कुराटोव्स्की क्लोजर एक्सिओम्स: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
Line 1: Line 1:
[[टोपोलॉजी]] और गणित की संबंधित शाखाओं में, कुराटोव्स्की क्लोजर [[स्वयंसिद्ध]] स्वयंसिद्धों का समूह है जिसका उपयोग [[सेट (गणित)|समुच्चय (गणित)]] पर सांस्थितिकीय संरचना को परिभाषित करने के लिए किया जा सकता है। वे अधिक सामान्यतः उपयोग किए जाने वाले खुले समुच्चय की परिभाषा के सामान्य हैं। उन्हें सबसे पहले [[काज़िमिर्ज़ कुराटोव्स्की]] द्वारा औपचारिक रूप दिया गया था। <ref name=":3">{{Harvp|Kuratowski|1922}}.</ref> और इस विचार का आगे अन्य गणितज्ञों जैसे वाक्ला सिएरपिन्स्की और एंटोनियो मोंटेइरो  द्वारा अध्ययन किया गया।
[[टोपोलॉजी]] और गणित की संबंधित शाखाओं में, कुराटोव्स्की क्लोजर एक्सिओम्स एक्सिओम्सों का समूह है जिसका उपयोग [[सेट (गणित)|समुच्चय (गणित)]] पर सांस्थितिकीय संरचना को परिभाषित करने के लिए किया जा सकता है। वे अधिक सामान्यतः उपयोग किए जाने वाले खुले समुच्चय की परिभाषा के सामान्य हैं। उन्हें सबसे पहले [[काज़िमिर्ज़ कुराटोव्स्की]] द्वारा औपचारिक रूप दिया गया था। <ref name=":3">{{Harvp|Kuratowski|1922}}.</ref> और इस विचार का आगे अन्य गणितज्ञों जैसे वाक्ला सिएरपिन्स्की और एंटोनियो मोंटेइरो  द्वारा अध्ययन किया गया।


आंतरिक  (टोपोलॉजी) या आंतरिक  प्रचालक की केवल दोहरी धारणा का उपयोग करके टोपोलॉजिकल संरचना को परिभाषित करने के लिए स्वयंसिद्धों के समान समुच्चय का उपयोग किया जा सकता है। <ref name=":2" />
आंतरिक  (टोपोलॉजी) या आंतरिक  प्रचालक की केवल दोहरी धारणा का उपयोग करके टोपोलॉजिकल संरचना को परिभाषित करने के लिए एक्सिओम्सों के समान समुच्चय का उपयोग किया जा सकता है। <ref name=":2" />
== परिभाषा ==
== परिभाषा ==


Line 18: Line 18:
का परिणाम <math>\mathbf{c}</math> बाइनरी यूनियनों को संरक्षित करना निम्न शर्त है: <ref>{{Harvp|Pervin|1964|p=43}}, Exercise 6.</ref>
का परिणाम <math>\mathbf{c}</math> बाइनरी यूनियनों को संरक्षित करना निम्न शर्त है: <ref>{{Harvp|Pervin|1964|p=43}}, Exercise 6.</ref>
{{Quote frame|quote='''[K4']'''यह ''[[मोनोटोनिक फंक्शन|मोनोटोन]] है'': <math> A \subseteq B \Rightarrow \mathbf{c}(A) \subseteq \mathbf{c}(B) </math>.}}
{{Quote frame|quote='''[K4']'''यह ''[[मोनोटोनिक फंक्शन|मोनोटोन]] है'': <math> A \subseteq B \Rightarrow \mathbf{c}(A) \subseteq \mathbf{c}(B) </math>.}}
वास्तव में यदि हम [K4] में समानता को समावेशन के रूप में फिर से लिखते हैं, तो कमजोर स्वयंसिद्ध [K4<nowiki>''</nowiki>] (सबअडिटीविटी) देते हुए:
वास्तव में यदि हम [K4] में समानता को समावेशन के रूप में फिर से लिखते हैं, तो कमजोर एक्सिओम्स [K4<nowiki>''</nowiki>] (सबअडिटीविटी) देते हुए:
{{Quote frame|quote='''[K4<nowiki>''</nowiki>]'''  
{{Quote frame|quote='''[K4<nowiki>''</nowiki>]'''  
यह ''सबएडिटिव'' है: सभी के लिए<math>A,B \subseteq X</math>, <math> \mathbf{c}(A \cup B) \subseteq \mathbf{c}(A) \cup \mathbf{c}(B)</math>,}}
यह ''सबएडिटिव'' है: सभी के लिए<math>A,B \subseteq X</math>, <math> \mathbf{c}(A \cup B) \subseteq \mathbf{c}(A) \cup \mathbf{c}(B)</math>,}}
तो यह देखना आसान है कि अभिगृहीत [K4'] और [K4<nowiki>''</nowiki>] एक साथ [K4] के समतुल्य हैं (नीचे प्रमाण 2 का अगला-से-अंतिम पैराग्राफ देखें)।
तो यह देखना आसान है कि अभिगृहीत [K4'] और [K4<nowiki>''</nowiki>] एक साथ [K4] के समतुल्य हैं (नीचे प्रमाण 2 का अगला-से-अंतिम पैराग्राफ देखें)।


