निस्पंदन (गणित): Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
गणित में, निस्पंदन <math>\mathcal{F}</math> | गणित में, '''निस्पंदन''' <math>\mathcal{F}</math> अनुक्रमित सदस्य है <math>(S_i)_{i \in I}</math> किसी दिए गए बीजगणितीय संरचना के सबऑबजेक्ट का <math>S</math>, सूचकांक के साथ <math>i</math> पूर्ण प्रणाली से ऑर्डर किए गए सूचकांक समुच्चय पर आधारित है <math>I</math>, इस नियम के अधीन है कि | ||
::यदि <math>i\leq j</math> में <math>I</math>, तब <math>S_i\subseteq S_j</math>. | ::यदि <math>i\leq j</math> में <math>I</math>, तब <math>S_i\subseteq S_j</math>. | ||
यदि सूचकांक <math>i</math> स्टोकेस्टिक प्रक्रिया का समय पैरामीटर है, तो फिल्ट्रेशन की व्याख्या बीजगणितीय संरचना <math>S_i</math> के साथ | यदि सूचकांक <math>i</math> स्टोकेस्टिक प्रक्रिया का समय पैरामीटर है, तो फिल्ट्रेशन की व्याख्या बीजगणितीय संरचना <math>S_i</math> के साथ स्टोचैस्टिक प्रक्रिया के बारे में उपलब्ध सभी ऐतिहासिक भविष्य की जानकारी का प्रतिनिधित्व करने के रूप में नहीं की जा सकती है। <math>S_i</math> समय के साथ सम्मिश्रता प्राप्त करता है। इसलिए, प्रक्रिया जिसे फ़िल्टर <math>\mathcal{F}</math> के लिए [[अनुकूलित प्रक्रिया|अनुकूलित]] किया जाता है इसे गैर-प्रत्याशित भी कहा जाता है, क्योंकि यह भविष्य में नहीं देख सकता है।<ref>{{cite book|last=Björk|first=Thomas|year=2005|title=आर्बिट्रेज थ्योरी इन कंटीन्यूअस टाइम|isbn=978-0-19-927126-9|section=Appendix B}}</ref> | ||
कभी-कभी, फ़िल्टर किए गए बीजगणित में होता है, कि इसके अतिरिक्त यह आवश्यकता होती है कि <math>S_i</math> कुछ संचालनों के संबंध में सबलजेब्रस हो (जैसे, सदिश जोड़), किन्तु अन्य कार्यों के संबंध में नहीं (कहते हैं , गुणन) संतुष्ट करता है <math>S_i \cdot S_j \subseteq S_{i+j}</math>, जहां सूचकांक | कभी-कभी, फ़िल्टर किए गए बीजगणित में होता है, कि इसके अतिरिक्त यह आवश्यकता होती है कि <math>S_i</math> कुछ संचालनों के संबंध में सबलजेब्रस हो (जैसे, सदिश जोड़), किन्तु अन्य कार्यों के संबंध में नहीं (कहते हैं , गुणन) संतुष्ट करता है <math>S_i \cdot S_j \subseteq S_{i+j}</math>, जहां सूचकांक समुच्चय [[प्राकृतिक संख्या]] है; यह ग्रेडेड बीजगणित के अनुरूप है। | ||
कभी-कभी, फिल्ट्रेशन के अतिरिक्त आवश्यकता को पूर्ण करने के लिए माना जाता है कि <math>S_i</math> का | कभी-कभी, फिल्ट्रेशन के अतिरिक्त आवश्यकता को पूर्ण करने के लिए माना जाता है कि <math>S_i</math> का संघ (समुच्चय सिद्धांत) संपूर्ण <math>S</math> हो, या (अधिक सामान्य स्थितियों में, जब संघ की धारणा समझ में नहीं आती है) विहित समरूपता की [[प्रत्यक्ष सीमा]] से <math>S_i</math> की <math>S</math> समरूपता है। इस आवश्यकता को माना जाता है या नहीं, यह सामान्यतः पाठ के लेखक पर निर्भर करता है और प्रायः स्पष्ट रूप से कहा जाता है कि लेख इस आवश्यकता को प्रारम्भ नहीं करता है। | ||
अवरोही निस्पंदन' की धारणा भी है, जिसे संतुष्ट करने के लिए <math>S_i \supseteq S_j</math> <math>S_i \subseteq S_j</math> <math>\bigcap_{i\in I} S_i=0</math> <math>\bigcup_{i\in I} S_i=S</math>) की आवश्यकता होती है। | अवरोही निस्पंदन' की धारणा भी है, जिसे संतुष्ट करने के लिए <math>S_i \supseteq S_j</math> <math>S_i \subseteq S_j</math> <math>\bigcap_{i\in I} S_i=0</math> <math>\bigcup_{i\in I} S_i=S</math>) की आवश्यकता होती है। | ||
