बहुरेखीय मानचित्र: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
Line 1: Line 1:
{{Short description|Vector-valued function of multiple vectors, linear in each argument}}
{{Short description|Vector-valued function of multiple vectors, linear in each argument}}रेखीय बीजगणित में, '''बहुरेखीय मानचित्र''' कई चरों का फलन (गणित) है जो प्रत्येक चर में पृथक रूप से रेखीय फलन होता है। अधिक त्रुटिहीन रूप से, बहु-रेखीय मानचित्र फलन है
{{For|क्रिप्टोग्राफी में उपयोग किए जाने वाले बहुरेखीय मानचित्र|क्रिप्टोग्राफिक मल्टीलाइनर मैप}}
 
रेखीय बीजगणित में, बहुरेखीय मानचित्र कई चरों का फलन (गणित) है जो प्रत्येक चर में पृथक रूप से रेखीय फलन होता है। अधिक त्रुटिहीन रूप से, बहु-रेखीय मानचित्र फलन है


:<math>f\colon V_1 \times \cdots \times V_n \to W\text{,}</math>
:<math>f\colon V_1 \times \cdots \times V_n \to W\text{,}</math>
जहाँ <math>V_1,\ldots,V_n</math> और <math>W</math> निम्नलिखित संपत्ति के साथ सदिशरिक्त स्थान (या [[मॉड्यूल (गणित)]][[ क्रमविनिमेय अंगूठी | क्रमविनिमेय रिंग]] पर) हैं: प्रत्येक के लिए <math>i</math>, यदि सभी चर <math>v_i</math> को स्थिर रखा जाता है, तो <math>f(v_1, \ldots,  
जहाँ <math>V_1,\ldots,V_n</math> और <math>W</math> निम्नलिखित संपत्ति के साथ सदिशरिक्त स्थान (या [[मॉड्यूल (गणित)]] क्रमविनिमेय वलय पर) हैं: प्रत्येक के लिए <math>i</math>, यदि सभी चर <math>v_i</math> को स्थिर रखा जाता है, तो <math>f(v_1, \ldots,  
  v_i, \ldots, v_n)</math> का रैखिक कार्य <math>v_i</math> है I<ref>{{cite book |author-link=Serge Lang |first=Serge |last=Lang |title=बीजगणित|chapter=XIII. Matrices and Linear Maps §S Determinants |chapter-url=https://books.google.com/books?id=Fge-BwqhqIYC&pg=PA511 |date=2005 |origyear=2002 |publisher=Springer |edition=3rd |isbn=978-0-387-95385-4 |pages=511– |volume=211 |series=Graduate Texts in Mathematics}}</ref>
  v_i, \ldots, v_n)</math> का रैखिक फलन <math>v_i</math> है I<ref>{{cite book |author-link=Serge Lang |first=Serge |last=Lang |title=बीजगणित|chapter=XIII. Matrices and Linear Maps §S Determinants |chapter-url=https://books.google.com/books?id=Fge-BwqhqIYC&pg=PA511 |date=2005 |origyear=2002 |publisher=Springer |edition=3rd |isbn=978-0-387-95385-4 |pages=511– |volume=211 |series=Graduate Texts in Mathematics}}</ref>


चर का बहुरेखीय मानचित्र रेखीय मानचित्र है, और दो चरों का द्विरेखीय मानचित्र होता है। सामान्यतः, k चरों के बहुरेखीय मानचित्र को 'k-रैखिक मानचित्र' कहा जाता है। यदि बहुरेखीय मानचित्र का [[कोडोमेन]] अदिशों का क्षेत्र है, तो इसे [[बहुरेखीय रूप]] कहा जाता है। बहुरेखीय मानचित्र और रूप [[बहुरेखीय बीजगणित]] में अध्ययन की मूलभूत वस्तुएँ हैं।
चर का बहुरेखीय मानचित्र रेखीय मानचित्र है, और दो चरों का द्विरेखीय मानचित्र होता है। सामान्यतः, k चरों के बहुरेखीय मानचित्र को 'k-रैखिक मानचित्र' कहा जाता है। यदि बहुरेखीय मानचित्र का [[कोडोमेन]] अदिशों का क्षेत्र है, तो इसे [[बहुरेखीय रूप]] कहा जाता है। बहुरेखीय मानचित्र और रूप [[बहुरेखीय बीजगणित]] में अध्ययन की मूलभूत वस्तुएँ हैं।