{{Harvp|कुराटोव्स्की|1966}} पाँचवाँ (वैकल्पिक) स्वयंसिद्ध सम्मिलित है जिसके लिए आवश्यक है कि सिंगलटन समुच्चय क्लोजर के अनुसार स्थिर होना चाहिए: सभी के लिए <math>x \in X</math>, <math>\mathbf{c}(\{x\}) = \{x\}</math>. वह टोपोलॉजिकल रिक्त स्थान को संदर्भित करता है जो सभी पांच सिद्धांतों को ''T<sub>1</sub>'' के रूप में संतुष्ट करता है अधिक सामान्य स्थानों के विपरीत स्थान जो केवल चार सूचीबद्ध स्वयंसिद्धों को संतुष्ट करते हैं। वास्तव में, ये रिक्त स्थान बिल्कुल ''T<sub>1</sub>'' स्थान है | टोपोलॉजिकल ''T<sub>1</sub>'' के अनुरूप हैं-सामान्य पत्राचार के माध्यम से रिक्त स्थान (नीचे देखें)। <ref name=":0">{{Harvp|Kuratowski|1966|p=38}}.</ref>
{{Harvp|कुराटोव्स्की|1966}} पाँचवाँ (वैकल्पिक) एक्सिओम्स सम्मिलित है जिसके लिए आवश्यक है कि सिंगलटन समुच्चय क्लोजर के अनुसार स्थिर होना चाहिए: सभी के लिए <math>x \in X</math>, <math>\mathbf{c}(\{x\}) = \{x\}</math>. वह टोपोलॉजिकल रिक्त स्थान को संदर्भित करता है जो सभी पांच सिद्धांतों को ''T<sub>1</sub>'' के रूप में संतुष्ट करता है अधिक सामान्य स्थानों के विपरीत स्थान जो केवल चार सूचीबद्ध एक्सिओम्सों को संतुष्ट करते हैं। वास्तव में, ये रिक्त स्थान बिल्कुल ''T<sub>1</sub>'' स्थान है | टोपोलॉजिकल ''T<sub>1</sub>'' के अनुरूप हैं-सामान्य पत्राचार के माध्यम से रिक्त स्थान (नीचे देखें)। <ref name=":0">{{Harvp|Kuratowski|1966|p=38}}.</ref>


यदि आवश्यकता [K3] को छोड़ दिया जाता है, तो सिद्धांत चेक क्लोजर प्रचालक को परिभाषित करते हैं। <ref>{{Harvp|Arkhangel'skij|Fedorchuk|1990|p=25}}.</ref> यदि इसके अतिरिक्त [K1] को छोड़ दिया जाता है, तो [K2], [K3] और [K4'] को संतुष्ट करने वाले प्रचालक को मूर क्लोजर प्रचालक कहा जाता है। <ref>{{Cite web|url=https://ncatlab.org/nlab/show/Moore+closure#InTermsOfClosureOperators|title=Moore closure|date=March 7, 2015|website=nLab|access-date=August 19, 2019}}</ref> एक जोड़ी <math>(X, \mathbf{c})</math> से संतुष्ट स्वयंसिद्धों के आधार पर कुराटोस्की, चेक या मूर क्लोजर स्पेस <math>\mathbf{c}</math> कहा जाता है .
यदि आवश्यकता [K3] को छोड़ दिया जाता है, तो सिद्धांत चेक क्लोजर प्रचालक को परिभाषित करते हैं। <ref>{{Harvp|Arkhangel'skij|Fedorchuk|1990|p=25}}.</ref> यदि इसके अतिरिक्त [K1] को छोड़ दिया जाता है, तो [K2], [K3] और [K4'] को संतुष्ट करने वाले प्रचालक को मूर क्लोजर प्रचालक कहा जाता है। <ref>{{Cite web|url=https://ncatlab.org/nlab/show/Moore+closure#InTermsOfClosureOperators|title=Moore closure|date=March 7, 2015|website=nLab|access-date=August 19, 2019}}</ref> एक जोड़ी <math>(X, \mathbf{c})</math> से संतुष्ट एक्सिओम्सों के आधार पर कुराटोस्की, चेक या मूर क्लोजर स्पेस <math>\mathbf{c}</math> कहा जाता है .