यह इस संदर्भ पर निर्भर करता है कि "निस्पंदन" शब्द को वास्तव में कैसे समझा जाए। अवरोही फिल्ट्रेशन को कोफिल्ट्रेशन की | यह इस संदर्भ पर निर्भर करता है कि "निस्पंदन" शब्द को वास्तव में कैसे समझा जाए। अवरोही फिल्ट्रेशन को कोफिल्ट्रेशन की दोहरी (श्रेणी सिद्धांत) धारणा के साथ भ्रमित नहीं होना चाहिए (जिसमें उप-वस्तुओं के अतिरिक्त मात्रात्मक वस्तुएं सम्मिलित होती हैं)। | ||
निस्पंदन का व्यापक रूप से | निस्पंदन का व्यापक रूप से सार बीजगणित, समरूप बीजगणित (जहां वे वर्णक्रमीय अनुक्रमों के लिए महत्वपूर्ण विधियों से संबंधित हैं) में उपयोग किया जाता है, और सिग्मा बीजगणित के नेस्टेड अनुक्रमों के लिए सिद्धांत और संभाव्यता सिद्धांत को मापता है। फलनात्मक विश्लेषण और [[संख्यात्मक विश्लेषण]] में, सामान्यतः अन्य शब्दावली का उपयोग किया जाता है, जैसे कि रिक्त समष्टि या नेस्टेड रिक्त समष्टि का पैमाना हैं। | ||
== उदाहरण == | == उदाहरण == | ||
Line 21: | Line 21: | ||
==== समूह ==== | ==== समूह ==== | ||
बीजगणित में, निस्पंदन को सामान्यतः <math>\mathbb{N}</math> द्वारा अनुक्रमित किया जाता है, जो प्राकृतिक संख्याओं का [[सेट (गणित)|समूह (गणित)]] है।समूह <math>G</math> का निस्पंदन <math>G</math> के [[सामान्य उपसमूह|सामान्य]] [[सामान्य उपसमूह|उपसमूह]] का नेस्टेड अनुक्रम <math>G_n</math> है। (अर्थात, किसी के लिए <math>n</math> के लिए<math>G_{n+1}\subseteq G_n</math> है।) ध्यान दें कि निस्पंदन शब्द का यह प्रयोग हमारे अवरोही निस्पंदन से संघित होता है। | बीजगणित में, निस्पंदन को सामान्यतः <math>\mathbb{N}</math> द्वारा अनुक्रमित किया जाता है, जो प्राकृतिक संख्याओं का [[सेट (गणित)|समूह (गणित)]] है।समूह <math>G</math> का निस्पंदन <math>G</math> के [[सामान्य उपसमूह|सामान्य]] [[सामान्य उपसमूह|उपसमूह]] का नेस्टेड अनुक्रम <math>G_n</math> है। (अर्थात, किसी के लिए <math>n</math> के लिए<math>G_{n+1}\subseteq G_n</math> है।) ध्यान दें कि निस्पंदन शब्द का यह प्रयोग हमारे अवरोही निस्पंदन से संघित होता है। | ||
Line 29: | Line 27: | ||
समूह <math>G</math> पर निस्पंदन से संबंधित टोपोलॉजी <math>G</math> को सामयिक समूह बनाती है। | समूह <math>G</math> पर निस्पंदन से संबंधित टोपोलॉजी <math>G</math> को सामयिक समूह बनाती है। | ||
समूह <math>G</math> पर निस्पंदन <math>G_n</math>से संबंधित टोपोलॉजी | समूह <math>G</math> पर निस्पंदन <math>G_n</math>से संबंधित टोपोलॉजी हॉसडॉर्फ समष्टि है यदि<math>\bigcap G_n=\{1\}</math> है। | ||
यदि दो निस्पंदन <math>G_n</math> और <math>G'_n</math> समूह पर परिभाषित है पहचान मानचित्र <math>G</math> से <math>G</math> तक, जहां <math>G</math> की सर्वप्रथम प्रति <math>G_n</math> टोपोलॉजी और दूसरा <math>G'_n</math> टोपोलॉजी निरंतर है यदि <math>n</math> वहाँ है तो <math>m</math> के लिए है कि <math>G_m\subseteq G'_n</math>है, अर्थात, यदि केवल पहचान मानचित्र 1 पर निरंतर है। तो विशेष रूप से, दो निस्पंदन उसी टोपोलॉजी को परिभाषित करता है यदि केवल किसी उपसमूह के लिए एक में दिखाई दे रहा है तो दूसरे में छोटा या समान दिखाई दे रहा है। | यदि दो निस्पंदन <math>G_n</math> और <math>G'_n</math> समूह पर परिभाषित है पहचान मानचित्र <math>G</math> से <math>G</math> तक, जहां <math>G</math> की सर्वप्रथम प्रति <math>G_n</math> टोपोलॉजी और दूसरा <math>G'_n</math> टोपोलॉजी निरंतर है यदि <math>n</math> वहाँ है तो <math>m</math> के लिए है कि <math>G_m\subseteq G'_n</math>है, अर्थात, यदि केवल पहचान मानचित्र 1 पर निरंतर है। तो विशेष रूप से, दो निस्पंदन उसी टोपोलॉजी को परिभाषित करता है यदि केवल किसी उपसमूह के लिए एक में दिखाई दे रहा है तो दूसरे में छोटा या समान दिखाई दे रहा है। | ||