यदि सभी चर स्थान से संबंधित हैं, तो कोई सममित एंटीसिमेट्रिक, और वैकल्पिक k-रैखिक मानचित्रों पर विचार कर सकता है। उत्तरार्द्ध संयोग करता है यदि अंतर्निहित [[अंगूठी (गणित)|रिंग (गणित)]] (या [[क्षेत्र (गणित)]]) में दो से भिन्न [[विशेषता (बीजगणित)]] है, अन्यथा पूर्व दो संगयुग्मित होते है।
यदि सभी चर स्थान से संबंधित हैं, तो कोई सममित एंटीसिमेट्रिक, और वैकल्पिक k-रैखिक मानचित्रों पर विचार कर सकता है। उत्तरार्द्ध संयोग करता है यदि अंतर्निहित [[अंगूठी (गणित)|वलय (गणित)]] (या [[क्षेत्र (गणित)]]) में दो से भिन्न [[विशेषता (बीजगणित)]] है, अन्यथा पूर्व दो संगयुग्मित होते है।


== उदाहरण ==
== उदाहरण ==
* कोई भी द्विरेखीय मानचित्र बहुरेखीय मानचित्र होता है। उदाहरण के लिए, सदिश स्थान पर कोई भी आंतरिक उत्पाद बहुरेखीय मानचित्र है, जैसा कि सदिशों का क्रॉस उत्पाद <math>\mathbb{R}^3</math> है।
* कोई भी द्विरेखीय मानचित्र बहुरेखीय मानचित्र होता है। उदाहरण के लिए, सदिश स्थान पर कोई भी आंतरिक उत्पाद बहुरेखीय मानचित्र है, जैसा कि सदिशों का क्रॉस उत्पाद <math>\mathbb{R}^3</math> है।
* आव्यूह का निर्धारक [[स्क्वायर मैट्रिक्स|वर्ग]] आव्यूह के स्तंभों (या पंक्तियों) का [[वैकल्पिक रूप]] बहुरेखीय कार्य है।
* आव्यूह का निर्धारक [[स्क्वायर मैट्रिक्स|वर्ग]] आव्यूह के स्तंभों (या पंक्तियों) का [[वैकल्पिक रूप]] बहुरेखीय फलन है।
* यदि <math>F\colon \mathbb{R}^m \to \mathbb{R}^n</math> का C<sup>k</sup> फलन है, तो <math>k\!</math>वें का व्युत्पन्न <math>F\!</math>  प्रत्येक बिंदु पर <math>p</math> डोमेन में सममित के रूप में देखा जा सकता है <math>k</math>- का रैखिक फलन <math>D^k\!F\colon \mathbb{R}^m\times\cdots\times\mathbb{R}^m \to \mathbb{R}^n</math> है।
* यदि <math>F\colon \mathbb{R}^m \to \mathbb{R}^n</math> का C<sup>k</sup> फलन है, तो <math>k\!</math>वें का व्युत्पन्न <math>F\!</math>  प्रत्येक बिंदु पर <math>p</math> डोमेन में सममित के रूप में देखा जा सकता है <math>k</math>- का रैखिक फलन <math>D^k\!F\colon \mathbb{R}^m\times\cdots\times\mathbb{R}^m \to \mathbb{R}^n</math> है।


Line 24: Line 21:


:<math>f(\textbf{e}_{1j_1},\ldots,\textbf{e}_{nj_n}) = A_{j_1\cdots j_n}^1\,\textbf{b}_1 + \cdots +  A_{j_1\cdots j_n}^d\,\textbf{b}_d.</math>
:<math>f(\textbf{e}_{1j_1},\ldots,\textbf{e}_{nj_n}) = A_{j_1\cdots j_n}^1\,\textbf{b}_1 + \cdots +  A_{j_1\cdots j_n}^d\,\textbf{b}_d.</math>
यदि अदिश <math>\{A_{j_1\cdots j_n}^k \mid 1\leq j_i\leq d_i, 1 \leq k \leq d\}</math>  पूर्ण रूप से बहु-रेखीय कार्य निर्धारित करें <math>f\!</math>. विशेष रूप से है, यदि  
यदि अदिश <math>\{A_{j_1\cdots j_n}^k \mid 1\leq j_i\leq d_i, 1 \leq k \leq d\}</math>  पूर्ण रूप से बहु-रेखीय फलन निर्धारित करें <math>f\!</math>. विशेष रूप से है, यदि  