=== वैकल्पिक स्वयंसिद्धीकरण ===
=== वैकल्पिक एक्सिओम्सीकरण ===
चार कुराटोव्स्की क्लोजर स्वयंसिद्धों को एक ही स्थिति से बदला जा सकता है, जिसे पेरविन द्वारा दिया गया है: <ref>{{Harvp|Pervin|1964|p=42}}, Exercise 5.</ref>
चार कुराटोव्स्की क्लोजर एक्सिओम्सों को एक ही स्थिति से बदला जा सकता है, जिसे पेरविन द्वारा दिया गया है: <ref>{{Harvp|Pervin|1964|p=42}}, Exercise 5.</ref>
{{Quote frame|quote='''[P]'''सभी के लिए <math>A,B \subseteq X</math>, <math>A \cup \mathbf{c}(A) \cup \mathbf{c}(\mathbf{c}(B)) = \mathbf{c}(A \cup B) \setminus \mathbf{c}(\varnothing)</math>.}}
{{Quote frame|quote='''[P]'''सभी के लिए <math>A,B \subseteq X</math>, <math>A \cup \mathbf{c}(A) \cup \mathbf{c}(\mathbf{c}(B)) = \mathbf{c}(A \cup B) \setminus \mathbf{c}(\varnothing)</math>.}}
अभिगृहीत [K1]-[K4] इस आवश्यकता के परिणामस्वरूप प्राप्त किया जा सकता है:
अभिगृहीत [K1]-[K4] इस आवश्यकता के परिणामस्वरूप प्राप्त किया जा सकता है:
Line 41: Line 41:
आवश्यकता [K1] [M] से स्वतंत्र है: वास्तव में, यदि <math>X \neq \varnothing</math>, परिचालक <math>\mathbf{c}^\star : \wp(X) \to \wp(X)</math> निरंतर कार्य द्वारा परिभाषित <math>A \mapsto \mathbf{c}^\star(A) := X</math> संतुष्ट करता है [एम] किन्तुखाली समुच्चय को संरक्षित नहीं करता है, क्योंकि <math>\mathbf{c}^\star(\varnothing) = X</math>. ध्यान दें कि, परिभाषा के अनुसार, [एम] को संतुष्ट करने वाला कोई भी प्रचालक मूर क्लोजर प्रचालक है।
आवश्यकता [K1] [M] से स्वतंत्र है: वास्तव में, यदि <math>X \neq \varnothing</math>, परिचालक <math>\mathbf{c}^\star : \wp(X) \to \wp(X)</math> निरंतर कार्य द्वारा परिभाषित <math>A \mapsto \mathbf{c}^\star(A) := X</math> संतुष्ट करता है [एम] किन्तुखाली समुच्चय को संरक्षित नहीं करता है, क्योंकि <math>\mathbf{c}^\star(\varnothing) = X</math>. ध्यान दें कि, परिभाषा के अनुसार, [एम] को संतुष्ट करने वाला कोई भी प्रचालक मूर क्लोजर प्रचालक है।


[एम] के लिए अधिक सममित विकल्प भी एम. ओ. बोटेल्हो और एम. एच.टेक्सेरा द्वारा स्वयंसिद्ध [K2] - [K4] को प्रयुक्त करने के लिए सिद्ध किया गया था: <ref name=":1">{{Harvp|Monteiro|1945|p=160}}.</ref>
[एम] के लिए अधिक सममित विकल्प भी एम. ओ. बोटेल्हो और एम. एच.टेक्सेरा द्वारा एक्सिओम्स [K2] - [K4] को प्रयुक्त करने के लिए सिद्ध किया गया था: <ref name=":1">{{Harvp|Monteiro|1945|p=160}}.</ref>
{{Quote frame|quote='''[BT]''' सभी के लिए <math>A,B \subseteq X</math>, <math display="inline">A \cup B \cup \mathbf{c}(\mathbf{c}(A)) \cup \mathbf{c}(\mathbf{c}(B)) = \mathbf{c}(A \cup B)</math>.}}
{{Quote frame|quote='''[BT]''' सभी के लिए <math>A,B \subseteq X</math>, <math display="inline">A \cup B \cup \mathbf{c}(\mathbf{c}(A)) \cup \mathbf{c}(\mathbf{c}(B)) = \mathbf{c}(A \cup B)</math>.}}


Line 74: Line 74:
चूंकि मूर क्लोजर प्रचालक की आवश्यकता में न तो यूनियन और न ही खाली समुच्चय दिखाई देता है, इसलिए परिभाषा को अमूर्त यूनरी प्रचालक को परिभाषित करने के लिए अनुकूलित किया जा सकता है <math>\mathbf{c} : S \to S</math> इच्छानुसार से [[आंशिक रूप से आदेशित सेट|आंशिक रूप से आदेशित समुच्चय]] <math>S</math> है.
चूंकि मूर क्लोजर प्रचालक की आवश्यकता में न तो यूनियन और न ही खाली समुच्चय दिखाई देता है, इसलिए परिभाषा को अमूर्त यूनरी प्रचालक को परिभाषित करने के लिए अनुकूलित किया जा सकता है <math>\mathbf{c} : S \to S</math> इच्छानुसार से [[आंशिक रूप से आदेशित सेट|आंशिक रूप से आदेशित समुच्चय]] <math>S</math> है.