==== | ==== वलय और मॉड्यूल: अवरोही निस्पंदन ==== | ||
वलय <math>R</math> और <math>R</math>- मापांक को <math>M</math> दिए जाने पर, <math>M</math> का अवरोही निस्पंदन [[submodule|सबमॉड्यूल]] <math>M_n</math> का घटता क्रम है, इसलिए यह समूहों के लिए धारणा की विशेष स्थिति है, अतिरिक्त नियम के अनुसार उपसमूह का सबमॉड्यूल हैं। संबंधित टोपोलॉजी को समूहों के लिए परिभाषित किया गया है। | |||
महत्वपूर्ण विशेष स्थिति को <math>I</math>- ऐडिक टोपोलॉजी (या <math>J</math>- एडिक, आदि) के रूप में जाना जाता है, <math>R</math> | महत्वपूर्ण विशेष स्थिति को <math>I</math>- ऐडिक टोपोलॉजी (या <math>J</math>- एडिक, आदि) के रूप में जाना जाता है, <math>R</math> क्रमविनिमेय वलय है, और <math>I</math> का आदर्श <math>R</math> है। मॉड्यूल <math>M</math> दिया गया है, <math>I^n M</math> के सबमॉड्यूल का अनुक्रम <math>M</math> बनाता है <math>M</math> का निस्पंदन <math>I</math>-एडिक टोपोलॉजी <math>M</math> पर निस्पंदन से जुड़ी टोपोलॉजी है। यदि <math>M</math> सिर्फ वलय <math>R</math> ही है, तो <math>R</math> पर <math>I</math>-एडिक टोपोलॉजी को परिभाषित किया गया है। | ||
जब <math>R</math> को <math>I</math>-एडिक टोपोलॉजी दी जाती है, तो <math>R</math> | जब <math>R</math> को <math>I</math>-एडिक टोपोलॉजी दी जाती है, तो <math>R</math> टोपोलॉजिकल वलय बन जाता है। यदि <math>R</math>-मापांक <math>M</math> को <math>I</math>-एडिक टोपोलॉजी दी जाती है, तो यह टोपोलॉजिकल <math>R</math> मॉड्यूल बन जाता है | <math>R</math> मॉड्यूल दिए गए टोपोलॉजी के सापेक्ष <math>I</math>-एडिक <math>R</math> है। | ||
==== | ==== वलय और मॉड्यूल: आरोही निस्पंदन ==== | ||
वलय <math>R</math> और <math>R</math>-मापांक को <math>M</math> दिए जाने पर <math>M</math> का आरोही निस्पंदन सबमॉड्यूल का बढ़ता क्रम है <math>M_n</math> विशेष रूप से, यदि <math>R</math> का क्षेत्र है, फिर का आरोही निस्पंदन <math>R</math>-सदिश स्थल <math>M</math> की सदिश उपसमष्टियों का बढ़ता क्रम है <math>M</math>. फ़्लैग (रैखिक बीजगणित) ऐसे फ़िल्टरों का महत्वपूर्ण वर्ग है। | |||
==== | ==== समुच्चय ==== | ||
किसी | किसी समुच्चय का अधिकतम फिल्ट्रेशन समुच्चय के ऑर्डवलय (क्रम परिवर्तन) के उपयुक्त होता है। उदाहरण के लिए, छानना <math>\{0\} \subseteq \{0,1\} \subseteq \{0,1,2\}</math> आदेश से मेल खाता है <math>(0,1,2)</math>.[[एक तत्व के साथ क्षेत्र|तत्व के साथ क्षेत्र]] के दृष्टिकोण से,समुच्चय परआदेश अधिकतम ध्वज (रैखिक बीजगणित) (एक सदिश समष्टि परनिस्पंदन) से मेल खाता है,तत्व के साथ क्षेत्र परसदिश समष्टि होने पर विचार करता है। | ||
=== माप सिद्धांत === | === माप सिद्धांत === | ||
{{main article|निस्पंदन (संभाव्यता सिद्धांत)}} | {{main article|निस्पंदन (संभाव्यता सिद्धांत)}} | ||