:<math>\textbf{v}_i = \sum_{j=1}^{d_i} v_{ij} \textbf{e}_{ij}\!</math>
:<math>\textbf{v}_i = \sum_{j=1}^{d_i} v_{ij} \textbf{e}_{ij}\!</math>
Line 52: Line 49:
\{\textbf{e}_2, \textbf{e}_2, \textbf{e}_2\}.
\{\textbf{e}_2, \textbf{e}_2, \textbf{e}_2\}.
</math>
</math>
प्रत्येक सदिश <math>\textbf{v}_i \in V_i = R^2</math> को आधार वैक्टर के रैखिक संयोजन के रूप में व्यक्त किया जा सकता है:
प्रत्येक सदिश <math>\textbf{v}_i \in V_i = R^2</math> को आधार सदिश के रैखिक संयोजन के रूप में व्यक्त किया जा सकता है:


:<math>\textbf{v}_i = \sum_{j=1}^{2} v_{ij} \textbf{e}_{ij} = v_{i1} \times \textbf{e}_1 + v_{i2} \times \textbf{e}_2 = v_{i1} \times (1, 0) + v_{i2} \times (0, 1).</math>
:<math>\textbf{v}_i = \sum_{j=1}^{2} v_{ij} \textbf{e}_{ij} = v_{i1} \times \textbf{e}_1 + v_{i2} \times \textbf{e}_2 = v_{i1} \times (1, 0) + v_{i2} \times (0, 1).</math>
Line 77: Line 74:


:<math>F\colon V_1 \otimes \cdots \otimes V_n \to W\text{,}</math>
:<math>F\colon V_1 \otimes \cdots \otimes V_n \to W\text{,}</math>
जहाँ <math>V_1 \otimes \cdots \otimes V_n\!</math> के [[टेंसर उत्पाद]] को दर्शाता है <math>V_1,\ldots,V_n</math> कार्यों के मध्य संबंध <math>f\!</math> और <math>F\!</math>  सूत्र द्वारा दिया गया है:
जहाँ <math>V_1 \otimes \cdots \otimes V_n\!</math> के [[टेंसर उत्पाद]] को दर्शाता है <math>V_1,\ldots,V_n</math> फलनों के मध्य संबंध <math>f\!</math> और <math>F\!</math>  सूत्र द्वारा दिया गया है:


:<math>f(v_1,\ldots,v_n)=F(v_1\otimes \cdots \otimes v_n).</math>
:<math>f(v_1,\ldots,v_n)=F(v_1\otimes \cdots \otimes v_n).</math>


== n×n आव्यूहों पर बहुरेखीय कार्य ==
== n×n आव्यूहों पर बहुरेखीय फलन ==
आव्यूह की पंक्तियों (या समतुल्य रूप से स्थान) को फलन के रूप में पहचान के साथ कम्यूटेटिव रिंग K पर n × n आव्यूह पर बहुरेखीय कार्य पर विचार किया जा सकता है, मान लीजिए {{math|''A''}} ऐसा आव्यूह है और ai, 1 ≤ i ≤ n, A की पंक्तियाँ हैं और फिर बहुरेखीय फलन {{math|''D''}} के रूप में लिखा जा सकता है:
आव्यूह की पंक्तियों (या समतुल्य रूप से स्थान) को फलन के रूप में पहचान के साथ कम्यूटेटिव वलय K पर n × n आव्यूह पर बहुरेखीय फलन पर विचार किया जा सकता है, मान लीजिए {{math|''A''}} ऐसा आव्यूह है और ai, 1 ≤ i ≤ n, A की पंक्तियाँ हैं और फिर बहुरेखीय फलन {{math|''D''}} के रूप में लिखा जा सकता है:


:<math>D(A) = D(a_{1},\ldots,a_{n}),</math>
:<math>D(A) = D(a_{1},\ldots,a_{n}),</math>
Line 110: Line 107:
D(A) = A_{1,1}A_{1,2}D(\hat{e}_1,\hat{e}_1) + A_{1,1}A_{2,2}D(\hat{e}_1,\hat{e}_2) + A_{1,2}A_{2,1}D(\hat{e}_2,\hat{e}_1) + A_{1,2}A_{2,2}D(\hat{e}_2,\hat{e}_2) \,
D(A) = A_{1,1}A_{1,2}D(\hat{e}_1,\hat{e}_1) + A_{1,1}A_{2,2}D(\hat{e}_1,\hat{e}_2) + A_{1,2}A_{2,1}D(\hat{e}_2,\hat{e}_1) + A_{1,2}A_{2,2}D(\hat{e}_2,\hat{e}_2) \,
</math>
</math>
जहाँ <math>\hat{e}_1 = [1,0]</math> और <math>\hat{e}_2 = [0,1]</math> यदि प्रतिबंधित करते हैं तब <math>D</math> वैकल्पिक कार्य होता है, <math>D(\hat{e}_1,\hat{e}_1) = D(\hat{e}_2,\hat{e}_2) = 0</math> और <math>D(\hat{e}_2,\hat{e}_1) = -D(\hat{e}_1,\hat{e}_2) = -D(I)</math>. दे <math>D(I) = 1</math> हमें 2×2 आव्यूहों पर निर्धारक फलन प्राप्त होता है:
जहाँ <math>\hat{e}_1 = [1,0]</math> और <math>\hat{e}_2 = [0,1]</math> यदि प्रतिबंधित करते हैं तब <math>D</math> वैकल्पिक फलन होता है, <math>D(\hat{e}_1,\hat{e}_1) = D(\hat{e}_2,\hat{e}_2) = 0</math> और <math>D(\hat{e}_2,\hat{e}_1) = -D(\hat{e}_1,\hat{e}_2) = -D(I)</math>. दे <math>D(I) = 1</math> हमें 2×2 आव्यूहों पर निर्धारक फलन प्राप्त होता है:


:<math> D(A) = A_{1,1}A_{2,2} - A_{1,2}A_{2,1} .</math>
:<math> D(A) = A_{1,1}A_{2,2} - A_{1,2}A_{2,1} .</math>
Line 122: Line 119:
* बहुरेखीय रूप
* बहुरेखीय रूप
* [[सजातीय बहुपद]]
* [[सजातीय बहुपद]]
* [[सजातीय कार्य]]
* [[सजातीय कार्य|सजातीय फलन]]
* [[ टेन्सर ]]
* [[ टेन्सर ]]



Latest revision as of 15:19, 30 October 2023

रेखीय बीजगणित में, बहुरेखीय मानचित्र कई चरों का फलन (गणित) है जो प्रत्येक चर में पृथक रूप से रेखीय फलन होता है। अधिक त्रुटिहीन रूप से, बहु-रेखीय मानचित्र फलन है

जहाँ और निम्नलिखित संपत्ति के साथ सदिशरिक्त स्थान (या मॉड्यूल (गणित) क्रमविनिमेय वलय पर) हैं: प्रत्येक के लिए , यदि सभी चर को स्थिर रखा जाता है, तो का रैखिक फलन है I[1]

चर का बहुरेखीय मानचित्र रेखीय मानचित्र है, और दो चरों का द्विरेखीय मानचित्र होता है। सामान्यतः, k चरों के बहुरेखीय मानचित्र को 'k-रैखिक मानचित्र' कहा जाता है। यदि बहुरेखीय मानचित्र का कोडोमेन अदिशों का क्षेत्र है, तो इसे बहुरेखीय रूप कहा जाता है। बहुरेखीय मानचित्र और रूप बहुरेखीय बीजगणित में अध्ययन की मूलभूत वस्तुएँ हैं।

यदि सभी चर स्थान से संबंधित हैं, तो कोई सममित एंटीसिमेट्रिक, और वैकल्पिक k-रैखिक मानचित्रों पर विचार कर सकता है। उत्तरार्द्ध संयोग करता है यदि अंतर्निहित वलय (गणित) (या क्षेत्र (गणित)) में दो से भिन्न विशेषता (बीजगणित) है, अन्यथा पूर्व दो संगयुग्मित होते है।