== टोपोलॉजी के अन्य स्वयंसिद्धों से संबंध ==
== टोपोलॉजी के अन्य एक्सिओम्सों से संबंध ==


=== बंद होने से टोपोलॉजी का समावेश ===
=== बंद होने से टोपोलॉजी का समावेश ===
Line 135: Line 135:
A & \operatorname{crd}(A) < \lambda, \\
A & \operatorname{crd}(A) < \lambda, \\
X & \operatorname{crd}(A) \geq \lambda
X & \operatorname{crd}(A) \geq \lambda
\end{cases}</math>सभी चार कुराटोव्स्की स्वयंसिद्धों को संतुष्ट करता है। <ref>A proof for the case <math>\lambda = \aleph_0</math> can be found at {{cite web |title=Is the following a Kuratowski closure operator?! |work=Stack Exchange |date=November 21, 2015 |url=https://math.stackexchange.com/q/1539449 }}</ref> यदि <math>\lambda = \aleph_0</math>, यह प्रचालक [[सहमित टोपोलॉजी]] को प्रेरित करता है <math>X</math>; यदि <math>\lambda = \aleph_1</math>, यह सहगणनीय टोपोलॉजी को प्रेरित करता है।
\end{cases}</math>सभी चार कुराटोव्स्की एक्सिओम्सों को संतुष्ट करता है। <ref>A proof for the case <math>\lambda = \aleph_0</math> can be found at {{cite web |title=Is the following a Kuratowski closure operator?! |work=Stack Exchange |date=November 21, 2015 |url=https://math.stackexchange.com/q/1539449 }}</ref> यदि <math>\lambda = \aleph_0</math>, यह प्रचालक [[सहमित टोपोलॉजी]] को प्रेरित करता है <math>X</math>; यदि <math>\lambda = \aleph_1</math>, यह सहगणनीय टोपोलॉजी को प्रेरित करता है।


== गुण ==
== गुण ==
Line 155: Line 155:




=== पृथक्करण स्वयंसिद्ध ===
=== पृथक्करण एक्सिओम्स ===
होने देना <math>(X, \mathbf{c})</math> एक कुराटोव्स्की क्लोजर स्पेस बनें। तब
होने देना <math>(X, \mathbf{c})</math> एक कुराटोव्स्की क्लोजर स्पेस बनें। तब



Latest revision as of 15:48, 2 November 2023

टोपोलॉजी और गणित की संबंधित शाखाओं में, कुराटोव्स्की क्लोजर एक्सिओम्स एक्सिओम्सों का समूह है जिसका उपयोग समुच्चय (गणित) पर सांस्थितिकीय संरचना को परिभाषित करने के लिए किया जा सकता है। वे अधिक सामान्यतः उपयोग किए जाने वाले खुले समुच्चय की परिभाषा के सामान्य हैं। उन्हें सबसे पहले काज़िमिर्ज़ कुराटोव्स्की द्वारा औपचारिक रूप दिया गया था। [1] और इस विचार का आगे अन्य गणितज्ञों जैसे वाक्ला सिएरपिन्स्की और एंटोनियो मोंटेइरो द्वारा अध्ययन किया गया।

आंतरिक (टोपोलॉजी) या आंतरिक प्रचालक की केवल दोहरी धारणा का उपयोग करके टोपोलॉजिकल संरचना को परिभाषित करने के लिए एक्सिओम्सों के समान समुच्चय का उपयोग किया जा सकता है। [2]

परिभाषा

कुराटोव्स्की क्लोजर प्रचालक्स और कमजोरियाँ

इच्छानुसार समुच्चय हो और इसका सत्ता स्थापित कुराटोव्स्की क्लोजर प्रचालक एकात्मक ऑपरेशन है जो को निम्नलिखित गुणों के साथ:

[K1]यह 'खाली समुच्चय को संरक्षित करता है': ;

[K2]यह व्यापक है: सभी के लिए , ;

[K3]यह 'उदासीन' है: सभी के लिए , ;

[K4] यह संरक्षित/वितरित करता है बाइनरी यूनियन: सभी के लिए , .

का परिणाम बाइनरी यूनियनों को संरक्षित करना निम्न शर्त है: [3]

[K4']यह मोनोटोन है: .

वास्तव में यदि हम [K4] में समानता को समावेशन के रूप में फिर से लिखते हैं, तो कमजोर एक्सिओम्स [K4''] (सबअडिटीविटी) देते हुए:

[K4''] यह सबएडिटिव है: सभी के लिए, ,

तो यह देखना आसान है कि अभिगृहीत [K4'] और [K4''] एक साथ [K4] के समतुल्य हैं (नीचे प्रमाण 2 का अगला-से-अंतिम पैराग्राफ देखें)।

कुराटोव्स्की (1966) पाँचवाँ (वैकल्पिक) एक्सिओम्स सम्मिलित है जिसके लिए आवश्यक है कि सिंगलटन समुच्चय क्लोजर के अनुसार स्थिर होना चाहिए: सभी के लिए , . वह टोपोलॉजिकल रिक्त स्थान को संदर्भित करता है जो सभी पांच सिद्धांतों को T1 के रूप में संतुष्ट करता है अधिक सामान्य स्थानों के विपरीत स्थान जो केवल चार सूचीबद्ध एक्सिओम्सों को संतुष्ट करते हैं। वास्तव में, ये रिक्त स्थान बिल्कुल T1 स्थान है | टोपोलॉजिकल T1 के अनुरूप हैं-सामान्य पत्राचार के माध्यम से रिक्त स्थान (नीचे देखें)। [4]

यदि आवश्यकता [K3] को छोड़ दिया जाता है, तो सिद्धांत चेक क्लोजर प्रचालक को परिभाषित करते हैं। [5] यदि इसके अतिरिक्त [K1] को छोड़ दिया जाता है, तो [K2], [K3] और [K4'] को संतुष्ट करने वाले प्रचालक को मूर क्लोजर प्रचालक कहा जाता है। [6] एक जोड़ी से संतुष्ट एक्सिओम्सों के आधार पर कुराटोस्की, चेक या मूर क्लोजर स्पेस कहा जाता है .