माप सिद्धांत में, विशेष रूप से मार्टिंगेल सिद्धांत और स्टोकेस्टिक प्रक्रियाओं के सिद्धांत में,निस्पंदन सिग्मा बीजगणित काबढ़ता क्रम (गणित) है| <math>\sigma</math>[[मापने योग्य स्थान]] पर बीजगणित। यानी मापने योग्य जगह दी गई है <math>(\Omega, \mathcal{F})</math>,निस्पंदन काक्रम है <math>\sigma</math>-बीजगणित <math>\{ \mathcal{F}_{t} \}_{t \geq 0}</math> साथ <math>\mathcal{F}_{t} \subseteq \mathcal{F}</math> जहां प्रत्येक <math>t</math>गैर-ऋणात्मक [[वास्तविक संख्या]] है और | माप सिद्धांत में, विशेष रूप से मार्टिंगेल सिद्धांत और स्टोकेस्टिक प्रक्रियाओं के सिद्धांत में,निस्पंदन सिग्मा बीजगणित काबढ़ता क्रम (गणित) है| <math>\sigma</math>[[मापने योग्य स्थान|मापने योग्य समष्टि]] पर बीजगणित। यानी मापने योग्य जगह दी गई है <math>(\Omega, \mathcal{F})</math>,निस्पंदन काक्रम है <math>\sigma</math>-बीजगणित <math>\{ \mathcal{F}_{t} \}_{t \geq 0}</math> साथ <math>\mathcal{F}_{t} \subseteq \mathcal{F}</math> जहां प्रत्येक <math>t</math>गैर-ऋणात्मक [[वास्तविक संख्या]] है और | ||
:<math>t_{1} \leq t_{2} \implies \mathcal{F}_{t_{1}} \subseteq \mathcal{F}_{t_{2}}.</math> | :<math>t_{1} \leq t_{2} \implies \mathcal{F}_{t_{1}} \subseteq \mathcal{F}_{t_{2}}.</math> | ||
समय की सटीक सीमा <math>t</math> सामान्यतः संदर्भ पर निर्भर करेगा मूल्यों का | समय की सटीक सीमा <math>t</math> सामान्यतः संदर्भ पर निर्भर करेगा मूल्यों का समुच्चय <math>t</math> असतत समुच्चय या निरंतर, बंधा हुआ समुच्चय या अनबाउंड हो सकता है। उदाहरण के लिए, | ||
:<math>t \in \{ 0, 1, \dots, N \}, \mathbb{N}_{0}, [0, T] \mbox{ or } [0, + \infty).</math> | :<math>t \in \{ 0, 1, \dots, N \}, \mathbb{N}_{0}, [0, T] \mbox{ or } [0, + \infty).</math> | ||
इसी तरह,फ़िल्टर्ड प्रायिकता | इसी तरह,फ़िल्टर्ड प्रायिकता समष्टि (स्टोकेस्टिक आधार के रूप में भी जाना जाता है) <math>\left(\Omega, \mathcal{F}, \left\{\mathcal{F}_{t}\right\}_{t\geq 0}, \mathbb{P}\right)</math>, फिल्ट्रेशन से लैसप्रायिकता समष्टि है <math>\left\{\mathcal{F}_t\right\}_{t\geq 0}</math> उसके जैसा <math>\sigma</math>-बीजगणित <math>\mathcal{F}</math>. फ़िल्टर किए गए संभाव्यता समष्टि को सामान्य स्थितियों को पूर्ण करने के लिए कहा जाता है यदि यह पूर्ण माप है (यानी, <math>\mathcal{F}_0</math> सभी सम्मिलित हैं <math>\mathbb{P}</math>-अशक्त समुच्चय) और दाएँ-निरंतर (अर्थात <math>\mathcal{F}_t = \mathcal{F}_{t+} := \bigcap_{s > t} \mathcal{F}_s</math> हर समय के लिए <math>t</math>).<ref>{{cite web|title=Stochastic Processes: A very simple introduction|author=Péter Medvegyev|date=January 2009|url=http://medvegyev.uni-corvinus.hu/St1.pdf|access-date=June 25, 2012}}</ref><ref>{{cite book|title=संभावनाएं और क्षमता|author=Claude Dellacherie|publisher=Elsevier|year=1979|isbn=9780720407013}}</ref><ref>{{cite web|title=फिल्ट्रेशन और अनुकूलित प्रक्रियाएं|author=George Lowther|url=http://almostsure.wordpress.com/2009/11/08/filtrations-and-adapted-processes/|date=November 8, 2009|access-date=June 25, 2012}}</ref> | ||