उदाहरण

  • कोई भी द्विरेखीय मानचित्र बहुरेखीय मानचित्र होता है। उदाहरण के लिए, सदिश स्थान पर कोई भी आंतरिक उत्पाद बहुरेखीय मानचित्र है, जैसा कि सदिशों का क्रॉस उत्पाद है।
  • आव्यूह का निर्धारक वर्ग आव्यूह के स्तंभों (या पंक्तियों) का वैकल्पिक रूप बहुरेखीय फलन है।
  • यदि का Ck फलन है, तो वें का व्युत्पन्न प्रत्येक बिंदु पर डोमेन में सममित के रूप में देखा जा सकता है - का रैखिक फलन है।

समन्वय प्रतिनिधित्व

इस प्रकार है:

परिमित-आयामी सदिशरिक्त स्थान के मध्य बहु-रैखिक मानचित्र बनें, जहां , , और आयाम है यदि हम . आधार चयन करते हैं तो (रैखिक बीजगणित) प्रत्येक के लिए और आधार के लिए (सदिश के लिए बोल्ड का उपयोग करके), अदिश के संग्रह को परिभाषित कर सकते हैं इसके द्वारा

यदि अदिश पूर्ण रूप से बहु-रेखीय फलन निर्धारित करें . विशेष रूप से है, यदि

के लिए , तब


उदाहरण

ट्रिलिनियर फलन इस प्रकार है:

जहाँ Vi = R2, di = 2, i = 1,2,3, और W = R, d = 1.

प्रत्येक Vi के लिए आधार है:

जहाँ . दूसरे शब्दों में, स्थिर आधार सदिशों के आठ संभावित त्रिगुणों में से फलन का मान है (चूंकि तीन में से प्रत्येक के लिए दो विकल्प हैं ), अर्थात्:

प्रत्येक सदिश को आधार सदिश के रैखिक संयोजन के रूप में व्यक्त किया जा सकता है:

तीन सदिशों के मनमाने संग्रह पर फलन मान के रूप में व्यक्त किया जा सकता है

या, विस्तारित रूप में


टेंसर उत्पादों से संबंध

बहुरेखीय मानचित्र के मध्य स्वाभाविक रूप से पत्राचार होता है:

और रैखिक मानचित्र

जहाँ के टेंसर उत्पाद को दर्शाता है फलनों के मध्य संबंध और सूत्र द्वारा दिया गया है:

n×n आव्यूहों पर बहुरेखीय फलन

आव्यूह की पंक्तियों (या समतुल्य रूप से स्थान) को फलन के रूप में पहचान के साथ कम्यूटेटिव वलय K पर n × n आव्यूह पर बहुरेखीय फलन पर विचार किया जा सकता है, मान लीजिए A ऐसा आव्यूह है और ai, 1 ≤ i ≤ n, A की पंक्तियाँ हैं और फिर बहुरेखीय फलन D के रूप में लिखा जा सकता है:

संतुष्टि देने वाला

यदि पहचान आव्यूह की j पंक्ति का प्रतिनिधित्व करते हैं, हम प्रत्येक पंक्ति ai को योग के रूप में व्यक्त कर सकते हैं:

D की बहुरेखीयता का उपयोग करके हम D(A) को इस रूप में फिर से लिखते हैं जैसा

प्रत्येक ai के लिए इस प्रतिस्थापन को प्रारम्भ रखते हुए, हम प्राप्त कर सकते हैं 1 ≤ in,

इसलिए, D(A) विशिष्ट रूप से निर्धारित होता है कि D कैसे संचालित होता है .

उदाहरण

2×2 आव्यूह की स्थिति में:

जहाँ और यदि प्रतिबंधित करते हैं तब वैकल्पिक फलन होता है, और . दे हमें 2×2 आव्यूहों पर निर्धारक फलन प्राप्त होता है:


गुण

  • जब भी इसका तर्क शून्य होता है तो बहुरेखीय मानचित्र का मान शून्य होता है |

यह भी देखें

संदर्भ

  1. Lang, Serge (2005) [2002]. "XIII. Matrices and Linear Maps §S Determinants". बीजगणित. Graduate Texts in Mathematics. Vol. 211 (3rd ed.). Springer. pp. 511–. ISBN 978-0-387-95385-4.