वैकल्पिक एक्सिओम्सीकरण

चार कुराटोव्स्की क्लोजर एक्सिओम्सों को एक ही स्थिति से बदला जा सकता है, जिसे पेरविन द्वारा दिया गया है: [7]

[P]सभी के लिए , .

अभिगृहीत [K1]-[K4] इस आवश्यकता के परिणामस्वरूप प्राप्त किया जा सकता है:

  1. चुनना . तब , या . यह तुरंत [K1] का तात्पर्य है।
  2. इच्छानुसार चुनें और . फिर अभिगृहीत [K1] को प्रयुक्त करने पर, , जिसका अर्थ है [K2]।
  3. चुनना और इच्छानुसार . फिर अभिगृहीत [K1] को प्रयुक्त करने पर, , जो [K3] है।
  4. इच्छानुसार चुनें . अभिगृहीत [K1]-[K3] को प्रयुक्त करने पर, [K4] की व्युत्पत्ति होती है।

वैकल्पिक रूप से, मोंटीरो (1945) कमजोर अभिगृहीत का प्रस्ताव किया था जिसमें केवल [K2]-[K4] सम्मिलित है: [8]

[M] सभी के लिए , .

आवश्यकता [K1] [M] से स्वतंत्र है: वास्तव में, यदि , परिचालक निरंतर कार्य द्वारा परिभाषित संतुष्ट करता है [एम] किन्तुखाली समुच्चय को संरक्षित नहीं करता है, क्योंकि . ध्यान दें कि, परिभाषा के अनुसार, [एम] को संतुष्ट करने वाला कोई भी प्रचालक मूर क्लोजर प्रचालक है।

[एम] के लिए अधिक सममित विकल्प भी एम. ओ. बोटेल्हो और एम. एच.टेक्सेरा द्वारा एक्सिओम्स [K2] - [K4] को प्रयुक्त करने के लिए सिद्ध किया गया था: [9]

[BT] सभी के लिए , .


अनुरूप संरचनाएं

आंतरिक, बाहरी और सीमा संचालक

कुराटोव्स्की क्लोजर प्रचालकों के लिए दोहरी धारणा कुराटोव्स्की आंतरिक प्रचालक की है, जो एक नक्शा है निम्नलिखित समान आवश्यकताओं को पूरा करना: [2]

[I1] यह कुल स्थान को संरक्षित करता है : ;

[I2]यह 'गहन' है: सभी के लिए , ;

[I3] यह 'उदासीन' है: सभी के लिए , ;

[I4]यह द्विआधारी चौराहों को संरक्षित करता है: सभी के लिए, .

इन प्रचालकों के लिए, कोई भी ऐसे निष्कर्ष पर पहुंच सकता है जो पूरी तरह से कुराटोव्स्की बंद होने के अनुमान के अनुरूप है। उदाहरण के लिए, सभी कुराटोव्स्की आंतरिक प्रचालक आइसोटोनिक हैं, अर्थात वे '[K4']' को संतुष्ट करते हैं, और तीव्रता '[I2]' के कारण, '[I3]' में समानता को साधारण समावेशन में कमजोर करना संभव है।

कुराटोव्स्की क्लोजर और आंतरिक के बीच का द्वंद्व प्राकृतिक 'पूरक प्रचालक' द्वारा प्रदान किया गया है , वो नक्शा भेजना . यह नक्शा पावर समुच्चय जाली पर ऑर्थोकोमप्लिमेंटेशन है, जिसका अर्थ है कि यह डी मॉर्गन के नियमों को संतुष्ट करता है: यदि सूचकांकों का एक इच्छानुसार समुच्चय है और जो,

के परिभाषित गुणों के साथ, इन कानूनों को नियोजित करके , कोई यह दिखा सकता है कि परिभाषित संबंध के माध्यम से कोई भी कुराटोव्स्की आंतरिक कुराटोव्स्की क्लोजर (और इसके विपरीत) को प्रेरित करता है (और ). संबंधित हर परिणाम, प्राप्त किया और को संबंधित परिणाम में परिवर्तित किया जा सकता है इन संबंधों को ऑर्थोकोमप्लिमेंटेशन के गुणों के साथ जोड़कर,

परवीन (1964) आगे कुराटोव्स्की बाहरी संचालकों के लिए अनुरूप अभिगृहीत प्रदान करता है [2] और कुराटोव्स्की सीमा संचालक, [10] जो संबंधों के माध्यम से कुराटोव्स्की और को भी बंद कर देता है .