यह परिभाषित करने के लिए भी उपयोगी है (अनबाउंड इंडेक्स | यह परिभाषित करने के लिए भी उपयोगी है (अनबाउंड इंडेक्स समुच्चय के मामले में)। <math>\mathcal{F}_{\infty}</math> के रूप में <math>\sigma</math>-बीजगणित के अनंत मिलन से उत्पन्न <math>\mathcal{F}_{t}</math> है, जिसमें निहित है <math>\mathcal{F}</math>: | ||
:<math>\mathcal{F}_{\infty} = \sigma\left(\bigcup_{t \geq 0} \mathcal{F}_{t}\right) \subseteq \mathcal{F}.</math> | :<math>\mathcal{F}_{\infty} = \sigma\left(\bigcup_{t \geq 0} \mathcal{F}_{t}\right) \subseteq \mathcal{F}.</math> | ||
:σ-बीजगणित उन घटनाओं के | :σ-बीजगणित उन घटनाओं के समुच्चय को परिभाषित करता है जिन्हें मापा जा सकता है, जो संभाव्यता के संदर्भ में उन घटनाओं के उपयुक्त है जिनमें भेदभाव किया जा सकता है, या ऐसे प्रश्न जिनका उत्तर समय पर दिया जा सकता है <math>t</math>. इसलिए,फिल्ट्रेशन का उपयोग अक्सर उन घटनाओं के समुच्चय में परिवर्तन का प्रतिनिधित्व करने के लिए किया जाता है, जिन्हें [[जानकारी]] के लाभ या हानि के माध्यम से मापा जा सकता है। विशिष्ट उदाहरण [[गणितीय वित्त]] में है, जहां फिल्ट्रेशन प्रत्येक समय तक और सहित उपलब्ध जानकारी का प्रतिनिधित्व करता है <math>t</math>, और अधिक से अधिक सटीक है (मापने योग्य घटनाओं का समुच्चय वही रहता है या बढ़ रहा है) क्योंकि स्टॉक मूल्य के विकास से अधिक जानकारी उपलब्ध हो जाती है। | ||
==== स्टॉपिंग टाइम से संबंध: स्टॉपिंग टाइम सिग्मा-अलजेब्रा ==== | ==== स्टॉपिंग टाइम से संबंध: स्टॉपिंग टाइम सिग्मा-अलजेब्रा ==== | ||
{{main article|σ-अतीत का बीजगणित}} | {{main article|σ-अतीत का बीजगणित}} | ||
होने देना <math>\left(\Omega, \mathcal{F}, \left\{\mathcal{F}_{t}\right\}_{t\geq 0}, \mathbb{P}\right)</math>फ़िल्टर्ड प्रायिकता | होने देना <math>\left(\Omega, \mathcal{F}, \left\{\mathcal{F}_{t}\right\}_{t\geq 0}, \mathbb{P}\right)</math>फ़िल्टर्ड प्रायिकता समष्टि हो।यादृच्छिक चर <math>\tau : \Omega \rightarrow [0, \infty]</math> #माप सिद्धांत के संबंध में [[रुकने का समय]] है <math>\left\{\mathcal{F}_{t}\right\}_{t\geq 0}</math>, यदि <math>\{\tau \leq t\} \in \mathcal{F}_t</math> सभी के लिए <math>t\geq 0</math>. | ||
रुकने का समय <math>\sigma</math>-बीजगणित को अब परिभाषित किया गया है | रुकने का समय <math>\sigma</math>-बीजगणित को अब परिभाषित किया गया है | ||
:<math>\mathcal{F}_{\tau} := \{A\in\mathcal{F} \vert \forall t\geq 0 \colon A\cap\{\tau \leq t\}\in\mathcal{F}_t\}</math>. | :<math>\mathcal{F}_{\tau} := \{A\in\mathcal{F} \vert \forall t\geq 0 \colon A\cap\{\tau \leq t\}\in\mathcal{F}_t\}</math>. | ||
इसे दिखाना मुश्किल नहीं है <math>\mathcal{F}_{\tau}</math> वास्तव में सिग्मा-बीजगणित है | <math>\sigma</math>- | इसे दिखाना मुश्किल नहीं है <math>\mathcal{F}_{\tau}</math> वास्तव में सिग्मा-बीजगणित है | <math>\sigma</math>-बीजगणित | ||
समुच्चय <math>\mathcal{F}_{\tau}</math> यादृच्छिक समय तक जानकारी को एन्कोड करता है <math>\tau</math> इस अर्थ में कि, यदि फ़िल्टर किए गए संभाव्यता समष्टि को यादृच्छिक प्रयोग के रूप में व्याख्या किया जाता है, तो अधिकतम जानकारी जो यादृच्छिक समय तक प्रयोग को बार-बार दोहराने से प्राप्त की जा सकती है <math>\tau</math> है <math>\mathcal{F}_{\tau}</math>.