क्रम के साथ 'Rn' के उपसमुच्चय के रूप में बांधा जा सकता है,लेकिन यूक्लिडियन दूरी के संबंध में नहीं। के साथ।

क्रमवाचक संख्याओं के एक वर्ग को असीमित या कोफिनल कहा जाता है, जब कोई क्रमसूचक दिया जाता है, तो प्रायः वर्ग का कुछ तत्व इससे बड़ा होता है। इस प्रकार इस स्थिति में अपरिबद्ध का अर्थ स्वयं में अपरिबद्ध नहीं है जबकि सभी क्रमिक संख्याओं के वर्ग के उपवर्ग के रूप में अपरिबद्ध है।

यह भी देखें

संदर्भ

  • Bartle, Robert G.; Sherbert, Donald R. (1982). Introduction to Real Analysis. New York: John Wiley & Sons. ISBN 0-471-05944-7.
  • Richtmyer, Robert D. (1978). Principles of Advanced Mathematical Physics. New York: Springer. ISBN 0-387-08873-3.