सार संचालक

ध्यान दें कि अभिगृहीत [K1]-[K4] को अमूर्त एकात्मक संक्रिया को परिभाषित करने के लिए अनुकूलित किया जा सकता है सामान्य परिबद्ध जाली पर , जाली से जुड़े आंशिक क्रम के साथ समुच्चय-सैद्धांतिक समावेशन को औपचारिक रूप से प्रतिस्थापित करके, समुच्चय-सैद्धांतिक संघ को जोड़ने के संचालन के साथ, और समुच्चय-सैद्धांतिक चौराहों को मिलने के संचालन के साथ; इसी प्रकार अभिगृहीतों के लिए [I1]-[I4]। यदि जालक ऑर्थोकम्प्लिमेंटेड है, तो ये दो अमूर्त संक्रियाएँ सामान्य तरीके से एक दूसरे को प्रेरित करती हैं। जाली पर सामान्यीकृत टोपोलॉजी को परिभाषित करने के लिए सार बंद या आंतरिक प्रचालकों का उपयोग किया जा सकता है।

चूंकि मूर क्लोजर प्रचालक की आवश्यकता में न तो यूनियन और न ही खाली समुच्चय दिखाई देता है, इसलिए परिभाषा को अमूर्त यूनरी प्रचालक को परिभाषित करने के लिए अनुकूलित किया जा सकता है इच्छानुसार से आंशिक रूप से आदेशित समुच्चय है.

टोपोलॉजी के अन्य एक्सिओम्सों से संबंध

बंद होने से टोपोलॉजी का समावेश

क्लोजर प्रचालक स्वाभाविक रूप से टोपोलॉजिकल स्पेस को निम्नानुसार प्रेरित करता है। होने देना इच्छानुसार समुच्चय हो। हम कहेंगे कि उपसमुच्चय कुराटोव्स्की क्लोजर प्रचालक के संबंध में बंद है यदि और केवल यदि यह उक्त प्रचालक का निश्चित बिंदु है, या दूसरे शब्दों में यह स्थिर है , अर्थात। . प्रमाणित यह है कि कुल स्थान के सभी उपसमुच्चयों का परिवार जो बंद समुच्चयों का पूरक है, टोपोलॉजी के लिए तीन सामान्य आवश्यकताओं को पूरा करता है, या समकक्ष, परिवार सभी बंद समुच्चय निम्नलिखित को संतुष्ट करते हैं:

[T1]यह एक बाध्य उपवर्ग का है, i.e. ;

[T2]यह मनमाना चौराहों के तहत पूर्ण है, अर्थात। if सूचकांकों का एक मनमाना सेट है और,तब;

[T3]यह परिमित संघों के तहत पूर्ण है, अर्थात if सूचकांकों का एक परिमित सेट है और ,तब .

ध्यान दें कि, आलस्य [K3] द्वारा, कोई संक्षेप में लिख सकता है .

style="background: #F0F2F5; font-size:87%; padding:0.2em 0.3em; text-align:left; " |
Proof 1.

[T1] व्यापकता से [K2], और चूंकि क्लोजर के पावर सेट को मैप करता है अपने आप में (अर्थात, किसी उपसमुच्चय की छवि का एक उपसमुच्चय है ), अपने पास . इस प्रकार . रिक्त समुच्चय [K1] के संरक्षण का तत्काल तात्पर्य है .

[T2] अगला, चलो सूचकांकों का एक मनमाना सेट बनें और दें प्रत्येक के लिए बंद रहेगा . व्यापकता से [K2], . इसके अलावा, इसोटोनिसिटी [K4'] द्वारा, यदि सभी सूचकांकों के लिए , तब सभी के लिए , जो ये दर्शाता हे . इसलिए, , अर्थ .

[T3] अंत में, चलो सूचकांकों का एक परिमित सेट बनें और दें प्रत्येक के लिए बंद रहेगा . बाइनरी यूनियनों [K4] के संरक्षण से, और उन उपसमुच्चयों की संख्या पर गणितीय आगमन का उपयोग करते हुए, जिन्हें हम संघ लेते हैं, हमारे पास है . इस प्रकार, .


टोपोलॉजी से क्लोजर का इंडक्शन

इसके विपरीत, परिवार दिया संतोषजनक अभिगृहीत [T1]-[T3], निम्नलिखित तरीके से कुराटोव्स्की क्लोजर प्रचालक का निर्माण संभव है: यदि और समावेशन का ऊपरी समुच्चय है , तब

कुराटोव्स्की क्लोजर प्रचालक को पर परिभाषित करता है .

style="background: #F0F2F5; font-size:87%; padding:0.2em 0.3em; text-align:left; " |
Proof 2.

[K1] चूंकि , परिवार में सभी सेटों के प्रतिच्छेदन को कम कर देता है ; लेकिन स्वयंसिद्ध [T1] द्वारा, इसलिए चौराहा शून्य सेट तक गिर जाता है और [K1] अनुसरण करता है।

[K2] की परिभाषा के अनुसार , हमारे पास वह है सभी के लिए , और इस तरह ऐसे सभी सेटों के प्रतिच्छेदन में समाहित होना चाहिए। इसलिए व्यापकता [K2] का अनुसरण करता है।

[K3] ध्यान दें कि, सभी के लिए , परिवार रोकना खुद को एक न्यूनतम तत्व के रूप में w.r.t. समावेश। इस तरह , जो कि आलस्य [K3] है।

[K4'] चलो : तब , और इस तरह . चूंकि बाद वाले परिवार में पूर्व की तुलना में अधिक तत्व हो सकते हैं, हम पाते हैं , जो आइसोटोनिकिटी [K4'] है। ध्यान दें कि isotonicity का तात्पर्य है और , जिसका अर्थ एक साथ है .