<ref name="Fischer (2013)">{{cite journal|last=Fischer|first=Tom|title=स्टॉपिंग टाइम्स और स्टॉपिंग टाइम सिग्मा-अलजेब्रा के सरल निरूपण पर|journal=Statistics and Probability Letters|year=2013|volume=83|issue=1|pages=345–349|doi=10.1016/j.spl.2012.09.024|arxiv=1112.1603}}</ref> विशेष रूप से, यदि अंतर्निहित प्रायिकता समष्टि परिमित है (अर्थात <math>\mathcal{F}</math> परिमित है), का न्यूनतम समुच्चय <math>\mathcal{F}_{\tau}</math> (समुच्चय समावेशन के संबंध में) संघ द्वारा सभी पर दिए गए हैं <math>t\geq 0</math> के न्यूनतम समुच्चय के समुच्चय का <math>\mathcal{F}_{t}</math> वह अंदर है <math>\{\tau = t\} </math>.<ref name="Fischer (2013)" /> | |||
यह दिखाया जा सकता है <math>\tau</math> है <math>\mathcal{F}_{\tau}</math>-मापने योग्य। चूँकि, सरल उदाहरण<ref name="Fischer (2013)" /> दिखाओ कि, सामान्य , <math>\sigma(\tau) \neq \mathcal{F}_{\tau}</math>. यदि <math>\tau_ 1</math> और <math>\tau_ 2</math> बार रुक रहे हैं <math>\left(\Omega, \mathcal{F}, \left\{\mathcal{F}_{t}\right\}_{t\geq 0}, \mathbb{P}\right)</math>, और <math>\tau_1 \leq \tau_2</math> [[लगभग निश्चित रूप से]], फिर <math>\mathcal{F}_{\tau_1} \subseteq \mathcal{F}_{\tau_2}.</math> | |||
Latest revision as of 13:08, 30 October 2023
गणित में, निस्पंदन अनुक्रमित सदस्य है किसी दिए गए बीजगणितीय संरचना के सबऑबजेक्ट का , सूचकांक के साथ पूर्ण प्रणाली से ऑर्डर किए गए सूचकांक समुच्चय पर आधारित है , इस नियम के अधीन है कि
- यदि में , तब .
यदि सूचकांक स्टोकेस्टिक प्रक्रिया का समय पैरामीटर है, तो फिल्ट्रेशन की व्याख्या बीजगणितीय संरचना के साथ स्टोचैस्टिक प्रक्रिया के बारे में उपलब्ध सभी ऐतिहासिक भविष्य की जानकारी का प्रतिनिधित्व करने के रूप में नहीं की जा सकती है। समय के साथ सम्मिश्रता प्राप्त करता है। इसलिए, प्रक्रिया जिसे फ़िल्टर के लिए अनुकूलित किया जाता है इसे गैर-प्रत्याशित भी कहा जाता है, क्योंकि यह भविष्य में नहीं देख सकता है।[1]
कभी-कभी, फ़िल्टर किए गए बीजगणित में होता है, कि इसके अतिरिक्त यह आवश्यकता होती है कि कुछ संचालनों के संबंध में सबलजेब्रस हो (जैसे, सदिश जोड़), किन्तु अन्य कार्यों के संबंध में नहीं (कहते हैं , गुणन) संतुष्ट करता है , जहां सूचकांक समुच्चय प्राकृतिक संख्या है; यह ग्रेडेड बीजगणित के अनुरूप है।
कभी-कभी, फिल्ट्रेशन के अतिरिक्त आवश्यकता को पूर्ण करने के लिए माना जाता है कि का संघ (समुच्चय सिद्धांत) संपूर्ण हो, या (अधिक सामान्य स्थितियों में, जब संघ की धारणा समझ में नहीं आती है) विहित समरूपता की प्रत्यक्ष सीमा से की समरूपता है। इस आवश्यकता को माना जाता है या नहीं, यह सामान्यतः पाठ के लेखक पर निर्भर करता है और प्रायः स्पष्ट रूप से कहा जाता है कि लेख इस आवश्यकता को प्रारम्भ नहीं करता है।
अवरोही निस्पंदन' की धारणा भी है, जिसे संतुष्ट करने के लिए ) की आवश्यकता होती है।
यह इस संदर्भ पर निर्भर करता है कि "निस्पंदन" शब्द को वास्तव में कैसे समझा जाए। अवरोही फिल्ट्रेशन को कोफिल्ट्रेशन की दोहरी (श्रेणी सिद्धांत) धारणा के साथ भ्रमित नहीं होना चाहिए (जिसमें उप-वस्तुओं के अतिरिक्त मात्रात्मक वस्तुएं सम्मिलित होती हैं)।
निस्पंदन का व्यापक रूप से सार बीजगणित, समरूप बीजगणित (जहां वे वर्णक्रमीय अनुक्रमों के लिए महत्वपूर्ण विधियों से संबंधित हैं) में उपयोग किया जाता है, और सिग्मा बीजगणित के नेस्टेड अनुक्रमों के लिए सिद्धांत और संभाव्यता सिद्धांत को मापता है। फलनात्मक विश्लेषण और संख्यात्मक विश्लेषण में, सामान्यतः अन्य शब्दावली का उपयोग किया जाता है, जैसे कि रिक्त समष्टि या नेस्टेड रिक्त समष्टि का पैमाना हैं।