[K4] अंत में, ठीक करें . अभिगृहीत [टी2] का तात्पर्य है ; इसके अलावा, अभिगृहीत [T2] का अर्थ है कि . व्यापकता से [K2] किसी के पास है और , ताकि . लेकिन , ताकि सब कुछ . के बाद से का न्यूनतम तत्व है w.r.t. समावेशन, हम पाते हैं . प्वाइंट 4. एडिटिविटी [के 4] सुनिश्चित करता है।


दो संरचनाओं के बीच त्रुटिहीन पत्राचार

वास्तव में, ये दो पूरक निर्माण एक दूसरे के व्युत्क्रम हैं: यदि पर सभी कुराटोव्स्की क्लोजर प्रचालकों का संग्रह है , और टोपोलॉजी में सभी समुच्चयों के पूरक वाले सभी परिवारों का संग्रह है, अर्थात सभी परिवारों का संग्रह [T1]-[T3] को संतुष्ट करता है, फिर ऐसा है कि एक आक्षेप है, जिसका प्रतिलोम नियतन द्वारा दिया गया है .

style="background: #F0F2F5; font-size:87%; padding:0.2em 0.3em; text-align:left; " |
Proof 3.

पहले हम सिद्ध करते हैं , पहचान ऑपरेटर चालू . दिए गए Kuratowski बंद होने के लिए , परिभाषित करना ; तो अगर इसका प्राइमेड क्लोजर सभी का चौराहा है -स्थिर सेट जिसमें शामिल हैं . इसका नॉन-प्राइमेड क्लोजर इस विवरण को संतुष्ट करता है: व्यापकता से [K2] हमारे पास है , और आलस्य से [K3] हमारे पास है , और इस तरह . अब चलो ऐसा है कि : isotonicity [K4'] द्वारा हमारे पास है , और तबसे हम यह निष्कर्ष निकालते हैं . इस तरह का न्यूनतम तत्व है w.r.t. समावेशन, अर्थ .

अब हम इसे सिद्ध करते हैं . अगर और सभी सेटों का परिवार है जो स्थिर हैं , परिणाम दोनों का अनुसरण करता है और . होने देना : इस तरह . तब से की मनमाना उपपरिवार का प्रतिच्छेदन है , और बाद वाला मनमाना चौराहों के तहत [T2] द्वारा पूरा हो जाता है, फिर . इसके विपरीत यदि , तब का न्यूनतम सुपरसेट है जिसमें निहित है . लेकिन यह तुच्छ है स्वयं, जिसका अर्थ है .

हम देखते हैं कि कोई आपत्ति का विस्तार भी कर सकता है संग्रह के लिए सभी चेक क्लोजर प्रचालक्स, जिनमें सख्ती से सम्मिलित हैं ; यह विस्तार विशेषण भी है, जो दर्शाता है कि सभी चेक क्लोजर प्रचालक चालू हैं टोपोलॉजी को भी प्रेरित करें . [11] चूंकि, इसका मतलब यह है अब आपत्ति नहीं है।

उदाहरण

  • जैसा कि ऊपर चर्चा की गई है, सामयिक स्थान दिया गया है हम किसी भी उपसमुच्चय के समापन को परिभाषित कर सकते हैं समुच्चय होना , अर्थात के सभी बंद समुच्चयों का प्रतिच्छेदन किसमें है . समुच्चय का सबसे छोटा बंद समुच्चय है युक्त , और प्रचालक कुराटोव्स्की क्लोजर प्रचालक है।
  • यदि कोई समुच्चय है, प्रचालक्स ऐसा है कि
    कुराटोव्स्की क्लोजर हैं। पहले तुच्छ टोपोलॉजी को प्रेरित करता है , जबकि दूसरा असतत टोपोलॉजी को प्रेरित करता है .
  • इच्छानुसार तय करें , और जाने ऐसा हो कि सभी के लिए . तब कुराटोव्स्की समापन को परिभाषित करता है; बंद समुच्चयों का संगत परिवार के साथ मेल खाता है , सभी उपसमुच्चयों का परिवार जिसमें सम्मिलित है . कब , हम एक बार फिर असतत टोपोलॉजी को पुनः प्राप्त करते हैं (अर्थात। , जैसा कि परिभाषाओं से देखा जा सकता है)।
  • यदि अनंत कार्डिनल संख्या है जैसे कि , फिर प्रचालक ऐसा है कि
    सभी चार कुराटोव्स्की एक्सिओम्सों को संतुष्ट करता है। [12] यदि , यह प्रचालक सहमित टोपोलॉजी को प्रेरित करता है ; यदि , यह सहगणनीय टोपोलॉजी को प्रेरित करता है।

गुण

  • चूंकि कोई भी कुराटोव्स्की क्लोजर आइसोटोनिक है, और इसलिए स्पष्ट रूप से कोई भी समावेशन मैपिंग है, किसी का (आइसोटोनिक) गाल्वा कनेक्शन है, एक दृश्य प्रदान किया समावेशन के संबंध में पोसमुच्चय के रूप में, और उपसमुच्चय के रूप में . वास्तव में, यह आसानी से सत्यापित किया जा सकता है कि, सभी के लिए और , यदि और केवल यदि .
  • यदि का उपपरिवार है , तब
  • यदि , तब .

क्लोजर के संदर्भ में सामयिक अवधारणाएँ

शोधन और उप-स्थान

कुराटोव्स्की की जोड़ी बंद हो जाती है ऐसा है कि सभी के लिए टोपोलॉजी प्रेरित करें ऐसा है कि , और इसके विपरीत। दूसरे शब्दों में, हावी यदि और केवल यदि उत्तरार्द्ध द्वारा प्रेरित टोपोलॉजी पूर्व द्वारा प्रेरित या समकक्ष रूप से प्रेरित टोपोलॉजी का परिशोधन है . [13] उदाहरण के लिए, स्पष्ट रूप से हावी है (उत्तरार्द्ध सिर्फ पहचान होने पर ). चूँकि एक ही निष्कर्ष को प्रतिस्थापित करके पहुँचा जा सकता है सपरिवार इसके सभी सदस्यों के पूरक सम्मिलित हैं, यदि आंशिक आदेश के साथ संपन्न है सभी के लिए और परिशोधन क्रम से संपन्न है, तो हम यह निष्कर्ष निकाल सकते हैं पॉसमुच्चय्स के बीच एंटीटोनिक मैपिंग है।

किसी भी प्रेरित टोपोलॉजी (उपसमुच्चय ए के सापेक्ष) में बंद समुच्चय नए क्लोजर प्रचालक को प्रेरित करते हैं जो केवल मूल क्लोजर प्रचालक है जो ए तक सीमित है: , सभी के लिए . [14]


निरंतर नक्शे, बंद नक्शे और होमोमोर्फिज्म

समारोह एक बिंदु पर निरंतरता (टोपोलॉजी) है आईएफएफ , और यह आईएफएफ हर जगह निरंतर है

सभी उपसमूहों के लिए . [15] मानचित्रण बंद नक्शा है यदि उलटा समावेशन धारण करता है, [16] और यह समरूपता है यदि यह निरंतर और बंद दोनों है, अर्थात यदि समानता है। [17]


पृथक्करण एक्सिओम्स

होने देना एक कुराटोव्स्की क्लोजर स्पेस बनें। तब

  • T0 स्थान है|T0-अंतरिक्ष आईएफ़ तात्पर्य ; [18]
  • T1 स्पेस है|T1-अंतरिक्ष आईएफ़ सभी के लिए ; [19]
  • हॉसडॉर्फ स्पेस है|T2-अंतरिक्ष आईएफ़ तात्पर्य है कि समुच्चय उपस्थित है ऐसा कि दोनों और , कहाँ समुच्चय पूरक प्रचालक है। [20]


निकटता और अलगाव

बिंदु उपसमुच्चय के लिए निकटता (टोपोलॉजी) है यदि इसका उपयोग समुच्चय के बिंदुओं और उपसमुच्चय पर निकटता स्थान संबंध को परिभाषित करने के लिए किया जा सकता है। [21]

दो समुच्चय अलग हो गए हैं यदि . अंतरिक्ष जुड़ा हुआ स्थान है यदि इसे दो अलग-अलग उपसमुच्चयों के मिलन के रूप में नहीं लिखा जा सकता है। [22]


यह भी देखें


टिप्पणियाँ

  1. Kuratowski (1922).
  2. 2.0 2.1 2.2 Pervin (1964), p. 44.
  3. Pervin (1964), p. 43, Exercise 6.
  4. Kuratowski (1966), p. 38.
  5. Arkhangel'skij & Fedorchuk (1990), p. 25.
  6. "Moore closure". nLab. March 7, 2015. Retrieved August 19, 2019.
  7. Pervin (1964), p. 42, Exercise 5.
  8. Monteiro (1945), p. 158.
  9. Monteiro (1945), p. 160.
  10. Pervin (1964), p. 46, Exercise 4.
  11. Arkhangel'skij & Fedorchuk (1990), p. 26.
  12. A proof for the case can be found at "Is the following a Kuratowski closure operator?!". Stack Exchange. November 21, 2015.
  13. Pervin (1964), p. 43, Exercise 10.
  14. Pervin (1964), p. 49, Theorem 3.4.3.
  15. Pervin (1964), p. 60, Theorem 4.3.1.
  16. Pervin (1964), p. 66, Exercise 3.
  17. Pervin (1964), p. 67, Exercise 5.
  18. Pervin (1964), p. 69, Theorem 5.1.1.
  19. Pervin (1964), p. 70, Theorem 5.1.2.
  20. A proof can be found at this link.
  21. Pervin (1964), pp. 193–196.
  22. Pervin (1964), p. 51.


संदर्भ


बाहरी संबंध