उदाहरण
बीजगणित
देखें: फ़िल्टर्ड बीजगणित
समूह
बीजगणित में, निस्पंदन को सामान्यतः द्वारा अनुक्रमित किया जाता है, जो प्राकृतिक संख्याओं का समूह (गणित) है।समूह का निस्पंदन के सामान्य उपसमूह का नेस्टेड अनुक्रम है। (अर्थात, किसी के लिए के लिए है।) ध्यान दें कि निस्पंदन शब्द का यह प्रयोग हमारे अवरोही निस्पंदन से संघित होता है।
समूह और निस्पंदन दिए जाने पर टोपोलॉजी को परिभाषित करने का प्राकृतिक विधि है, जिसे निस्पंदन से जुड़ा हुआ कहा जाता है। इस टोपोलॉजी का आधार निस्पंदन में दिखाई देने वाले उपसमूहों का सहसमुच्चयों है, जैसे को उप-समुच्चयों के लिए परिभाषित किया गया है, यदि यह है, जहाँ और प्राकृतिक संख्या है।
समूह पर निस्पंदन से संबंधित टोपोलॉजी को सामयिक समूह बनाती है।
समूह पर निस्पंदन से संबंधित टोपोलॉजी हॉसडॉर्फ समष्टि है यदि है।
यदि दो निस्पंदन और समूह पर परिभाषित है पहचान मानचित्र से तक, जहां की सर्वप्रथम प्रति टोपोलॉजी और दूसरा टोपोलॉजी निरंतर है यदि वहाँ है तो के लिए है कि है, अर्थात, यदि केवल पहचान मानचित्र 1 पर निरंतर है। तो विशेष रूप से, दो निस्पंदन उसी टोपोलॉजी को परिभाषित करता है यदि केवल किसी उपसमूह के लिए एक में दिखाई दे रहा है तो दूसरे में छोटा या समान दिखाई दे रहा है।
वलय और मॉड्यूल: अवरोही निस्पंदन
वलय और - मापांक को दिए जाने पर, का अवरोही निस्पंदन सबमॉड्यूल का घटता क्रम है, इसलिए यह समूहों के लिए धारणा की विशेष स्थिति है, अतिरिक्त नियम के अनुसार उपसमूह का सबमॉड्यूल हैं। संबंधित टोपोलॉजी को समूहों के लिए परिभाषित किया गया है।
महत्वपूर्ण विशेष स्थिति को - ऐडिक टोपोलॉजी (या - एडिक, आदि) के रूप में जाना जाता है, क्रमविनिमेय वलय है, और का आदर्श है। मॉड्यूल दिया गया है, के सबमॉड्यूल का अनुक्रम बनाता है का निस्पंदन -एडिक टोपोलॉजी पर निस्पंदन से जुड़ी टोपोलॉजी है। यदि सिर्फ वलय ही है, तो पर -एडिक टोपोलॉजी को परिभाषित किया गया है।
जब को -एडिक टोपोलॉजी दी जाती है, तो टोपोलॉजिकल वलय बन जाता है। यदि -मापांक को -एडिक टोपोलॉजी दी जाती है, तो यह टोपोलॉजिकल मॉड्यूल बन जाता है | मॉड्यूल दिए गए टोपोलॉजी के सापेक्ष -एडिक है।
वलय और मॉड्यूल: आरोही निस्पंदन
वलय और -मापांक को दिए जाने पर का आरोही निस्पंदन सबमॉड्यूल का बढ़ता क्रम है विशेष रूप से, यदि का क्षेत्र है, फिर का आरोही निस्पंदन -सदिश स्थल की सदिश उपसमष्टियों का बढ़ता क्रम है . फ़्लैग (रैखिक बीजगणित) ऐसे फ़िल्टरों का महत्वपूर्ण वर्ग है।
समुच्चय
किसी समुच्चय का अधिकतम फिल्ट्रेशन समुच्चय के ऑर्डवलय (क्रम परिवर्तन) के उपयुक्त होता है। उदाहरण के लिए, छानना आदेश से मेल खाता है .तत्व के साथ क्षेत्र के दृष्टिकोण से,समुच्चय परआदेश अधिकतम ध्वज (रैखिक बीजगणित) (एक सदिश समष्टि परनिस्पंदन) से मेल खाता है,तत्व के साथ क्षेत्र परसदिश समष्टि होने पर विचार करता है।
माप सिद्धांत
माप सिद्धांत में, विशेष रूप से मार्टिंगेल सिद्धांत और स्टोकेस्टिक प्रक्रियाओं के सिद्धांत में,निस्पंदन सिग्मा बीजगणित काबढ़ता क्रम (गणित) है| मापने योग्य समष्टि पर बीजगणित। यानी मापने योग्य जगह दी गई है ,निस्पंदन काक्रम है -बीजगणित साथ जहां प्रत्येक गैर-ऋणात्मक वास्तविक संख्या है और
समय की सटीक सीमा सामान्यतः संदर्भ पर निर्भर करेगा मूल्यों का समुच्चय असतत समुच्चय या निरंतर, बंधा हुआ समुच्चय या अनबाउंड हो सकता है। उदाहरण के लिए,
इसी तरह,फ़िल्टर्ड प्रायिकता समष्टि (स्टोकेस्टिक आधार के रूप में भी जाना जाता है) , फिल्ट्रेशन से लैसप्रायिकता समष्टि है उसके जैसा -बीजगणित . फ़िल्टर किए गए संभाव्यता समष्टि को सामान्य स्थितियों को पूर्ण करने के लिए कहा जाता है यदि यह पूर्ण माप है (यानी, सभी सम्मिलित हैं -अशक्त समुच्चय) और दाएँ-निरंतर (अर्थात हर समय के लिए ).[2][3][4] यह परिभाषित करने के लिए भी उपयोगी है (अनबाउंड इंडेक्स समुच्चय के मामले में)। के रूप में -बीजगणित के अनंत मिलन से उत्पन्न है, जिसमें निहित है :
- σ-बीजगणित उन घटनाओं के समुच्चय को परिभाषित करता है जिन्हें मापा जा सकता है, जो संभाव्यता के संदर्भ में उन घटनाओं के उपयुक्त है जिनमें भेदभाव किया जा सकता है, या ऐसे प्रश्न जिनका उत्तर समय पर दिया जा सकता है . इसलिए,फिल्ट्रेशन का उपयोग अक्सर उन घटनाओं के समुच्चय में परिवर्तन का प्रतिनिधित्व करने के लिए किया जाता है, जिन्हें जानकारी के लाभ या हानि के माध्यम से मापा जा सकता है। विशिष्ट उदाहरण गणितीय वित्त में है, जहां फिल्ट्रेशन प्रत्येक समय तक और सहित उपलब्ध जानकारी का प्रतिनिधित्व करता है , और अधिक से अधिक सटीक है (मापने योग्य घटनाओं का समुच्चय वही रहता है या बढ़ रहा है) क्योंकि स्टॉक मूल्य के विकास से अधिक जानकारी उपलब्ध हो जाती है।
स्टॉपिंग टाइम से संबंध: स्टॉपिंग टाइम सिग्मा-अलजेब्रा
होने देना फ़िल्टर्ड प्रायिकता समष्टि हो।यादृच्छिक चर #माप सिद्धांत के संबंध में रुकने का समय है , यदि सभी के लिए . रुकने का समय -बीजगणित को अब परिभाषित किया गया है
- .
इसे दिखाना मुश्किल नहीं है वास्तव में सिग्मा-बीजगणित है | -बीजगणित
समुच्चय यादृच्छिक समय तक जानकारी को एन्कोड करता है इस अर्थ में कि, यदि फ़िल्टर किए गए संभाव्यता समष्टि को यादृच्छिक प्रयोग के रूप में व्याख्या किया जाता है, तो अधिकतम जानकारी जो यादृच्छिक समय तक प्रयोग को बार-बार दोहराने से प्राप्त की जा सकती है है .[5] विशेष रूप से, यदि अंतर्निहित प्रायिकता समष्टि परिमित है (अर्थात परिमित है), का न्यूनतम समुच्चय (समुच्चय समावेशन के संबंध में) संघ द्वारा सभी पर दिए गए हैं के न्यूनतम समुच्चय के समुच्चय का वह अंदर है .[5]
यह दिखाया जा सकता है है -मापने योग्य। चूँकि, सरल उदाहरण[5] दिखाओ कि, सामान्य , . यदि और बार रुक रहे हैं , और लगभग निश्चित रूप से, फिर
यह भी देखें
- प्राकृतिक फिल्ट्रेशन
- निस्पंदन (संभावना सिद्धांत)
- फ़िल्टर (गणित)
संदर्भ
- ↑ Björk, Thomas (2005). "Appendix B". आर्बिट्रेज थ्योरी इन कंटीन्यूअस टाइम. ISBN 978-0-19-927126-9.
- ↑ Péter Medvegyev (January 2009). "Stochastic Processes: A very simple introduction" (PDF). Retrieved June 25, 2012.
- ↑ Claude Dellacherie (1979). संभावनाएं और क्षमता. Elsevier. ISBN 9780720407013.
- ↑ George Lowther (November 8, 2009). "फिल्ट्रेशन और अनुकूलित प्रक्रियाएं". Retrieved June 25, 2012.
- ↑ 5.0 5.1 5.2 Fischer, Tom (2013). "स्टॉपिंग टाइम्स और स्टॉपिंग टाइम सिग्मा-अलजेब्रा के सरल निरूपण पर". Statistics and Probability Letters. 83 (1): 345–349. arXiv:1112.1603. doi:10.1016/j.spl.2012.09.024.
- Øksendal, Bernt K. (2003). Stochastic Differential Equations: An Introduction with Applications. Berlin: Springer. ISBN 978-3-540-04758-2.